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Abstract

Hepatitis E viral (HEV) infection imposes a heavy health burden worldwide and is common in the 

United States. Previous investigations of risks addressed environmental and host behavioral/

lifestyle factors, but host genetic factors have not been examined. We assessed strength of 

associations between antibody to HEV (anti-HEV) immunoglobulin G seropositivity indicating 

past or recent HEV infection and human genetic variants among three major racial/ethnic 

populations in the United States, involving 2434 non-Hispanic whites, 1919 non-Hispanic blacks, 

and 1919 Mexican Americans from the Third National Health and Nutrition Examination Survey, 

1991–1994. We studied 497 single-nucleotide polymorphisms across 190 genes (particularly those 

associated with lipid metabolism). The genomic control method was used to adjust for potential 

population stratification. Non-Hispanic blacks had the lowest seroprevalence of anti-HEV 

immunoglobulin G (15.3%, 95% confidence interval [CI] 12.3%−19.0%) compared with non-

Hispanic whites (22.3%, 95% CI 19.1%−25.7%) and Mexican Americans (21.8%, 95% CI 19.0%

−25.3%; P< 0.01). Non-Hispanic blacks were the only population that showed association between 

anti-HEV seropositivity and functional ε3 and ε4 alleles of the apolipoprotein E (APOE) gene, 

encoding the apolipoprotein E protein that mediates lipoprotein metabolism. Seropositivity was 

significantly lower in participants carrying APOE ε4 (odds ratio = 0.5, 95% CI 0.4–0.7; P = 

0.00004) and ε3 (odds ratio = 0.6,95% CI 0.4–0.8; P = 0.001) compared to those carrying APOE 
ε2. No significant associations were observed between other single-nucleotide polymorphisms and 

anti-HEV seropositivity in non-Hispanic blacks or between any single-nucleotide polymorphisms 

and anti-HEV seropositivity in non-Hispanic whites or Mexican Americans.
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Conclusion: Both APOE ε3 and ε4 are significantly associated with protection against HEV 

infection in non-Hispanic blacks; additional studies are needed to understand the basis of 

protection so that preventive services can be targeted to at-risk persons.

Infection with hepatitis E virus (HEV) can lead to hepatitis E, a disease that is usually self-

resolving but can result in liver failure.1,2 Worldwide, of 20 million people estimated to be 

HEV-infected annually, 57,000 die from liver failure.3,4 In developing countries where 

waterborne HEV transmission is common, mortality is particularly high among pregnant 

women.5 In industrialized countries, imported and indigenously acquired infections occur, 

and chronic HEV infection is being increasingly recognized among immunocompromised 

persons, especially solid-organ transplant recipients in whom progression to cirrhosis has 

been observed.6

A serological study of participants of the Third National Health and Nutrition Examination 

Survey (NHANES III) has suggested that one-fifth of the US population may have been 

exposed to or infected by HEV and that certain host demographic and lifestyle factors 

predispose a person to HEV infection.7 Unlike for viral hepatitis A, B, and C, human genetic 

risk factors for hepatitis E are not well understood.8–11 It has been shown, however, that 

host-cell lipid metabolism influences the initiation of HEV infection, replication, and release 

from infected cells 12,13 and that the liver is the principal site of lipid, lipoprotein, and 

apolipoprotein metabolism; as such, patients with acute hepatitis E show increased blood 

levels of apolipoprotein E (apoE),14,15 and HEV-infected swine accumulate apoE in the 

liver.16 Because human genetic variants account for variation in lipid metabolism, genetic 

variations in lipid-related genes might be associated with differential host response to HEV 

infection.17 We selected candidate genes on the basis of their possible roles in altering lipid 

and lipoprotein profiles in HEV-infected persons and in modulating the immune response 

against HEV.

We determined variations in the genetic makeup of humans potentially associated with 

increased risk for HEV infection in a large candidate gene study using a cross-sectional 

study of the three major racial/ethnic populations in the United States: non-Hispanic whites, 

non-Hispanic blacks, and Mexican Americans. A better understanding of the genetic 

influence on susceptibility to HEV infection can help identify and target high-risk 

populations appropriate for prevention.

Methods

Ethics Statement.

All data collection and laboratory procedures were approved by the Centers for Disease 

Control and Prevention’s National Center for Health Statistics Ethics Review Board, and 

written informed consent was obtained from all participants. Though the original consent did 

not specifically mention using stored blood specimens for future genetic research, the 

National Center for Health Statistics Ethics Review Board has approved the use of these 

samples for this purpose based on the guidelines in the August 1999 National Bioethics 

Advisory Commission report.18 To ensure privacy of the study participants and 
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confidentiality of their data, analysis was conducted at a secure environment, in the National 

Center for Health Statistics Research Data Center in Atlanta, Georgia.

Study Population.

The NHANES III was conducted between 1988 and 1994, and the survey design, 

population, DNA bank, genotyping, and quality control have been described elsewhere.18,19 

Briefly, the NHANES III used a stratified, multistage probability design to select subjects 

for household interviews, physical examinations, and laboratory tests to provide nationally 

representative estimates of the health and nutritional status of the civilian, 

noninstitutionalized population aged ≥2 months. A DNA bank was created from blood 

samples collected during the second phase (1991–1994) from 7159 participants aged ≥12 

years. Genetic data were combined with behavioral, environmental, and clinical information 

available in NHANES III. We included in our study 6272 (87.6%) participants who self-

reported as being non-Hispanic white (n = 2434), non-Hispanic black (n = 1919), or 

Mexican American (n = 1919, excluding Hispanic persons of other origins) and who had 

been tested for antibody to HEV (anti-HEV) immunoglobulin G (IgG). The serostatus of 

participants was determined by the absence or presence of anti-HEV IgG,7 the latter 

indicating past or recent HEV infection.

Selection of Polymorphisms and Genotyping.

We selected candidate genes on the basis of their possible roles in altering lipid and 

lipoprotein profiles in HEV-infected persons and in modulating the immune response against 

HEV. These genes were selected from a candidate list (Supporting Table S1) generated from 

the published literature.12–16 A total of 190 genes encompassing 497 single-nucleotide 

polymorphisms (SNPs), genotyped through the NHANES genetic program as of 2011, were 

selected and are available in a restricted-access database through the National Center for 

Health Statistics Research Data Center.18 Detailed genotyping methods and quality control 

criteria have been described and are available online.18,19

Statistical Analysis.

All data were weighted to the US population in SAS-Callable SUDAAN 9.01 and SAS 

9.3.20 Weighted allele frequencies and their 95% confidence intervals (CIs) were calculated 

using the NHANES III genetic sample weights for the 7159 participants.19 The Taylor series 

linearization approach was used to correct for the design effect and the possibility of genetic 

relatedness of persons sampled from the same household. The logistic regression model was 

used to test for association between each SNP and anti-HEV seropositivity for each race/

ethnicity group.21,22 An additive genetic model (AA versus Aa versus aa), which treats the 

marker as a continuous variable, was assumed for regression analyses to test the null 

hypothesis that anti-HEV seropositivity does not vary with increasing copy numbers of the 

minor allele a.

The genomic control (GC) method was used to adjust for potential population stratification.
23 Satterthwaite χ2 statistics generated from a supplemental set of 267 SNPs from the 

NHANES III genetic data set were used to derive empirical estimates of the null distribution 

that accounted for the effects of population structure (i.e., the presence of a significant 
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difference in allele frequencies within US racial/ethnic subpopulations due to different 

ancestry). These SNPs were chosen without any prior knowledge of associations with anti-

HEV seropositivity and to be at least 1 million base pairs apart from each other in order to 

reduce the likelihood that they would be in linkage disequilibrium. A list of these SNPs is 

provided in Supporting Table S2. The variance inflation factor, λ (calculated as the median 

value from the null distributions divided by the median value of the theoretical χ2 statistics 

distribution, 0.4549), was used to readjust the Satterthwaite χ2 statistics from the regression 

models for SNPs in the candidate genes for potential confounding by population structure.

The P values from the GC-corrected χ2 Satterthwaite statistics were then further adjusted for 

multiple testing using the false discovery rate (FDR) as estimated by the PROC MULTTEST 

procedure in SAS.24 A significant association was defined as the GC-and FDR-adjusted P 
value (GC/FDR-P) < 0.05 for all SNPs and anti-HEV seropositivity.

Results

Descriptive Analysis.

Of 7159 possible subjects, 6262 (87.5%) met the inclusion criteria (Table 1). Overall, the 

seropositivity rate was 21.6% in participants aged ≥12 years, which varied significantly 

among the three racial/ethnic populations (P< 0.01). It was lower among non-Hispanic 

blacks (15.3%, 95% CI 12.3%−19.0%) compared with non-Hispanic whites (22.3%, 95% CI 

and 19.1%−25.7%) or Mexican Americans (21.8%, 95% CI 19.0%−25.3%). Seropositivity 

was strongly associated with age, rising significantly with increasing age across all three 

subpopulations and peaking in the >65-year age group. Seropositivity was significantly 

associated with region of residence, poverty income ratio, education attained, and country of 

birth (Table 1).

Genetic Associations With Anti-HEV Seropositivity.

Among the SNPs, 98% were significantly different in allele frequency across race/ethnicity 

groups (P < 0.01) (data not shown). The extent of this differentiation varied greatly between 

SNPs and between racial/ethnic populations. Accordingly, we conducted three parallel 

analyses, one for each race/ethnicity group for each SNP tested. Excluded were SNPs with a 

minor allele frequency <1% or a major allele frequency >99%. In the final analysis, 459, 

491, and 469 SNPs were included for non-Hispanic whites, non-Hispanic blacks, and 

Mexican Americans, respectively. The effects of using GC on the results are shown in 

Supporting Fig. S1. The χ2 value overestimation, as indicated by GC inflation factor λ, was 

1.3, 1.0, and 1.8 times higher for non-Hispanic whites, non-Hispanic blacks, and Mexican 

Americans, respectively (Table 2).

The univariable analysis indicated significant genetic associations with seropositivity and 

race/ethnicity among non-Hispanic blacks but not among non-Hispanic whites or Mexican 

Americans (Fig. 1). Two SNPs, rs5110 in apolipoprotein A-IV (APOA4, located in 

chromosome 11) and rs7412 in APOE (in chromosome 19), were associated with anti-HEV 

seropositivity among non-Hispanic blacks in the univariable models. Specifically, the alleles 

APOA4 rs5110-A (odds ratio [OR] = 0.2, 95% CI 0.1–0.5; GC/FDR-P = 0.007) and APOE 
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rs7412-C (OR = 0.6, 95% CI 0.5–0.8; GC/FDR-P = 0.02) were associated with lower odds 

of sero-positivity (Table 2).

The APOE gene encodes the apoE protein. This protein combines with fats (lipids) in the 

body to form lipoproteins. Lipoproteins are responsible for packaging cholesterol and other 

fats and carrying them through the bloodstream. There are three apoE protein isoforms 

(apoE2, apoE3, and apoE4), differing from each other by only one or two amino acids at 

positions 112 and 158. These isoforms are encoded by three allelic variants of APOE: ε2, 

ε3, and ε4, respectively. Variants ε2, ε3, and ε4 are haplotypes defined by rs7412 and rs42 9 

3 5 8.25 In non-Hispanic blacks APOE rs7412 was associated with lower odds of 

seropositivity, and rs429358 was not statistically significant in the overall scan after 

adjustments by both the GC for potential population stratification and the FDR for multiple 

testing. As we were interested in these well-studied functional APOE allelic variants, we 

further conducted analysis on ε2, ε3, and ε4 to determine any association (P < 0.05) with 

anti-HEV seropositivity for each race/ethnicity group. The seropositivity rate among non-

Hispanic blacks carrying ε4 was significantly lower than in those carrying ε2 (OR = 0.5, 

95% CI 0.4–0.7; P = 0.00004), as was the rate in those carrying e3 compared to those 

carrying ε2 (OR = 0.6, 95% CI 0.4–0.8; P = 0.001) (Table 3).

Discussion

We have examined associations between human genetic variants and HEV infection in a 

nationally representative sample of the three major race/ethnicity groups in the United 

States. Among non-Hispanic blacks, whose anti-HEV seroprevalence rate was lowest 

compared to non-Hispanic whites and Mexican Americans, APOE ε3 and ε4 were found to 

be significantly associated with protection against HEV infection.

Originally recognized for its importance in lipoprotein metabolism and cardiovascular 

disease, apoE, whose isoforms are apoE4, apoE3 and apoE2, are increasingly known to play 

key roles in biological processes in addition to lipid transport, such as cognitive function and 

immunoregulation.26,27 Although the isoforms differ by single–amino acid substitutions, 

these changes can lead to profound functional consequences, including variability in domain 

interactions, protein stability, and protein folding, which in turn can influence susceptibility 

to and the natural history of disease. Thus, individuals carrying the APOE ε4 allele are 

reported to be 10 times more likely to develop late-onset Alzheimer’s disease than those 

carrying other variants.28

Among the non-Hispanic blacks in our study population, the association between lower 

APOE ε4 carriage and seropositivity rate for anti-HEV likely reflects the protective effect of 

apoE4 against primary HEV infection in the liver. Apolipoprotein E is synthesized mainly 

by the liver, and in vitro studies have shown that apoE4 exhibits greater binding affinity to 

cultured hepatoma cells than apoE3.30 Possible explanations for how apoE influences the 

protection against HEV infection include (1) HEV using the same hepatocyte entry 

mediators as those of apoE, (2) the incorporation of apoE in the HEV envelope, and (3) 

apoE modulating the immune response against HEV.29 First, apoE is able to bind to several 

cell surface receptors, including heparan sulfate proteoglycans (HSPGs) and low-density 
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lipoprotein receptors. Several pathogens, such as hepatitis C virus,31 herpes simplex virus,32 

human immunodeficiency virus,33 and the malaria protozoon,34 have been reported to bind 

to one or another of these receptor sites to gain entry to target cells. Indeed, apoE can inhibit 

such binding by competing with HSPGs.27,35 Also, HSPGs have been shown to be requisite 

for the HEV capsid protein to bind to facilitate cell entry,36 so any difference in isoform 

affinity for HSPGs conferred by the APOE genotype may affect the extent to which HEV 

enters hepatocytes. Second, HEV virions circulating in the blood are covered with an 

envelope that possibly incorporates apoE in the lipid membrane as it exits from the host cell,
16 similar to other enveloped viruses (e.g., human immunodeficiency virus, hepatitis C virus, 

and herpes simplex virus).37 The envelope protects the virus against neutralizing antibodies. 

Moreover, being essential for the transport of cholesterol into and out of the liver and a 

critical component of the viral envelope, apoE may be essential for viral entry and assembly.
38 Third, as HEV-specific T-cell responses play critical roles in controlling the course of 

HEV infection,39 apoE may modulate the immune response against HEV by regulating T-

lymphocyte activation and proliferation.29

This study is among the first to apply the GC method to correct for potential confounding 

from population substructures in the NHANES, which may be particularly important as race/

ethnicity was based on self-report. Confounding can result from stratification or recent 

admixture of distinct subpopulations.40 Genetic admixture is commonly encountered among 

Mexican American and non-Hispanic black populations (substantially less among non-

Hispanic whites).41,42 Given the GC inflation factors in the current study, Mexican 

Americans were most likely to be affected by population structure, followed by non-

Hispanic whites and non-Hispanic blacks. Applying a GC, as was done in this study, lends 

confidence to validating the detected associations.

This study has several limitations. First, the outcome of the study, seropositivity to anti-HEV 

IgG, is cumulative without knowledge of when the antibody first appeared, its persistence, or 

to which HEV genotype it was elicited against. Second, overly conservative P values may be 

generated by FDR, which may decrease our ability to identify true associations. Unlike 

unadjusted P values expressing the probability of a false-positive result for a single test, the 

FDR gives a conservative estimate of the proportion of false positives among variants with 

significant association. Finally, the statistical power to detect significant associations with 

uncommon genetic variants was limited. Although this cross-sectional study was adequately 

powered to detect in each racial/ethnic group the two crude associations between anti-HEV 

seropositivity and rs5110-A or rs74l2-C that were found for non-Hispanic blacks 

(Supporting Table S3), the possibility that these SNPs are proxies for true causal variants 

cannot be excluded. Differences in linkage disequilibrium between races/ethnicities thus 

may hamper our ability to detect associations across all three groups, if they exist.

In conclusion, this NHANES-based cross-sectional study found that APOE ε3 and ε4 may 

be associated with protection against HEV infection in non-Hispanic blacks but not non-

Hispanic whites or Mexican Americans. No other data have yet been generated to suggest 

that certain individuals or populations are biologically more resistant or susceptible to HEV 

infection. Therefore, replication of our study’s findings is encouraged, as is investigation 

into the functional relevance of the genes uncovered. Discovery of the basis of protection 
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against HEV can inform the development of targeted preventative measures for at-risk 

populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Genetic associations between anti-HEV-seropositivity and race/ethnicity among non-

Hispanic blacks, non-Hispanic whites and Mexican Americans by univariable analysis.
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Table 3.

Protective Effect of APOE Variants Against HEV Infection in Non-Hispanic Blacks
*
 in the NHANES III, 

1991–1994

Variant Allele Frequency
†
 (%) OR (95% CI) P

Non-Hispanic whites

 APOE ε2   8.3 1 (reference)

 APOE ε3 76.0 0.9 (0.7–1.2) 0.99

 APOE ε4 15.7 0.9 (0.6–1.6) 0.99

Non-Hispanic blacks

 APOE ε2 10.1 1 (reference)

 APOE ε3 67.9 0.6 (0.4–0.8) 0.001

 APOE ε4 22.0 0.5 (0.4–0.7) 0.00004

Mexican Americans

 APOE ε2   3.3 1 (reference)

 APOE ε3 85.7 0.9 (0.6–1.5) 0.99

 APOE ε4 11.0 0.8 (0.5–1.6) 0.99

*
Logistic regression analysis within each race/ethnicity group.

†
Frequencies adjusted using NHANES III genetic sample weight.
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