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1  | INTRODUC TION

Intraguild predation (IGP), in which members of the community of 
species sharing a resource and trophic level (a “guild”) predate upon 
one another, is widespread in the animal kingdom (Montserrat, 
Magalhães, Sabelis, Roos, & Janssen, 2008; Polis & Holt, 1992). 
Research suggests forces such as habitat structure, which reduces 

the probability of interaction between the “prey” and “predator” 
species, and resource availability, in which increased availability 
of alternative food sources reduces the incidence of predation, 
can contribute to the coexistence of two species in the same guild 
(Janssen, Sabelis, Magalhães, Montserrat, & Hammen, 2007; 
Montserrat et al., 2008). Researchers have shown through vegeta-
tion manipulation that spatial refuge and moderately predictable and 
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Abstract
Effects of intraguild predation (IGP) on omnivores and detritivores are relatively un-
derstudied when compared to work on predator guilds. Functional genetic work in 
IGP is even more limited, but its application can help answer a range of questions 
related to ultimate and proximate causes of this behavior. Here, we integrate behav-
ioral assays and transcriptomic analysis of facultative predation in a blow fly (Diptera: 
Calliphoridae) to evaluate the prevalence, effect, and correlated gene expression of 
facultative predation by the invasive species Chrysomya rufifacies. Field work ob-
serving donated human cadavers indicated facultative predation by C. rufifacies on 
the native blow fly Cochliomyia macellaria was rare under undisturbed conditions, 
owing in part to spatial segregation between species. Laboratory assays under con-
ditions of starvation showed predation had a direct fitness benefit (i.e., survival) to 
the predator. As a genome is not available for C. rufifacies, a de novo transcriptome 
was developed and annotated using sequence similarity to Drosophila melanogaster. 
Under a variety of assembly parameters, several genes were identified as being dif-
ferentially expressed between predators and nonpredators of this species, including 
genes involved in cell‐to‐cell signaling, osmotic regulation, starvation responses, and 
dopamine regulation. Results of this work were integrated to develop a model of the 
processes and genetic regulation controlling facultative predation.
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consistent prey availability can reduce IGP frequency (Janssen et al., 
2007). However, other systems are not as tractable, and IGP is diffi-
cult to study in many contexts (Vanak et al., 2013). Most IGP studies 
have focused on the interaction of predator species with each other 
rather than facultative predation within a canonically nonpredacious 
guild (Ingram et al., 2012; Polis, Myers, & Holt, 1989; Vanak et al., 
2013). However, researchers have expanded the definition of IGP 
outside of purely predator guilds and demonstrated the importance 
of IGP in structuring biological interactions in other trophic levels 
(Arim & Marquet, 2004).

Genetic studies of IGP (facultative or not) are scarce and may not 
even focus on gene expression of the focal organism (Bampfylde & 
Lewis, 2007; Miller, Metcalf, & Schluter, 2015). Some promising work 
in the threespine stickleback evaluating the effects of IGP have iden-
tified evolutionary niche and physiological trait evolution (Ingram et 
al., 2012; Miller et al., 2015), including evidence of a genetic basis for 
behavioral and morphological trait adaptation to IGP predator pres-
ence (Miller et al., 2015). There is also evidence of plasticity in these 
traits, as some populations exhibited predator‐avoidance traits only 
in the presence of the predator (Miller et al., 2015). However, this 
research, like others (Walzer & Schausberger, 2013), is focused on 
the evolutionary effect of IGP on the prey species. Both competition 
and predator avoidance can affect evolution and adaptive radiation 
(Nosil & Crespi, 2006; Oliver, Cabelli, Dolan, Jarosik, & Bioenerg, 
1994). Identification of the ultimate and proximate causes of IGP in 
the predators will allow researchers to develop integrated models for 
the effect of abiotic factors on food webs (Kondoh, 2008), species 
coexistence, and the evolution of adaptive traits. The application of 
transcriptomic approaches could be a strong first step to developing 
testable hypotheses related to the specific stimuli, mechanisms, and 
pathways that lead to this complex behavioral shift.

Limited research on IGP has been conducted in patchy ephem-
eral resource ecology, which deals with organisms that specialize 
on temporary and randomly distributed resources such as fruit and 
vernal ponds (Janzen, 1977). As the occurrence of these resources 
is unpredictable and typically short‐lived, competition between or-
ganisms is expected to be fierce (Heard, 1998). Vertebrate carrion 
is a tractable system for patchy ephemeral resource ecology stud-
ies as researchers can control where and when it is made available. 
Larval flies, especially flies (i.e., blow flies) of the family Calliphoridae 
(Diptera) have been extensively studied in carrion decomposition 
work, and these organisms have long been predicted to be under 
intense competitive pressures (Ullyett, 1950). Several competitive 
strategies are employed by these flies, including rapid development, 
highly sensitive sensory system for detecting and locating these 
resources, creating an unsuitable or unattractive environment for 
competitors, and IGP is an example of this last approach (Bradley & 
Sheppard, 1984; Denno & Cothran, 1976; Ireland & Turner, 2006).

Chrysomya rufifacies Macquart (Diptera: Calliphoridae) rep-
resents a unique opportunity to study the factors contributing to 
facultative predation within a nonpredator guild. This species, native 
to the Orient and Australia, is a carrion‐breeding blow fly that has 
been distributed globally (Baumgartner, 1993). It was first detected 

in the New World in Brazil in 1978 and has since spread throughout 
the Americas (Jirón, 1979). Though first instars feed solely on de-
caying animal tissues, second and third instars also engage in facul-
tative predation and cannibalism (Chitnis, 1965; Wells & Greenberg, 
1992a, 1992b) though these previous studies relied exclusively on 
observations under laboratory conditions. Some of the potential 
ecological ramifications of this predatory behavior in invasive ter-
ritories include driving the local extinction of native fauna, altering 
attraction and colonization patterns of carrion by other blow flies 
(Brundage, Benbow, & Tomberlin, 2014; Spindola, Zheng, Tomberlin, 
& Thyssen, 2016), and changing the predation patterns of beetle 
species (Wells & Greenberg, 1992a). Therefore, work with C.  rufi‐
facies presents an opportunity to study the ecological impact and 
molecular regulation of a complex behavior in an invasive species.

The purpose of this study was to determine the frequency of 
predation, putatively identify genetic markers of predation, and in-
tegrate this information to generate a model of the process leading 
to predatory behavior. More explicitly, this study was designed to 
investigate several specific aims. The first aim was focused on pre-
dation frequency and fitness effect; (a) How frequent is predation 
in the field? (b) How frequent is predation in simplified laboratory 
conditions? and, (c) Are there any fitness benefits to predation? 
The second aim was to compare gene expression in predator and 
nonpredators. In this very distinct system, there are many oppor-
tunities to learn about the forces that shape omnivory and intragu-
ild predation. The results of this work will help generate specific 
testable hypotheses regarding the proximate causes of predation, 
the impact of supplemental food availability, and the genetic mech-
anisms regulating nutritional ecology in immature insects.

2  | MATERIAL S AND METHODS

2.1 | Field behavior observation

Observations of C.  rufifacies on human cadaver donations were 
made at the Forensic Anthropology Research Facility at Texas State 
University in San Marcos, Texas as approved by the Institutional 
Biosafety Committee, Texas A&M University, College Station, 
Texas. Institutional Review Board (IRB) approval was not needed 
for this work, as no personal/identifiable information was collected. 
Researchers observed all human cadavers with second and third in-
star C. rufifacies and at least one other dipteran species for a period 
of 30 min each between 09:00 and 14:00 hr on five dates between 
6 June and 8 September of 2014. Remains were permitted to lay in 
situ without disturbance and C. rufifacies observed actively predat-
ing were collected. These individuals were permitted to eclose to 
adulthood to determine their sex.

2.2 | Colony maintenance

Chrysomya rufifacies larvae were collected from numerous car-
casses in College Station, Texas between May and September 
of 2011 and eclosed adults were identified morphologically 
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(Whitworth, 2006, 2010). Adult flies were released into a 
BugDorm 1 plastic cage (30 × 30 × 30 cm; MegaView Science) and 
allowed to interbreed to found the laboratory colony. The colony 
was provided with fresh deionized water, refined sugar ad libitum 
and fresh beef liver blood daily as a protein source for oogenesis. 
Flies were maintained at 28°C for a 16:8 light:dark (L:D) photo-
period. Voucher specimens were submitted to the Entomology 
Museum at Texas A&M University under voucher number 716 and 
717. Under the conditions of this experiment, C. rufifacies achieve 
third instar at ~72‐hr postoviposition and begin pupating at ~160‐
hr postoviposition. A locally sourced colony of the native blow 
fly Cochliomyia macellaria Fabricius established in previous work 
(Owings, Spiegelman, Tarone, & Tomberlin, 2014) was maintained 
as above as a prey species.

2.3 | Predation assays

To collect C.  rufifacies and Co.  macellaria larvae known ages (third 
instar), colonies were allowed access to an oviposition substrate 
of fresh beef liver in a 32.5 ml opaque plastic cup covered with a 
KimWipe® (Kimberly‐Clark) moistened with deionized water for 
a three‐hour window. After oviposition, the eggs were placed in a 
Percival model I‐36LLVL Incubator (Percival Scientific) at 30°C, 75% 
relative humidity (RH), and a 12:12 L:D. After hatching, aliquots of 
100 first instars were then transferred by paintbrush to 50  g of 
fresh beef liver in a 32.5 ml opaque plastic cup covered with a mois-
tened KimWipe® in a 1.1 L canning jar with approximately 100  g 

playground sand and a Wype‐All® on the top to prevent escape 
but allow air flow. These rearing jars were then placed in a Percival 
model I‐36LLVL Incubator (Percival Scientific) at 30°C, 75% RH, and 
a 12:12 L:D photoperiod. This was repeated for three times per egg 
collection, with a total of three biological replicates.

Predation assays were initiated 96 hr postoviposition of C. rufi‐
facies. A single predation arena consisted of one third instar C. rufi‐
facies and one third instar Co. macellaria placed in an empty 30 ml 
plastic cup (30 technical replicates per replicate). Each trial also in-
cluded a control set of 30 technical replicates; controls consisted of 
a single C. rufifacies from the same cohort isolated in an empty 30 ml 
plastic cup. The predation assays were kept in the incubator under 
conditions previously described for two weeks. One additional rep-
licate without controls was also conducted.

Results were tabulated after two weeks. Each individual arena 
was assessed for survival of predator, sex of predator (if adult), sur-
vival of prey, sex of prey (if adult), and level of prey consumption. 
Prey consumption level was categorized as no consumption (i.e., 
whole, dead prey or prey adults eclosed), partial consumption (i.e., 
prey larvae partially consumed), and total consumption (i.e., prey 
appears absent, or the empty cuticle could be identified; Figure 1a–
c). Once tabulated, data were analyzed in SAS® Studio v.9.4 (SAS 
Institute Inc.) to examine survival relative to supplemental food 
(control vs. treatment, consumption vs. nonconsumption) using Proc 
Freq and the Cochran–Mantel–Haenszel (CMH) test and Fisher's 
exact test (Mantel, 1963), as SAS is a powerful tool for categorical 
data analysis (Stokes, Davis, & Koch, 2012) with alpha set at 0.05.

F I G U R E  1   Chrysomya rufifacies in the laboratory and in the field, including categorization of prey consumption level of Cochliomyia 
macellaria by C. rufifacies. Panels (a–c) are images representative of prey consumption level categorization. Black circles indicate C. rufifacies, 
and white circles indicate Co. macellaria. (a) No consumption—two pupal casings (one C. rufifacies and one Co. macellaria). (b) Partial 
consumption—one pupal casing (C. rufifacies) and part of prey remaining. (c) Total consumption—one pupal casing (C. rufifacies) and no 
evidence of prey remaining. (d) When C. rufifacies is predating, it will wrap itself around the body of its prey item. (e) Spatial segregation 
between C. rufifacies and C. macellaria is frequently observed on human remains in the field. Chrysomya rufifacies is general found at the 
interface between the donation and the soil, with Cochliomyia macellaria on the surface (not pictured). (f) On the rare occasions that both 
species occupy the same area, the two species are found in separate masses (C. rufifacies in white circle)

(a)

1 cm

(c)

1 cm

(b)

1 cm

5 mm

(d)

2 cm

(e) (f)

4 cm
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2.4 | Sample collection, RNA 
extraction, and sequencing

For each sample, a single male and female C. rufifacies were isolated 
together in a 1.1 L canning jar with approximately 100 g playground 
sand, a Wype‐All on the top to prevent escape but allow air flow, 
and refined sugar and water ad libitum and a 10 ml glass beaker filled 
with one KimWipe® and approximately 1 ml fresh beef liver blood. 
An additional 1 ml of blood was added on each following day up until 
the 6th day posteclosion. The protein source was then excluded for 
a 24‐hr period. Beginning on the 7th day of posteclosion, a 35 ml 
plastic cup with approximately 25 g fresh beef liver covered with a 
moistened KimWipe® was introduced to the jar as an oviposition 
medium for a four‐hour window, twice each day. If a female ovipos-
ited during this time, the females were removed, and the progeny 
were allowed to develop.

Approximately 96  hr postoviposition, 10 prey individuals in 
the third instar (Co. macellaria) were moved into a predation arena 
(10  cm diameter high walled container). After this, 10 C.  rufifacies 
siblings were simultaneously moved into the predation arena. The 
larvae were observed until a single individual C. rufifacies attacked a 
Co. macellaria and exhibited the classic “wrap‐around” (Figure 1d), at 
which point the predator and prey were collected to an Eppendorf 
tube and flash frozen. Two C.  rufifacies, which were not exhibiting 
predatory behavior, were also collected at the same time to control 
for environmental influences on gene expression. Samples were col-
lected from a total of three maternal lines for each sex.

RNA was extracted via TriReagent preparation per manu-
facturer's protocols and dissolved in a 100  µl mixture of 99  µl of 
DNase/RNase/Nucleotide‐free water and 1 µl of SUPERase•In™ 
(Invitrogen, Life Technologies Incorporated). The extracted RNA was 
further purified using a Qiagen RNeasy Micro Kit and on‐column 
DNase treatment following manufacturer protocols (Qiagen Inc.). 
Samples were then assessed for quality and concentration using a 
NanoDrop 1000 (NanoDrop Products, Thermo Fisher Scientific Inc.) 
and Agilent 2100 Bioanalyzer Instrument (Agilent Technologies, 
Inc.). In total, 66 libraries across all stages of development of C. rufi‐
facies (33 male and 33 female) were sequenced on four flow cells at 
two facilities (Sequence Read Archive BioProjects: PRJNA287123, 
PRJNA287124, and PRJNA385184). The 12 RNA libraries (Sequence 
Read Archive BioProject: PRJNA287123) that are the focus of this 
paper were multiplexed and sequenced with 100  bp paired‐end 
chemistry on two lanes of an Illumina HiSeq2500 (Illumina, Inc.) at 
the Texas A&M University Genomics and Bioinformatics Service. 
Each predator library was paired with a nonpredatory sibling library 
(Table 1).

2.5 | Transcriptome assembly and analysis

Prior to assembly, reads trimmed and processed for quality control: 
Reads were filtered if they contained adaptor sequences or known 
contaminants as defined by Illumina, including the following se-
quences (or their reverse complements) were removed:

“GATCGGAAGAGCACACGTCTGAACTCCAGTCACTGACC 
AATCTCGTATGC”, “GATCGGAAGAGCGTCGTGTAGGGAAAGAGTG 
TAGATCTCGGTGGTCGCCG”, “GATCGGAAGAGCACACGTCTGAAC 
TCCAGTCACACAGTGATCTCGTATGC”, “GATCGGAAGAGCACACG 
TCTGAACTCCAGTCACTAGCTTATCTCGTATGC”. Finally, each read  
was trimmed to remove all bases including and after the first posi-
tion that had a quality score of 15 or less. The 66 RNAseq libraries 
were sequenced with an average of 6.3 × 107 reads per library at an 
average length (post‐trimming) of 86.3 bp; approximately 360 Gbp 
of sequence data was assessed. The 12 predator and nonpredator 
post‐trimming libraries which are the focus of this manuscript had 
an average of 6.6 × 107 reads per library (99.96% of raw reads) at 
an average length of 87.4 bp and quality of 37.4; there was no dif-
ference in average size between predator and nonpredator libraries 
(two tailed t test; p = 0.8707).

The transcriptome was assembled with read data from all life 
stages of C. rufifacies following Sze, Pimsler, Tomberlin, Jones, and 
Tarone (2017) under a variety of k‐mer length (k) and k‐mer cov-
erage cutoff (c) parameters, though only the libraries for the third 
instar predator and nonpredator individuals are considered here 
in the differential gene expression analysis. Briefly, for each k‐mer 
and coverage cutoff, the ASplice algorithm assembles reads into 
a single k‐mer_coverage assembly made up of splicing graphs ar-
ranged as nodes connected by edges, in a manner similar to how 
results are presented for SOAPdenovo2 (Luo et al., 2012). Nodes are 
analogous to unambiguously aligned contigs, and may represent an 
exon, or group of exons, transcribed together. The nodes of each 
transcriptome assembly were compared to Drosophila melanogaster 
Meigen (Diptera: Drosophilidae) proteins using the blastx algorithm 
(Altschul, Gish, Miller, Myers, & Lipman, 1990), keeping only the top 
BLAST hit with an E‐value ≤ 10–7.

Analyses comparing expression only between predatory and 
nonpredatory third instars from were done in R v.3.3.1 using the 
DESeq2 v3.1 package on all assemblies following a nested approach 
using best practices (Love, Huber, & Anders, 2014; R Core Team, 
2018). Briefly, first a likelihood ratio test was used to identify and 
filter nodes which were significantly differentially expressed based 

TA B L E  1   Sibling predator and non‐predator library numbers and 
abbreviations

Sex Pair

Predator Nonpredator

Library #
Sample 
name Library #

Sample 
name

Female 1 17 P1 18 N1

2 19 P2 20 N2

3 21 P3 22 N3

Male 4 27 P4 28 N4

5 29 P5 30 N5

6 31 P6 32 N6

Note: Columns from left to right: sibling pair number (Pair), whether 
predator (Predator) or nonpredator (Nonpredator) sibling, library num-
ber (Library #) and name of the sample (Sample Name).
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on relatedness but not behavior, as these nodes likely reflected en-
vironmental similarities (testing the model “Expression ~ Behavior + 
Sibling pair” against “Expression ~ Behavior”). The remaining nodes 
were then analyzed to identify those nodes with significant differ-
ential expression between actively predating and nonpredating indi-
viduals. Sex was not included in analysis of predator gene expression 
as both sexes demonstrated the phenotype. Only those nodes with a 
false discovery rate (FDR) < 0.1 were considered for further analysis. 
The classes of genes identified through this analysis were predator 
biased and nonpredator biased nodes. The node information was an-
alyzed relative to the assemblies to determine the number of genes, 
and number of transcripts of those genes that were identified as 
differentially expressed in each assembly. If no D. melanogaster hits 
were associated with the splicing graphs, transcripts were predicted 
from the splicing graphs and compared against the nucleotide and 
protein databases, using four different algorithms at the NCBI web-
site: blastn (nucleotide to nucleotide database), blastx (translated 
nucleotide to protein database), and tblastx (translated nucleotide to 
translated nucleotide database) (Altschul et al., 1990) all against the 
nonredundant databases and the conserved domain database (CDD; 
Marchler‐Bauer et al., 2014). Only hits with an E‐value of 10–7 or less 
were considered significantly differentially expressed.

3  | RESULTS

3.1 | Field predation

Over the sampling period, thirteen human donations were observed 
to have putative C. rufifacies and Co. macellaria in at least the second 

instar, as this is the earliest stage at which predation has been ob-
served in the literature (Baumgartner, 1993). Generally, the top 
surface of the donations was covered in Co. macellaria larvae, with 
C. rufifacies at the soil/donation interface (Figure 1e). Mixed masses 
with similar numbers of each species were not observed (Figure 1f). 
Interactions between C.  rufifacies and Co.  macellaria occurred pri-
marily when either: C. rufifacies left their maggot mass and moved up 
onto the surface (predation was not observed in these instances), or 
Co. macellaria fell into a C. rufifacies mass below.

Predation events were only observed on a single donation in 
(D45‐2014), and only 10 larvae were observed to predate in the half 
hour observation window. These larvae were collected from the 
maggot mass under the head, though there were larvae under the 
whole body and observations were also made at the genital region 
and the left foot. Of these 10 predating larvae, eight were male. The 
population of C. rufifacies from this donation was 51% male—a sex 
ratio that was statistically indistinguishable from 0.5. However, the 
sex ratio of the predators was statistically significantly higher than 
0.5 (p = 0.0289).

3.2 | Behavior assays

Given the difficulty of field observation, a series of laboratory ex-
periments were conducted to quantify predation rates, feeding in-
tensity, and investigate potential fitness benefit to predation. A total 
of 276 control (individual C. rufifacies in a plastic cup) and 304 preda-
tion (C. rufifacies from the same cohorts as their respective controls 
in a cup with access only to Co. macellaria larvae as supplemental 
food) assays were conducted over the course of three replicates 

Trial NC (%Surv) NT (%Surv) pSurvCvT pSurvSup pSurvPredLevel

1 90 (98%) 96 (99%) 0.6111 0.2491 0.0938

2 89 (79%) 89 (91%) 0.0352 0.0118 0.0034

3 97 (72%) 119 (86%) 0.0173 0.0063 0.0013

Cochran–Mantel–
Haenszela

– – 0.0007 <0.0001 0.1722

Breslow‐Dayb – – 0.9501 0.5996 –

Overallc 276 304 0.0017 0.0003 <0.0001

Note: Columns from left to right: Trial, number of individuals in control group (isolated C. rufifa‐
cies: NC) with percent survival indicated parenthetically, number of individuals in treatment group 
(single C. rufifacies with Cochliomyia macellaria: NT) with percent survival indicated parenthetically, 
percent of C. rufifacies surviving to eclosion (%Surv), p‐value of Fisher's exact test comparing 
survival rates between control and treatment (SurvCvT), p‐value of Fisher's exact test evaluating the 
effect of supplemental food comparing survival rates between consumption (Partial and Total) and 
no consumption (Control and None) (SurvSup), and p‐value of Fisher's exact test comparing survival 
rates by Predation level in treatment groups only (SurvPredLevel). Cells with a—indicate values which 
were not calculated because they were unnecessary or could not be calculated due to lacking 
data or a mathematical inability to calculate values. p‐Values in bold are those p‐values which are 
significant at an α = 0.05.
aCochran–Mantel–Haenszel test for repeated tests of independence in which small p‐values indi-
cate that there are significant differences between trials. 
bBreslow‐Day test for homogeneity of variances where a high p‐value means that there is no statis-
tically significant difference between replicates in variance. 
cAll of the trials collapsed and analyzed together for overall patterns. 

TA B L E  2   Predation increases survival 
of Chrysomya rufifacies in laboratory no‐
choice assays
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(generations; Table 2). Overall survival of C. rufifacies was 88% with 
a slight but significant skew of 56% males (Z test on proportions, 
p  =  0.0007). Consumption of supplementary food was associated 
with a 0.342 increased in odds of survival (CMH, p < 0.0001), with 
all individuals that engaged in partial predation surviving (Table 2, 
Figure 2). The sex ratios of surviving C. rufifacies adults in the preda-
tion assays did not differ from those of the controls (p = 0.3697).

3.3 | Differential expression

In order to identify molecular support for hypothesized causes 
of predation, 24 de novo transcriptome assemblies that varied in 

stringency were used to evaluate the experiment (Appendix S1). 
On average, 18.5 nodes (maximum 34, minimum 0) in nine splic-
ing graphs (maximum 16, minimum 0) were differentially expressed 
between predators and nonpredators (Table 1). These differentially 
expressed nodes were predominantly upregulated in predators, rela-
tive to their nonpredatory siblings (Table 3, Figure 3). One female 
predator did not show the same pattern of gene expression as the 
other predator libraries (Figure 3). Some of these splicing graphs 
lacked homology to any known D.  melanogaster genes, and some 
were found to align to multiple genes. A total of 36 genes were an-
notated, with most (23) only being detected once in four or fewer 
assemblies. Of the remaining 13 genes (Table 3), most were detected 
only once per assembly‐ the exception was AMP‐activated protein ki‐
nase α subunit (CrAMPKα), detected in two different splicing graphs 
in both 25_50 and 25_100 assemblies.

Eleven transcripts with significant homology to D.  melanogas‐
ter genes were differentially expressed in seven or more assem-
blies. Three have not yet been named in D.  melanogaster, though 
two of these were annotated with predicted function information. 
DmCG5254 is predicted to have mitochondrial transmembrane 
transporter function, and DmCG1336 contains a calponin‐like do-
main. The four most frequently homologous predator upregulated 
genes were Host cell factor (CrHcf), arginase (Crarg), CrAMPKα, and sil‐
ver (Crsvr) (20, 18, and 16 times respectively). Only one gene, Asterix 
(CrArx), was upregulated in nonpredators and detected in more than 
seven assemblies.

Splicing graphs without significant D.  melanogaster homology 
were also differentially expressed, though most could not be an-
notated with existing databases. One notable exception was the 
differential expression of nodes in two different assemblies which 
both had homology to Musca domestica L. (Diptera: Muscidae) Hcf 
(XM_005187593.2). Some nodes also demonstrated high homology 
to domains not found in insects: Nematoda phylum NADH dehydro-
genase subunit 2 (E < 10–10), EpsG family proteins related to a Bacillus 
subtilis (Cohn) (Bacillales: Bacillaceae) membrane‐bound glycosyl 
transferase (E < 10–10), Bacteriodes phylum integral membrane pro-
tein (domain of unknown function) DUF4271 (E < 10–9), and Borellia 
genus ORF‐A (also of unknown function; E < 10–9).

4  | DISCUSSION

This study determined facultative predation of Co.  macellaria by 
C. rufifacies was prevalent in the laboratory but proved difficult to 
observe under field conditions. Facultative predation under condi-
tions of starvation in the third instar provided a direct fitness ben-
efit. Incomplete spatial segregation between Co. macellaria larvae on 
the surface and the C.  rufifacies at the interface between the soil 
and the donations reduced the frequency of encounters between 
predators and potential prey. The observations reported here sup-
port the hypothesis that species coexistence in this system may 
be due to resource partitioning (Amarasekare, 2007; Fiene, Sword, 
VanLaerhoven, & Tarone, 2014), as has been observed in other 

F I G U R E  2   Comparison of survival rates of relative levels of 
predation by Chrysomya rufifacies on Cochliomyia macellaria prey 
in laboratory choice/no‐choice predation assays. Barplot of total 
number of C. rufifacies larvae which died (top panel) or survived to 
pupation (bottom panel) for each relative predation class (None, 
Partial, and Total from light gray to dark gray, respectively) with 
standard error bars of the three biological replicates with a control 
(no‐choice siblings, white bars), and the overall counts of survival 
(right of dashed gray line)
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systems involving IGP (Vanak et al., 2013) and invasive species in-
teractions (Coccia et al., 2016). Predation occurred frequently under 
laboratory conditions (92% of predation assays); however, and ac-
cess to supplementary food resulted in increased survival. Of note, 
individuals in the “partial predation” class demonstrated higher sur-
vival than either “none” or “complete” predation. This may be due to 
the fact that individuals which partially consumed their prey item 
may have been able to feed to satiation, whereas individuals that 
completely consumed their prey were still unable to acquire suffi-
cient nutrition. This would be in line with research that has demon-
strated that insects (including blow flies) can and do regulate feeding 
(Bowdan & Dethier, 1986; Söderberg, Carlsson, & Nässel, 2012), 
though there is evidence that food availability can affect satiation 
detection (Kanarek & Collier, 1983).

Taken together, the laboratory and field observations suggest 
two interesting hypotheses. The conflict between predation rates 
in the field and the laboratory may be due to the temporal scale of 
observations or the different experimental designs. Research has 
shown that many fly behaviors, from carcass attendance to ag-
gressive behavior, demonstrate distinct temporal patterns within a 
day (Benelli, 2014; Ceriani et al., 2002; Mohr & Tomberlin, 2014). 
Therefore, one potential explanation for the low rates of predation 
observed on undisturbed remains in the field is this behavior may be 
circadian rhythm gated and observations were not made at the cor-
rect time of day. The laboratory assays, in contrast, occurred over a 
time scale of weeks, and would therefore not have been sensitive to 
time‐of‐day specific behaviors. Another explanation is the predation 
behavior of C. rufifacies may be stimulated by carcass disturbance, 
given that no observations of predation behavior were made in the 
field after sample collection, and that the laboratory experimental 
conditions necessitated a “disturbance.” The ability to switch food 

sources from a preferred resource (carrion) to an abundant alterna-
tive (other dipteran larvae) may represent a significant evolution-
ary advantage in systems with abundant vertebrate scavengers, as 
scavenging by vertebrates can be a significant factor affecting the 
survival and fitness of carrion‐breeding insects (DeVault, Olson, 
Beasley, & Rhodes, 2011). Future work should determine whether 
predation behavior frequency changes throughout the day and ex-
amine the effect of scavenging (real and/or simulated) on predation 
rates.

A relatively short list of seven genes was identified as differen-
tially expressed between actively predating and nonpredating sib-
lings. These results point to several specific hypotheses related to 
both the proximate and ultimate causes of this behavior that can 
be further pursued. The first is that predation may be a general re-
sponse to starvation, as predators exhibited upregulation of genes 
related to the TOR signaling pathway and lipid metabolism (Bland, 
Lee, Magallanes, Foskett, & Birnbaum, 2010; Johnson et al., 2010; 
Stroschein‐Stevenson, Foley, O'Farrell, & Johnson, 2006). The sec-
ond is that microbial signals may stimulate predation, as some dif-
ferential expression was most closely associated with bacterial 
domains. The third is that predation may be a response to osmotic 
stress (Suganuma et al., 2010). Certainly, the enrichment of CrHcf 
in predatory individuals coupled with the results of previous work 
that showed that C.  rufifacies only engages in cannibalism under 
conditions of water stress (Chitnis, 1965), suggests water stress 
cannot fully be ruled out as a cause of predation. The fourth is that 
there may be neurological differentiation between predatory and 
nonpredatory individuals. Some of the differences may be due to 
dendrite morphogenesis (Swick, Kazgan, Onyenwoke, & Brenman, 
2013) and proper function and morphology of the neuromuscu-
lar junction, respectively (Akiyama, Marqués, & Wharton, 2012; 
McCabe et al., 2003), whereas others may be due to differences 
in dopamine synthesis or management (Varlamov & Fricker, 1998; 
Walter et al., 1996). Finally, small RNA regulation may provide the 
“brakes” on predatory behavior, as miRNA has been shown to af-
fect behavior in other insects (Asgari, 2013). The only identifiable 
gene downregulated during predation is Asterix (Arx), a crucial com-
ponent of some piRNA‐guided silencing in Drosophila (Dönertas, 
Sienski, & Brennecke, 2013) which may assist argonaute‐family/PIWI 
complexes in regulating gene expression (Czech & Hannon, 2016). 
Downregulation of this one sequence correlates with upregulation 
of a much larger suite of genes in predators. Interestingly, the only 
predatory female that did not cluster with her group by gene expres-
sion did exhibit downregulation of CrArx.

All of the above hypotheses can be pursued in greater detail and 
the work described here provides more detailed potential mecha-
nisms that could be regulating the behaviors. Particularly in light of 
the fact that the molecular interpretations explored here are extrap-
olated from Drosophila and therefore require validation of function 
in Chrysomya. Future work could investigate the effects of a manip-
ulated diet (i.e., addition of the antibiotic rapamycin, which inhib-
its the TOR pathway; an amino acid, such as arginine or dopamine 
receptor agonists or antagonists), modified microbial communities, 

F I G U R E  3   Heatmap of differentially expressed nodes between 
currently predating and nonpredating third instar Chrysomya 
rufifacies larvae. This figure shows a heatmap of differentially 
expressed nodes (rows) in 12 different libraries (columns) of 
currently predating individual larvae and their nonpredating siblings 
(same color shade, different intensity), reciprocally hierarchically 
clustered by similarity in expression pattern
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and relative humidity on predation rates to begin to tease apart the 
relative contributions and roles of these factors in facultative IGP. 
Other studies, such as the effect of Crasx and a putative inhibitory 
regulation of predation, may require transgenic techniques to deter-
mine if proper Crasx function is necessary and/or sufficient to inhibit 
predatory behavior.

Based on our gene expression analysis, we have developed a 
model regarding the physiological and genetic mechanisms under-
lying facultative intraguild predation (illustrated in Figure 4). The 
process begins with a stimulus (e.g., starvation, water stress, and/or 
microbes) being applied to the organism and initiating physiological 
and functional genetic changes. Individuals with pre‐existing neuro-
logical morphologies (e.g., dendrite morphologies, in the central ner-
vous system or at the neuromuscular junction, especially in the gut) 
or exposed to different environments are sensitive to this stimulus 
which may lead to the secretion of dopamine in the nervous system 
and arginase in the gut. These secretions interact with the pre‐exist-
ing morphology and physiology leading to aggressive behavior and 
facultative intraguild predation. Some of the genes leading to this 
pathway may be negatively regulated by Crasx.

These results seem to indicate that there is a fitness benefit 
to predation primarily as a response to starvation and, to a lesser 
extent, water stress. There are different potential levels of control 
to this behavior. Support from this study would suggest that phys-
iological changes in the fly, possibly affected by microbial gene ex-
pression or circadian rhythm gating, triggers the predation behavior. 
The neurological route regulating the behavior in this system is likely 
through dopaminergic pathways.

This work also highlights the utility of transcriptomics of non-
model organisms to develop specific testable hypotheses regard-
ing the ultimate and proximate causes of behaviors of interest. The 
application of transcriptomic techniques to IGP studies will open 
the door for the identification of the molecular basis of complex 
behavior, the similarities or differences in patterns of change in 
genetic pathways in relation to behavioral convergent evolution, 

and the adaptive mechanisms leading to the trophic promiscuity of 
omnivores (Hunter, 2009; Tanabe & Namba, 2005). In higher order 
organisms with more complex behaviors this approach may not be 
as useful due to safety, practicality, or other concerns. However, 
systems such as the one studied here as well as IGP observed in 
omnivorous mirids (Heteroptera: Miridae) (Lucas, Fréchette, & 
Alomar, 2009), would be particularly tractable and possible with 
currently available tools. Researchers have already identified 
some of the environmental conditions that regulate IGP frequency 
in these systems (e.g., C.  rufifacies (Baumgartner, 1993; Chitnis, 
1965; Shiao & Yeh, 2008; Wells & Greenberg, 1992a, 1992b) and 
mirids (Lucas et al., 2009)). With this framework, identification of 
the molecular basis of this behavior and comparative transcrip-
tomics will help identify the conditions that contribute to resource 
shift in this species. More broadly, such work will help us identify 
the traits in a species that make such behavioral plasticity possi-
ble, the conditions which select for the variability, and their eco-
logical consequences.
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