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Abstract
Sparse representation is considered an important coding strategy for cortical processing in various sensory modalities. It
remains unclear how cortical sparseness arises and is being regulated. Here, unbiased recordings from primary auditory
cortex of awake adult mice revealed salient sparseness in layer (L)2/3, with a majority of excitatory neurons exhibiting no
increased spiking in response to each of sound types tested. Sparse representation was not observed in parvalbumin (PV)
inhibitory neurons. The nonresponding neurons did receive auditory-evoked synaptic inputs, marked by weaker excitation
and lower excitation/inhibition (E/I) ratios than responding cells. Sparse representation arises during development in an
experience-dependent manner, accompanied by differential changes of excitatory input strength and a transition from
unimodal to bimodal distribution of E/I ratios. Sparseness level could be reduced by suppressing PV or L1 inhibitory neurons.
Thus, sparse representation may be dynamically regulated via modulating E/I balance, optimizing cortical representation of
the external sensory world.
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Introduction
It has been discovered in the past decades that only a small
percentage of cortical neurons respond with spikes to a given
sensory stimulus, with a vast majority of them being relatively

silent (Hahnloser et al. 2002; Perez-Orive et al. 2002; Shoham
et al. 2006; Hromadka et al. 2008; Poo and Isaacson 2009;
Crochet et al. 2011; Epsztein et al. 2011; Barth and Poulet 2012;
Kato et al. 2015). This dominant silence has often been
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explained by a sparse coding strategy (Levy and Baxter 1996;
Hahnloser et al. 2002; Perez-Orive et al. 2002; Laughlin and
Sejnowski 2003; Olshausen and Field 2004; Barth and Poulet
2012; Petersen and Crochet 2013), that is, any specific sensory
stimulus is selectively represented by a small subset of neurons
and each neuron has its unique responding sensory space.
Such strategy can allow a large information storage capacity
while keeping a conservative energy budget (Levy and Baxter
1996; Laughlin and Sejnowski 2003; Olshausen and Field 2004).

Sparse cortical representation of sensory stimuli has been
observed across several modalities, including somatosensory
(Crochet et al. 2011), olfactory (Poo and Isaacson 2009), visual
(Vinje and Gallant 2000), and auditory (Sutter et al. 1999;
Hromadka et al. 2008; Chambers et al. 2014) cortices, in particu-
lar for supragranular neurons (Sakata and Harris 2009). In
awake rodent primary auditory cortex (A1), recent calcium
imaging studies have suggested that only about 20–30% of layer
(L)2/3 neurons are excited by tone stimuli (Issa et al. 2014; Kato
et al. 2015), although the actual percentage may be sensitively
affected by the type of indicator used and its expression level.

Despite the well-documented phenomena of cortical sparse
representation, there are outstanding questions remaining to be
resolved. First, the underlying synaptic basis for sparse representa-
tion is not well understood. It is generally proposed that sensory
response properties of cortical neurons are primarily determined
by the interplay of excitatory and inhibitory synaptic inputs they
receive (Isaacson and Scanziani 2011; Wu et al. 2011), and many
previous studies have shown that cortical neurons ubiquitously
receive inhibitory synaptic input (Sutter et al. 1999; Wehr and
Zador 2003; Zhang et al. 2003; Liu et al. 2010, 2011). In the olfactory
cortex of anesthetized mice, different odors nonselectively evoke
strong inhibition in L2/3 pyramidal neurons, whereas the odor-
evoked excitation is much less common (Poo and Isaacson 2009).
In other words, cortical sparseness is at least partially inherited
from excitatory input and may be enhanced by the global inhibi-
tion. In the barrel cortex of awake mice, examination of mem-
brane potential changes of L2/3 pyramidal neurons in response to
principle whisker–object contacts has revealed a commonly hyper-
polarized reversal potential (i.e., more hyperpolarized than the
spike threshold) for the evoked synaptic response (Crochet et al.
2011), suggesting that inhibitory input may play a critical role in
controlling sparse spiking by “clamping” the membrane potential
response in most of times below the spike threshold. The role of
excitatory input in this case however has not been addressed. It is
thus important to examine in the awake cortex both excitatory
and inhibitory inputs to an individual neuron, which may regulate
the sparse representation by acting together (Yu et al. 2014).

Second, previous studies on sparse representation have all
been carried out in adult cortices. It remains unknown whether
sparse representation is an intrinsic property of cortical circuits or
if it arises during development in an activity-dependent manner.
Given current understanding that functional properties of sensory
cortical neurons undergo profound experience-dependent devel-
opmental changes (Zhang et al. 2001, 2002; Chang and Merzenich
2003; Yazaki-Sugiyama et al. 2009; Sun et al. 2010), we wonder if
cortical sparseness is also subjected to developmental regulation
and shaped by sensory experience.

Third, apart from a developmental regulation, it is unclear
whether the sparseness level can be modulated acutely through
manipulating some specific circuit components or input sources.
The answer to this question may shed some light onto the func-
tional significance of sparse representation.

In this study, we established stable cell-attached recording
techniques in awake auditory cortex of both adult and young

mice. By cross-examining neuronal responsiveness to a variety
of sound types in the primary auditory cortex (A1), we found
that tones and noise were 2 fundamental sound categories that
could be used to evaluate a lower bound of cortical sparseness.
Using these sounds, we examined cell type and laminar differ-
ences of sparse representation and revealed that sparse repre-
sentation was salient in the L2/3 excitatory neuron population.
Using sequential cell-attached and whole-cell voltage clamp
recordings, we compared excitatory and inhibitory inputs
between responding and nonresponding neurons and found
that the nonresponsiveness could be explained by relatively
weaker excitation and lower E/I ratios. Furthermore, we discov-
ered that sparse representation in fact emerged during devel-
opment in a sensory experience-dependent manner, and that
this process was accompanied by differential changes of excit-
atory input strength and a transition from unimodal to bimodal
distribution of E/I ratios. Finally, we found that the sparseness
level was subjected to modifications by manipulating activity
of cortical parvalbumin (PV) or L1 inhibitory neurons. These
developmental and functional modulations of cortical sparse-
ness may allow auditory cortex to extend its functional spec-
trum during adaptive changes.

Materials and Methods
All experimental procedures used in this study were approved
by the Animal Care and Use Committee at the University of
Southern California.

Animal Preparation for Recordings

For adult animals, C57BL/6 J mice of either sex aged 2–3 months
were used. Each animal was first tested with multiunit record-
ings to map the frequency representation in the auditory cor-
tex. Auditory response thresholds were found normal for the
examined frequency range (2-64 kHz) for all the animals used
in this study. Animals for awake recordings were prepared in a
similar way as previously described (Zhou et al. 2014; Xiong
et al. 2015; Zhang et al. 2018). Mice were housed with a 12-h
light/dark cycle. 3–7 days before the recording, the animal was
anesthetized with isoflurane (1.5%, v/v) and a screw for head
fixation was mounted on the top of the skull with dental
cement. Skull over the A1 was cleaned and protected from
being covered by dental cement. During the recovery period,
the mouse was trained to get accustomed to the head fixation
on the recording setup. To fix the head, the screw was tightly
clamped by a custom-made post holder. The head-fixed animal
was able to run freely on a flat rotatable plate mounted on an
optical shaft encoder (US Digital). For recording, the mouse was
briefly anesthetized with isoflurane to perform a small craniot-
omy (~0.8 × 0.8mm2) over the A1 one day before the experi-
ments. The craniotomy was properly covered with silicon
elastomer (Kwik-CAST, WPI) and sealed until recording.
Recording experiments were carried out in a sound-attenuation
booth (Acoustic Systems), only in animals which exhibited
smooth running on the plate. They spent about 10%-20% of
time running. Each recording session lasted for about 4 h. The
animal was given drops of 5% sucrose (w/v) through a pipette
every hour. Between sessions, animals were returned to the
home cage for a > 1-h break. For young animals, C57BL/6 J mice
of either sex older than P16 (developmental stage 1, ST1, P18–
P21; ST2, P25–P28; ST3, P32–P35) were used. 2–3 days before the
recording, the mouse was anesthetized with isoflurane (1.5%, v/v)
in order to mount a post on the skull.
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For recordings, sound stimuli were delivered in one setup
through a closed acoustic delivery system with a TDT EC1 cou-
pler speaker (calibrated to generate flat outputs from 2 kHz to
64 kHz) connected with the left ear and in another through a
calibrated open field speaker (XT25G30-04 1’’ Dual Ring
Tweeter; Vifa) positioned 10 cm from the mouse head facing
the left ear, for TRFs and sounds within 2–32 kHz. Multiunit
recordings were first made with a tungsten electrode (2MΩ,
FHC) to determine the CF for an array of recording sites. The A1
was identified based on the tonotopic gradient of CFs as well as
the response properties, as described in previous studies
(Hackett et al. 2011; Guo et al. 2012; Li et al. 2014, 2015; Zhou
et al. 2014). The animal head was tilted so that the electrode
could penetrate the A1 surface at an angle of about 80°.

In vivo cell-attached and whole-cell recordings

Patch recordings were made with an Axopatch 200B amplifier
(Molecular Devices). The patch pipette, controlled by a micro-
manipulator (Siskiyou), was lowered into the A1 at the same
angle as in multiunit recordings. The cortical surface was cov-
ered with 3.5% agar prepared in warm artificial cerebrospinal
fluid (ACSF; 124mM NaCl, 1.2mM NaH2PO4, 2.5mM KCl, 25mM
NaHCO3, 20mM glucose, 2mM CaCl2, 1mM MgCl2). For loose-
patch (with 100–500-MΩ seal) recording from excitatory neu-
rons, patch pipette (resistance of 5–7MΩ) was filled with ACSF.
Pipette capacitance was fully compensated. Signals were
recorded in voltage clamp mode at 20 kHz sampling rate, with a
command voltage applied to adjust the baseline current to be
zero. If a cell did not exhibit spontaneous spikes within 10min,
it was not further recorded.

For whole-cell current clamp recordings, patch pipette con-
tained a potassium-based solution: 130mM potassium gluco-
nate, 4mM MgATP, 0.3mM GTP, 8mM phosphocreatine, 10mM
HEPES, 10mM EGTA, 5mM KCl, 1mM CaCl2, 1% biocytin (w/v),
pH = 7.3. Membrane potentials were recorded under current
clamp mode. Signals were low-pass filtered at 5 kHz and sam-
pled at 20 kHz. Input resistance was measured by injecting a
negative pulse current (−50 or −100 pA) to the cell. For whole-
cell voltage clamp recordings, patch pipette (resistance of
4–5MΩ) contained a cesium-based solution: 125mM cesium
gluconate, 5mM TEA-Cl, 4mM MgATP, 0.3mM GTP, 10mM
phosphocreatine, 10mM HEPES, 10mM EGTA, 2mM CsCl,
1.5mM QX-314, 1% biocytin (w/v), pH = 7.3. Sequential cell-
attached and whole-cell recordings were applied as previously
described (Poo and Isaacson 2009; Sun et al. 2010). The sound-
evoked and spontaneous spikes of the patched neuron were
first recorded before breaking in the membrane to determine
its spike response properties. A cell was not further recorded if
it did not exhibit spontaneous spikes within 10min. After form-
ing a whole cell, whole-cell capacitance was fully compensated
and the initial series resistance (Rs, 15–50MΩ) was compen-
sated for 40–50% to achieve an effective Rs of 10–30MΩ. Signals
were low-pass filtered at 2 kHz and sampled at 10 kHz. Only
cells with resting membrane potential lower than −55mV were
studied. A −10mV junction potential was corrected. Excitatory
and inhibitory synaptic currents were recorded by clamping the
cell at −70 and 0mV, respectively. Although the linear I–V rela-
tionship (Fig. 3K) for recorded currents supported a reasonably
good clamping quality, potential errors caused by imperfect
space clamp should be carefully considered.

The success rate of the recordings was largely improved
over our previous studies. On average, 2–4 good whole-cell
recordings (maintained for 20–40min) or more than 20 loose-

patch recordings were obtained in each animal. The recording
sites in relation to the tonotopic gradient of A1 were marked.
The laminar locations of the recorded neurons were deter-
mined based on the micromanipulator reading, and in some
cases confirmed by post hoc reconstruction (see
Supplementary Fig. S3F–H). We found a relatively good corre-
spondence between the traveling depth of the recording pipette
from the pia and the reconstructed laminar location of the
recorded neuron (ΔD = −6.1 ± 26.9 μm, mean ± SD, Supplemen-
tary Fig. S3H). The L2/3 neurons were sampled at a cortical
depth of 175–325 μm from the pial surface, L4 neurons at a
depth of 350–500 μm (Li et al. 2014; Zhou et al. 2014). As demon-
strated previously (Liu et al. 2010; Sun et al. 2010; Li et al. 2014)
and post hoc reconstruction (Fig. S3F,G), the blind whole-cell
recording method with relatively large pipette openings
resulted in almost exclusive sampling from excitatory cortical
neurons.

Optogenetically Guided Loose-Patch Recordings from PV
Neurons

We expressed ChR2 in PV neurons by 2 ways. The first was
through viral delivery (Li et al. 2013, 2014). Adult PV-Cre
(Jackson Laboratory) mice were anesthetized with 1.5% isoflur-
ane. A small cut was made on the skin covering the right A1
and the muscles were removed. Two ~0.2-mm craniotomies
were made in the A1 region (temporal lobe, 2.7 and 3.2mm cau-
dal to Bregma). Adeno-associated viruses (AAVs) encoding Cre-
dependent ChR2 were purchased from the University of
Pennsylvania Viral Vector Core: AAV2/9.EF1α.DIO.hChR2
(H134R)-EYFP.WPRE.hGH (Addgene 20 298). The virus was deliv-
ered using a beveled glass micropipette (tip diameter, ~40 μm)
attached to a microsyringe pump (World Precision Instru-
ments). Injections were performed at 2 locations and 2 depths
(300 and 600 μm), at a volume of 100 nl per injection and at a
rate of 20 nlmin−1. After each injection, the pipette was allowed
to rest for 4min before withdrawal. We then sutured the scalp,
injected buprenorphine at 0.1mg per kg and returned the
mouse to its home cage. Mice were allowed to recover for 3–4
weeks. The second way was to cross the PV-Cre mice with the
floxed ChR2 mouse line (#012 567, The Jackson Laboratory). The
genotypes were identified by genotyping, and 2-month-old
mice of correct genotypes were used.

On the day of recording, loose-patch recordings using pip-
ettes of smaller tip openings (resistance of ~10MΩ) (Li et al.
2013; Zhou et al. 2014) were performed. An optic fiber connect-
ing to a blue LED source (470 nm, Thorlabs) was positioned
close to the cortical surface of the recording site. We actively
searched for neurons exhibiting LED-evoked spikes with loose-
patch recording paradigm, which were identified as PV neu-
rons. After each experiment, that brain was sectioned and
imaged to further confirm the expression of ChR2-EYFP.
Because of results shown in Fig. 2C, neurons exhibiting narrow
spikes (trough-peak interval <0.3ms) recorded in non-ChR2-
expressing animals were also identified as PV neurons.

Optogenetically Suppressing Inhibitory Neurons

For suppressing PV neurons, AAV1-CAG-FLEX-ArchT-GFP
(Addgene 28 307, from UNC vector core) was injected into A1 of
PV-Cre mice similarly as described above. Green LED light
(530 nm, 500-ms duration) was paired with tones/noise in an
interleaved manner. For suppressing L1 neurons, the viral
vector was locally injected into GAD2-Cre mice (Jackson
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Laboratory) via iontophoresis using 3 μA currents for 5 s, at a
depth of 50 μm and at 4 different sites within A1. Animals were
examined postrecording to confirm that ArchT-GFP expression
was limited within L1.

Sound Generation

Software for sound stimulation and data acquisition was
custom-developed in LabVIEW (National Instruments). Sound
stimuli of various types (Wang et al. 2005; Chambers et al. 2014)
were generated as shown in Supplementary Fig. S2. Except for
TRF mapping, each individual stimulus was repeated for 10–20
times. Stimuli include pure tones (2–64 kHz spaced at 0.1
octave, 50-ms duration, 3-ms ramp, 0–70 dB sound pressure
level (SPL) spaced at 10 dB, in pseudorandom sequence, 3 repe-
titions, 0.5-s interstimulus interval), noise (broadband white
noise, 50-ms duration, 3-ms ramp, 30 and 60 dB SPL,10–20 repe-
titions), band noise (0.5 or 1 octave width centering on the CF of
the recording site), frequency-modulated (FM) sweeps (fre-
quency logarithmically changing from 0.5 to 64 kHz or from 64
to 0.5 kHz for broad-range FM sweeps, or ±0.5 octave centered
on the CF of the recording site for narrow-range FM sweeps, at
a speed of 14, 20, 35, 70, 140, 280, and 700 octave/s, 30 and 60 dB
SPL, in pseudorandom sequence, 10 repetitions, 2-s interstimu-
lus interval), click sound (30 and 60 dB SPL, 10 repetitions, 2-s
interstimulus interval), amplitude-modulated (AM) sound (CF
tone or noise carrier, sinusoidal modulation of intensity at 2, 4,
8, 16 Hz, 30 and 60 dB SPL maximum intensity, 1-s duration, 10
repetitions, modulation index at 100%, 2-s interstimulus inter-
val), trains of CF tones and noise (30 and 60 dB SPL intensity,
1-s duration, with repetition rate at 4, 8, 16, 32, and 64Hz, 10
repetitions, 2-s interstimulus interval), a cat’s “meow” sound
(16-s duration, 10–20 repetitions, 20-s interstimulus interval),
and modified jungle sound (to be fit into mouse hearing range,
10–20 repetitions, 12-s duration, 16-s interstimulus interval).
Note that for any recorded neuron, frequency components of
the testing sound stimuli covered the expected CF of the
recorded cortical site (determined during the pre-mapping). For
tone-responsive neurons, the best intensity (intensity at which
strongest spike responses were evoked) was identified online,
and tones at this intensity (or maximum intensity used) were
applied to measure intracellular responses (5 repetitions). Best
frequency was defined as the frequency that evoked the stron-
gest response at a given intensity. For many experiments deter-
mining the sparseness level in a cortical layer, we only tested
noise/tone responses in each cell, which took about 5–10min.

Noise Rearing

Litters of mouse pups together with their mothers were housed
in a sound-attenuation chamber with 12-h light/12 h dark
cycles. They were exposed to continuous white noise, which
was applied during the dark cycles, from P9 to P35, as previ-
ously described (Zhang et al. 2002; Chang and Merzenich 2003;
Kim et al. 2013). The white noise was produced with a LabView
program and delivered through an open field speaker. The
intensity was gradually increased to 60 dB SPL over the first 3
days. Mice had normal access to food and water in the cham-
ber. Their weights and behaviors were monitored.

Data Analysis

We performed data analysis with custom-developed software
(MATLAB, MathWorks). Analysis performers were partially

blind to the conditions of the experiments, as the data from all
the recorded neurons were first pooled together for a random-
ized batch processing without categorizing the neurons accord-
ing to their specific identity (e.g., age, condition, laminar
location, etc.).

Sound-evoked Spike Responses
In cell-attached recordings, spikes could be detected without
ambiguity because their amplitudes were normally higher than
50 pA, whereas the baseline fluctuation was <5 pA. The onset
latency of tone-evoked spike responses was determined from
the peri-stimulus spike time histogram (PSTH) generated from
responses to all the tones as the lag between the stimulus
onset and the time point at which spike rate exceeded the aver-
age spontaneous firing rate by 2 standard deviations of baseline
fluctuations. To categorize a neuron into R or NR type, we cal-
culated z-scores. For transient stimuli such as tones and noise,
firing rate within the 100-ms analysis window after the stimu-
lus onset was calculated. The cell was considered as an R cell if
the firing rate exceeded the spontaneous firing rate by 2 stan-
dard deviations of baseline fluctuations (i.e., z-score > 2). For
longer stimuli such as FM sweeps and natural sounds, we cal-
culated time-dependent firing rates using a 100-ms sliding win-
dow starting from the onset of the stimulus and sliding
through the entire duration of the stimulus. As long as firing
rate at any time point exceeded the spontaneous firing rate by
2 standard deviations of baseline fluctuations, the cell was con-
sidered as an R cell. Otherwise, a cell was considered as a NR
cell.

Synaptic Responses
Synaptic response traces evoked by the same stimulus were
averaged. Synaptic onset latency was determined at the time
point where the evoked current exceeded the average baseline
by 2 standard deviations. Peak amplitude was determined by
averaging within a 5-ms window centered on the response
peak after subtracting the baseline current. Excitatory and
inhibitory synaptic conductances were derived according to ΔI =
Ge*(V − Ee) + Gi*(V − Ei) (Borg-Graham et al. 1998; Sun et al. 2010;
Li et al. 2013, 2014; Xiong et al. 2013; Zhou et al. 2014). ΔI is the
amplitude of the synaptic current at any time point after sub-
tracting the average baseline current; Ge and Gi are the excit-
atory and inhibitory synaptic conductance; V is the holding
voltage, and Ee (0mV) and Ei (−70mV) are the reversal potentials.
The clamping voltage V was corrected from the applied holding
voltage (Vh): V = Vh – Rs*I, where Rs is the effective series resis-
tance. By holding the recorded cell at 2 different voltages (the
reversal potentials for excitatory and inhibitory current, respec-
tively), Ge and Gi could be resolved from the equation. Resting
conductance was calculated based on the average baseline cur-
rents within a 50-ms window before the onset of evoked cur-
rents recorded under 2 different voltages (−70 and 0mV).

Derive Postsynaptic Potential Responses
We used a conductance-based Neuron model to simulate the
membrane potential response by integrating experimentally
observed excitation and inhibition (Xiong et al. 2013; Li et al.
2014):

= − [ ( − ) + ( − ) + ( − )] ++V
dt
C

G V E G V E G V V Vt e t e i t i r t t1 restt t

The values of C (100 pF) and Gr (resting conductance, 5 nS,
measured from the baseline currents at different holding
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potentials) were based on the mean measurement values for
adult neurons. The resting membrane potential (Vrest) was
−65mV. The same parameters were used when deriving post-
synaptic potential (PSP) responses for young neurons.

Statistical Test
Shapiro–Wilk test was first applied to exam whether samples
had a normal distribution. In the case of a normal distribution,
t-test or ANOVA test was applied. Otherwise, a nonparametric
test (Wilcoxon signed-rank test) was applied. Data were pre-
sented as mean ± SD if not otherwise specified. To test bimo-
dality of E/I ratio distribution, Shapiro–Wilk normality test first
showed that data from ST1 mice could fit a normal distribution
(P = 0.62), whereas data from adult mice were not normally dis-
tributed (P = 0.00066). Since adult data (Fig. 5D) appeared to
have 2 peaks, we attempted to fit a mixture Gaussian distribu-
tion using EM algorithm. The resulting model was formed by
the sum of 2 normal distributions with the means of 0.429 and
1.040, respectively. Their standard deviations were the same,
0.145. The first normal distribution represented 74.5% of the
population and the second represented the remaining 25.5%.
We then performed goodness-of-fit test for fitting the mixture
Gaussian model to the young and adult data. The adult data
adequately fit into the mixture model (P = 0.97), while the ST1
data failed (P = 0.0013). Therefore, the adult E/I ratios formed a
2-mode mixture Gaussian distribution, while the ST1 E/I ratios
formed a single-mode normal distribution.

Results
Sparse Representation in Layer 2/3 of Awake Mouse A1

In A1 of awake adult mice (Fig. 1A), we examined neuronal
responsiveness with in vivo cell-attached loose-patch recording
(Zhou et al. 2014), which is a relatively unbiased recording
method regardless of low- or high-spiking neurons (Hromadka
et al. 2008; Barth and Poulet 2012; Zhou et al. 2014). With stable
long-term recordings (Fig. 1B and Supplementary Fig. S1A–C), we
were able to characterize spike responses of putative excitatory
neurons in L2/3 to a variety of auditory stimuli that covered sev-
eral fundamental sound categories (Supplementary Fig. S2). A1
neurons responded in 3 different ways based on the presence or
absence of spike rate increases. The example neuron 1
responded to pure tones of varying frequency and intensity
(Fig. 1C). In the frequency–intensity space, a tonal receptive field
(TRF) could be identified, from which the characteristic fre-
quency (CF, defined as the frequency that evokes spiking
responses at the lowest intensity) of the cell could be deter-
mined (Fig. 1C). The neuron also exhibited responses to FM
sweeps, the magnitude and timing of which were modulated by
the direction and speed of the sweeps (Fig. 1D). Additionally, it
responded to white noise (Fig. 1E), AM noise (Fig. 1F), as well as
natural sounds such as a cat’s meow (Fig. 1G) and jungle sounds
(Supplementary Fig. S1D). In short, this neuron could respond to
almost all the sound categories tested, while being selective for
sound frequency. The example neuron 2 did not exhibit clear
responses to tones or an identifiable TRF (Fig. 1H), or responses
to FM sweeps (Fig. 1I), but it did respond to noise (Fig. 1J), AM
noise (Fig. 1K), as well as a cat’s meow (Fig. 1L) and jungle
sounds (Supplementary Fig. S1E). For the example neuron 3, no
tone-evoked response or TRF was clearly identified (Fig. 1M), nor
any response evoked by FM sweeps, noise, AM noise, or natural
sounds (Fig. 1N–Q and Supplementary Fig. S1F). That is, it did
not respond to any sound category tested.

We have recorded from a total of 310 putative excitatory neu-
rons in L2/3 (see Materials and Methods) and subjected them to
as many sound categories as possible. We found a large overlap
of responsiveness between noise/tone and other sound catego-
ries (Fig. 1R). 22% (67 out of 310, red portion) of the recorded neu-
rons were excited by tones, and nearly all of them (97%, 65 out
of 67) were also excited by noise. 100% of tone-driven neurons
were also excited by FM sweeps (both broad- and narrow-range
sweeps), as well as trains of CF tones and AM CF tones.
Conversely, 100% of neurons responding to FM sweeps, to a train
of tone pips or AM tones (corresponding to the CF of the
recorded site), were also excited by single-tone pips. 62% of
tone-driven neurons also responded to a click sound, while
100% of click-responsive neurons responded to pure tones.
While nearly all tone-driven neurons (97%) were also excited by
noise, only 61% of noise-driven neurons (Fig. 1R, blue portion)
responded to tones. The remaining 39% of noise-driven neurons
thus responded similarly as the example neuron 2. 100% of neu-
rons responding to white noise also responded to narrow-band
(NB) noise (centered on the CF of the recording site), to trains of
noise and AM noise, as well as to natural sounds. Conversely, all
neurons responding to the latter variety of stimuli were also
responsive to broadband noise. 54% of noise-driven neurons
also responded to a click sound, while 100% of click-responsive
neurons responded to noise. Tone- or noise-responding (“R”)
neurons together accounted for 35% of the L2/3 excitatory neu-
ron population (Fig. 1R). The rest of the population (65%, white
portion) were not excited by any sound category tested. In some
of these cells (about 10% of the population), we observed that
noise or tones suppressed the spontaneous firing rate
(Supplementary Fig. S1G), reminiscent of a previous Ca2+ imag-
ing study (Kato et al. 2015). The suppression was delayed relative
to the spiking responses of R cells (Supplementary Fig. S1H). It is
worth noting that this type of neuron was considered as nonre-
sponding (“NR”). In this study, sparseness means that the per-
centage of R neurons under a specific type of sound stimulus is
low. That is, the lower the percentage of R neurons, the higher
the sparseness level. Because noise/tone-responsiveness covers
many more complex sounds, noise and tones were utilized in
our later experiments to evaluate a lower bound of cortical
sparseness. The sparseness examined in this study is equivalent
to “population sparseness” specified in several previous studies
(Vinje and Gallant 2000; Willmore and Tolhurst 2001; Chambers
et al. 2014; Kato et al. 2015).

Laminar Dependence of Cortical Sparseness

Based on the responsiveness to tones and noise, we examined
sparseness at different laminar stages of cortical processing. In
this study, R and NR cells were defined by a statistical assess-
ment of evoked firing rate (FR): if a cell’s evoked FR under any
testing stimulus at any time during the analysis window
exceeded the average spontaneous FR by 2 standard deviations
of baseline activity (i.e., z-score > 2), it was defined as an R cell;
otherwise it was defined as an NR cell (Fig. 1S). R and NR cells
did not differ in the level of spontaneous FR (Fig. 1T). Among
different cortical layers, L2/3 had the highest level of sparse-
ness, as shown by the lowest percentage of R cells (Fig. 1U),
while other layers had a similar level of sparseness which was
lower than that in L2/3 (Fig. 1U). Therefore, sparseness level
was particularly enhanced in L2/3, the principal output layer to
other cortical areas (Petersen and Crochet 2013). Within L2/3, a
similar level of sparseness was observed across different fre-
quency bands of A1 (Fig. 1V).
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Figure 1. Response sparseness in L2/3 of A1 in awake adult mice revealed by loose-patch recording. (A) Experimental setup. The mouse was head-fixed and allowed

to run on a rotatable plate. Sound was applied to the contralateral ear. R, recording pipette; P, post for head fixation. (B) Color maps show frequency–intensity TRFs of

a neuron measured at different recording times. Color displays the firing rate evoked by each tone. Note the consistency of TRFs over time. Inset, superimposed 100

randomly selected spike waveforms at the corresponding time. (C) TRF of an example neuron (neuron 1). Arrow points to the CF of the neuron. (D) Raster plot of

spikes to FM sweeps at different speeds and directions (positive values indicate sweeping from low to high frequencies) of the same neuron in (A). (E) Raster plot (top)

and PSTH (bottom) for spike responses of the same neuron to a pulse of white noise (50-ms duration, marked by the thick line). Inset, superimposed 100 individual

spikes. Scale: 1ms. (F) Raster plot (middle) and PSTH (bottom) for spike responses of the same neuron to AM noise. Top, waveform for the intensity modulation.

(G) Raster plot (middle) and PSTH (bottom) for responses of the same neuron to a cat’s meow sound. Top, spectrogram for the sound. (H–L) Responses of another

example neuron (neuron 2) to different sound categories. Data displays are similar as in (C–G). (M–Q) Responses of another example neuron (neuron 3). (R) Cross-

examination of responsiveness to different sound categories. BR: broad range; NR: narrow range; NB: narrow band. (S) Distribution of z-scores in the recorded population.
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Sparse Representation is Not Observed for PV Inhibitory
Neurons

We next examined whether the sparseness observed for L2/3
excitatory cells could apply to inhibitory neurons. We focused
on PV neurons, one of the major inhibitory cell subtypes (Rudy
et al. 2011). By injecting AAV encoding Cre-dependent chan-
nelrhodopsin2 (ChR2) (Fenno et al. 2011) into PV-Cre mice
(Fig. 2A), we were able to identify PV neurons with loose-patch
recording (see Materials and Methods) based on their spike
responses to pulses of blue LED light applied to the A1 surface
(Fig. 2B). LED light evoked spikes in ChR2-expressing PV neu-
rons with a latency of 2.1 ± 0.4ms (mean ± SD, n = 150 spikes
in 15 cells). The PV neurons exhibited narrower spike wave-
forms as compared with putative excitatory neurons (Fig. 2C),
consistent with our previous reports (Zhou et al. 2014; Li et al.
2015). We found that the high-level cortical sparseness
observed in the excitatory cell population was absent in the PV
cell population: approximately 96% of the recorded PV cells
were excited by tones or noise (Fig. 2D) when we used a similar
criterion to differentiate NR versus R cells for this type of neu-
ron (Fig. 2F). TRFs and temporal response patterns of example
PV cells are shown in Fig. 2E. Their TRFs were noticeably broad,
consistent with our previous observations (Li et al. 2015). In
general, PV cells had a higher spontaneous FR (Fig. 2G), higher
evoked FR (Fig. 2H), and broader TRF (Fig. 2I) than putative
excitatory cells. They also tended to have a lower intensity
threshold than excitatory cells (Fig. 2J). These properties indi-
cate that PV inhibitory neurons exhibit higher responsiveness
(Ma et al. 2010; Hofer et al. 2011; Li et al. 2015) and much lower
population sparseness than excitatory cells.

Sparse Representation is Absent at the Subthreshold
Level

What are the mechanisms for sparse representation? By per-
forming sequential cell-attached and whole-cell recordings from
the same cells (see Materials and Methods), we first examined if
the apparent cortical sparseness was due to a lack of auditory-
evoked input to many neurons. We focused on the tone-
responsiveness to gain a general understanding. After patching
onto the cell membrane and before breaking in to form a whole
cell, we recorded spikes of the cell to tones used for measuring
TRFs. Fig. 3A,B illustrates representative tone-responding and
nonresponding neurons, respectively. Their spike responses to
individual tones at a relatively high intensity (left top panel) and
the PSTH generated from these responses (right panel) are
shown. Afterward in whole-cell current clamp mode (with a K+-
based internal solution used), we recorded their membrane
potential (Vm) responses (left bottom panel). The NR neuron
exhibited depolarizing Vm responses to a broad range of tone fre-
quencies similar to the R cell, although none of these Vm

responses produced a spike. In a total of 26 similarly recorded
L2/3 neurons, we identified 20 NR and 6 R cells. All these neu-
rons exhibited tone-evoked depolarizing PSP responses (Fig. 3C),
indicating that they all received synaptic inputs. Sparse repre-
sentation was thus absent at the synaptic input level, consistent
with a previous study (Crochet et al. 2011). The R cells exhibited

a significantly stronger depolarization evoked by the best tone
(defined by the frequency that evokes the strongest response at
the best or maximum intensity tested) than the NR cells (R: 30.6
± 1.01mV; NR: 19.0 ± 5.91mV; P < 0.001, t-test, Fig. 3C). A similar
conclusion could be made when noise-responding and -nonre-
sponding cells were compared (Supplementary Fig. S3A,B). On
the other hand, the R and NR cells did not differ in the level of
resting membrane potential, input resistance or spike threshold
(Supplementary Fig. S3C–E). Nor did they appear to be different
in dendritic morphology or cortical depth (Supplementary
Fig. S3F–H). Our data thus indicate that the differential respon-
siveness of R and NR cells is likely attributed to different levels
of synaptic input they receive.

Synaptic Mechanisms Underlying Sparse
Representation

We next examined excitatory and inhibitory synaptic mecha-
nisms underlying the differential responsiveness of R and NR
cells, with sequential cell-attached and whole-cell voltage
clamp recordings from the same cells in L2/3 using a Cs+-based
internal solution (see Materials and Methods). Again, R and NR
cells were identified based on their spike responses to tones or
noise recorded before forming the whole cell (Fig. 3D,E, left
panel). Afterward in whole-cell voltage clamp mode, we
recorded excitatory synaptic currents by clamping the cell’s
membrane potential at −70mV, and inhibitory synaptic cur-
rents at 0mV (Fig. 3D,E, right panel). Similar to our previous
observation (Zhou et al. 2014), the peak amplitude of excitation
was linearly correlated with that of inhibition evoked by the
same stimulus, with the slope of the linear regression line
reflecting an overall E/I ratio (Fig. 3F). Comparing the represen-
tative R (Fig. 3D) and NR (Fig. 3E) cell, a noticeable difference is
that E/I ratio was lower in the NR cell (Fig. 3F). In addition, the
excitatory input appeared weaker in the NR cell (Fig. 3G).

Excitation and inhibition were examined in 34 NR and 11R
cells identified based on tone-responsiveness. In the NR cells,
tone-evoked excitation was significantly weaker than inhibition
in terms of peak amplitude (P < 0.001, Wilcoxon signed-rank test),
while in the R cells excitation and inhibition had similar ampli-
tudes (P > 0.05, Wilcoxon signed-rank test) (Fig. 3H). The NR cells
exhibited weaker excitation than the R cells (P < 0.001, Wilcoxon
signed-rank test), whereas the strength of inhibition did not differ
between the NR and R cells (P > 0.05, Wilcoxon signed-rank test)
(Fig. 3H). The resulting E/I ratio thus appeared to be a good
parameter for separating NR and R groups (Fig. 3I), with the NR
cells having significantly lower E/I ratios than the R cells (NR: 0.43
± 0.15; R: 1.04 ± 0.19; P < 0.001, t-test). Similar conclusions could
also be made when the total charge of synaptic current was ana-
lyzed (Supplementary Fig. S4A–C) or when noise-evoked synaptic
responses were compared (Supplementary Fig. S4D–F). As for
temporal properties of the synaptic responses, NR and R cells did
not differ in the onset latency of either excitation or inhibition
(Fig. 3J), in the rising time of synaptic dynamics for either excita-
tion or inhibition (Supplementary Fig. S4G), or in the time interval
between peak excitation and peak inhibition (Supplementary
Fig. S4H), again supporting the notion that these 2 groups of cells
are unlikely to arise from different synaptic circuits.

E, maximally evoked firing rate; S, spontaneous firing rate; δ, standard deviation of baseline activity. A cell with z-score ≤2 is defined as a nonresponding (NR) cell.

Otherwise a cell is defined as a responding (R) cell. Cells with z-score > 5 are grouped together. (T) Comparison of spontaneous firing rate (FR) between the NR and R

groups. There is no significant difference (P > 0.05, t-test). (U) Comparison of percentage of neurons responding to tones (red), or to noise (blue) among different layers.

N = 10, 5, 5, and 5 mice; 310, 104, 97, 95 cells, respectively. Bar = SD. L2/3 is significantly different from other layers. **P < 0.01, one-way ANOVA and post hoc test.

(V) Percentage of responding cells in L2/3 in different frequency bands of A1. N = 87, 132, 91 cells.
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In our voltage clamp recording, reasonably good clamping
quality was demonstrated by a linear current–voltage (I–V) rela-
tionship for the recorded synaptic currents, as well as the
closeness of the reversal potential of currents within a small
time window immediately after the response onset observed at
−70mV (presumably pure excitatory currents) to the expected
excitatory reversal potential (i.e., 0mV) (Fig. 3K). In addition,
from the experimentally observed excitation and inhibition, we
derived the expected PSP response by integrating excitation
and inhibition in a conductance-based single-compartment
neuron model (Fig. 3L–M, see Materials and Methods). The
amplitudes of derived PSP responses relatively well-separated
NR and R neurons (Fig. 3N), suggesting that the observed synap-
tic inputs could largely account for the differential levels of
recorded PSP responses (Fig. 3C). More importantly, for the
majority of neurons the PSP response was below the observed
spike threshold (Fig. 3N). In addition, the synaptic reversal

potential calculated based on the momentary E/I ratio at the
peak of PSP was in most of neurons more hyperpolarized than
the spike threshold (Supplementary Fig. S4I). These findings are
reminiscent of the previous study in the barrel cortex in which
the synaptic reversal potential was directly measured (Crochet
et al. 2011) and have well explained why the majority of neu-
rons are NR cells. Altogether, our data indicate that E/I balance,
including both factors of E/I ratio and absolute excitatory
synaptic strength, plays a critical role in determining the differ-
ential responsiveness within the L2/3 excitatory neuron
population.

Experience-dependent Developmental Emergence of
Cortical Sparseness

Is sparse representation an intrinsic property of cortical circuits
or does it arise during development? Next, we examined the

Figure 2. Sparse representation is absent in PV inhibitory neurons. (A) Confocal images show tdTomato-labeled PV neurons (red) and the expression of ChR2-YFP

(green) in a representative slice. Scale bar, 200 μm. (B) Raster plot and PSTH for spike responses of a representative PV neuron to 10 pulses of blue LED stimulation

(marked by blue vertical lines). (C) Plot of peak/trough amplitude ratio versus trough-to-peak interval for the spike waveforms of recorded PV and putative excitatory

neurons. Each data point represents one cell. Inset, spike waveform for the PV cell shown in (B). Scale: 1ms. (D) Proportion of PV cells responding to tones (red), or to

noise (blue). (E) Color maps of TRF (top) and PSTHs (bottom) for best-tone-evoked spikes of 4 example PV cells. Inset, spike waveform of the corresponding cell. Scale:

1ms. (F) Distribution of z-scores for identified PV cells (n = 80). (G) Comparison of spontaneous firing rate between L2/3 PV and pyramidal cells. **P < 0.01, t-test.

(H) Comparison of evoked firing rate. **P < 0.01, t-test. (I) Comparison of TRF bandwidth (at 20 dB above the intensity threshold). **P < 0.01, t-test. (J) Comparison of

intensity threshold. P = 0.1, t-test.
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sparseness level in L2/3 of awake mice at different developmen-
tal stages (ST1, P18–P21; ST2, P25–P28; ST3, P32–P35). Surpris-
ingly, at ST1, a majority of excitatory neurons responded to the
noise/tone stimuli (Fig. 4A). The percentage of R cells was then

progressively reduced during development (Fig. 4A). Along with
the increase in the sparseness level, we also observed a drastic
change in TRF properties (Fig. 4B). Specifically, the broadness of
TRF, as measured by the bandwidth at 20 dB above the intensity
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Figure 3. Synaptic mechanisms for the differential responsiveness of L2/3 excitatory neurons. (A) Left top, spike (AP) signals of an example R cell recorded in cell-

attached mode in response to tones of different frequencies (only responses at 60 dB SPL intensity level are shown). Left bottom, membrane potential (Vm) responses

of the same cell recorded in whole-cell current clamp mode. Scale: 30mV, 100ms. Right, PSTH for the evoked spikes. (B) An example NR cell displayed in a similar

manner. (C) Distribution of peak amplitudes of PSP response evoked by the best tone. (D) Left, PSTH for spikes evoked by tones for a representative R cell. Tone dura-

tion is marked by the thick line. Inset, superimposed 100 spikes of the cell. Scale: 1ms. Right, average excitatory (recorded at −70mV, bottom) and inhibitory (at 0mV,

top) responses to tones of different frequencies (at 60 dB SPL). Scale: 500 pA, 100ms. (E) A representative NR cell displayed in a similar manner as in (D). (F) Peak

amplitude of excitation versus that of inhibition. The best-fit linear regression line is shown with its slope indicated. Black, for the R cell in (D); gray, for the NR cell in

(E). (G) Enlargement of inhibitory (I) and excitatory (E) responses evoked by the best tone for the representative R (top) and NR (bottom) cell respectively. Scale: 1000

pA, 100ms. (H) Comparison of peak amplitudes of excitation and inhibition between NR and R cells. Bar = SD. Individual cells are represented by gray symbols. Data

points for the same cell are connected with a gray line. N = 34, and 11 cells for the NR and R group, respectively. **P < 0.01; ***P < 0.001, Wilcoxon signed-rank test.

(I) Distribution of E/I ratios for NR and R groups. Stars represent mean ± SD. (J) Average onset latencies (± SD) of excitation and inhibition evoked by the best tone.

(K) Top, average synaptic currents of an example cell evoked by the best tone, recorded under different clamping voltages. Note that baseline currents have been sub-

tracted. Scale: 100 pA, 25ms. Vertical arrow marks the tone onset. Bottom, I–V relationship. The current value was an average within 1-ms window at 18-ms post-

tone onset (marked by the dark dash line on top) and 28-ms post-tone onset (marked by the gray dash line), respectively. Bar = SE. Note that the reversal potential for

the dark gray line is about 0mV. (L) Experimentally observed excitation and inhibition, as well as derived PSP by integrating the excitation and inhibition for a NR cell.

Scale: 500 pA (upper); 10mV (lower), 300ms. (M) Derived PSP responses for an R cell. Scale: 300 pA (upper); 10mV (lower), 300ms. (N) Distribution of derived PSPs to

the best tone for the NR and R groups. The dash line marks the mean spike threshold (±SD) observed experimentally.
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threshold (BW20), gradually reduced (Fig. 4C), consistent with
previous reports that frequency selectivity of A1 neurons is
sharpened during development (Zhang et al. 2001; Sun et al.
2010; Schreiner and Polley 2014). Therefore, our data demon-
strate that cortical sparseness emerges developmentally along
with the functional refinement of A1 neurons. In contrast to
excitatory neurons, L2/3 PV inhibitory neurons remained highly
responsive across developmental stages tested (Fig. 4D). Nor did
the bandwidth of their TRFs reduce significantly during develop-
ment (Fig. 4E). We did not observe significant changes of sponta-
neous FR across developmental stages in either the excitatory or
PV cell population (Supplementary Fig. S5A,B).

We further investigated if the developmental emergence of
cortical sparseness in L2/3 excitatory neurons could be influ-
enced by early acoustic experience. We reared young animals
in a noisy environment where continuous white noise was
present for 12 h per day from P9 to P35 (see Materials and
Methods), covering previously reported critical periods for audi-
tory cortical plasticity (Zhang et al. 2002; Chang and Merzenich
2003; de Villers-Sidani et al. 2007; Barkat et al. 2011; Kim et al.
2013; Polley et al. 2013). Loose-patch recordings were performed
in these mice at P45–P50. We found that noise rearing markedly
impaired the developmental emergence of sparseness (Fig. 4F),

as well as the developmental sharpening of TRFs of excitatory
neurons (Fig. 4G), consistent with previous reports that noise
exposure retards the functional development of A1 (Zhang
et al. 2002; Chang and Merzenich 2003). Other TRF properties
such as the intensity threshold and response latency were not
significantly affected by noise rearing (Supplementary Fig. S5C,
D). In contrast to excitatory neurons, in the PV cell population,
neither the sparseness level nor the average TRF bandwidth
was affected by noise rearing (Fig. 4F,G). Together, our data
indicate that the developmental emergence of cortical sparse-
ness as well as the functional refinement of L2/3 excitatory
neurons is dependent on acoustic experience.

Changes of E/I Balance During Development

We further carried out sequential cell-attached and whole-cell
recordings from L2/3 neurons in the immature A1 to examine if
the developmental emergence of sparseness could be attributed
to any changes in synaptic input. Overall, from ST1 to adult, there
were moderate and unbalanced increases in the strength of exci-
tation (Fig. 5A) and inhibition (Fig. 5B), which resulted in a signifi-
cant decrease in E/I ratio (Fig. 5C). Different from the bimodal
distribution of E/I ratios in adult, the distribution was unimodal

Figure 4. Experience-dependent developmental emergence of sparse representation in L2/3. (A) Percentage of L2/3 excitatory neurons responding to tones or to noise

at different developmental stages. ST1, P18–P21; ST2, P25–P28; ST3: P32–P35. N = 5, 5, 5, and 10 mice; 130, 141, 119, and 310 cells, respectively. ***P < 0.001; *P < 0.05,

one-way ANOVA and post hoc test. (B) Color maps of TRFs for 4 representative ST1 and adult neurons. (C) Comparison of TRF bandwidth at different stages. N = 44,

22, 15, and 45 cells, respectively. **P < 0.01; *P < 0.05, one-way ANOVA and post hoc test. (D) Percentage of PV inhibitory neurons responding to tones at different

stages. P > 0.5, one-way ANOVA test. (E) TRF bandwidth of PV inhibitory neurons at different stages. N = 17, 12, 13, and 75 cells, respectively. P > 0.5, one-way ANOVA

test. (F) Left, rearing the animal in a sound-attenuation chamber where noise was applied from P9 to P35. Right, percentage of responding L2/3 excitatory or PV neu-

rons in ST1, noise-reared adult and control adult mice. Bar = SD. Noise-reared animals (n = 5 mice, 107 cells) are different from control adult animals for excitatory

neurons (**P < 0.01, t-test). (G) Comparison of TRF bandwidth. N = 23 for excitatory cells and 23 for PV cells in the noise-reared group. *P < 0.05, t-test.
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at ST1 (Fig. 5D), indicating that during development a substantial
fraction of neurons lowered their E/I ratios. We next examined R
and NR groups separately. For the R group, there were significant
increases of both excitation and inhibition during development,
whereas for the NR group significant increase was only observed
for inhibition but not excitation (Fig. 5E). Considering that there
is an increase in the number of NR cells during development
(Fig. 4A), the latter result implies that for some NR neurons con-
verted from R cells, the excitation they received was in fact
weakened, despite the overall strengthening of excitation for the
entire population. Therefore, the excitatory input strength is dif-
ferentially modulated within the excitatory cell population.
Along with a general, unselective strengthening of inhibition
(Fig. 5E), the average E/I ratio in the NR group was reduced, while
it was not significantly changed in the R group (Fig. 5F). We fur-
ther derived PSP responses from the observed excitation and
inhibition at ST1, using the same membrane parameters as for
adult cells. The derived PSP responses were significantly stron-
ger than in adult (Supplementary Fig. S6), consistent with the
observation that there was a higher fraction of R neurons during
early development. These results indicate that the change in E/I
balance alone can explain the developmental enhancement of
sparseness, although some other factors, for example, changes
in membrane properties, may also contribute.

Finally, we examined excitatory and inhibitory inputs in ani-
mals which had been exposed to noise during development. We
found that noise rearing prevented the overall developmental
increase in the strength of excitation (Fig. 5G) and inhibition
(Fig. 5H), as well as the developmental change in the distribution
of E/I ratios (Fig. 5I). Thus, disrupting the normal acoustic environ-
ment during early development impairs the developmental matu-
ration of E/I balance, contributing to the disruption of emergence
of cortical sparseness.

Modulating Sparseness Level by Manipulating PV or L1
Inhibitory Neuron Activity

Our data have suggested a key role of E/I balance in determining
sparseness level in the cortex. We wondered whether sparse-
ness level could be changed acutely by manipulating E/I balance.
PV neurons are known to contribute importantly to the E/I bal-
ance of sensory-evoked responses in the cortex (Atallah et al.
2012; Li et al. 2014). To manipulate PV neuron activity, we
injected AAV encoding Cre-dependent ArchT into A1 of adult
PV-Cre mice and delivered green LED light to suppress ArchT-
expressing PV neurons (Fig. 6A). TRF mapping for an example
cell is shown in Fig. 6B. The cell was originally an NR cell, as no
TRF could be identified (Fig. 6B, left panel). When tone stimuli
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were coupled with LED illumination, spike responses and a V-
shaped TRF appeared (Fig. 6B, middle panel, and Fig. 6C), which
resembled those of a de novo R cell. The TRF appeared more dis-
tinctive and tone-evoked FR was higher when higher LED power
was applied (Fig. 6B, right panel, and Fig. 6C). Similar phenom-
ena were observed in 10 cells originally identified as NR cells
(Fig. 6D). The spontaneous FR of these cells was also increased
by LED illumination alone (Fig. 6E), consistent with the notion of
reduced inhibition. Our data thus demonstrate that NR cells can
be converted to R cells, that is, sparseness level can be reduced,
by suppressing PV inhibitory neurons.

Previous studies have suggested that cortical layer 1, con-
taining only inhibitory neurons, can play a role in modulating

sensory-evoked responses in L2/3 (Letzkus et al. 2011; Zhou
et al. 2014; Ibrahim et al. 2016; Takesian et al. 2018). We thus
wondered whether manipulating L1 neuron activity could also
affect sparseness level in L2/3. We expressed ArchT in L1 neu-
rons by local iontophoretic injections of AAV vectors in GAD2-
Cre mice (Fig. 6F), following our previous study (Ibrahim et al.
2016). As shown by an example L2/3 neuron (Fig. 6G), the cell
initially did not respond to noise with increased spiking, but a
transient spike rate increase appeared when noise was paired
with green LED light. In 4 out of the 15 tested L2/3 excitatory
neurons, we observed a similar appearance of noise-evoked
response when L1 neurons were optogenetically suppressed
(Fig. 6H). Spontaneous firing rates of these tested neurons were
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also increased (Fig. 6I), supporting a general inhibitory effect of
L1 activation on L2/3 pyramidal cells (Jiang et al. 2013). Thus,
our data suggest that activation of L1, either by long-range top-
down or bottom-up inputs (Letzkus et al. 2011; Cruz-Martin
et al. 2014; Ibrahim et al. 2016; Ji et al. 2016; Takesian et al.
2018), can enhance the sparseness level in L2/3.

Discussion
Sparse Representation in the Auditory Cortex

In the auditory cortex, previously several studies have reported
response sparseness, that is, only a small fraction of neurons
respond with spike rate increases to a given type of sound
(Sutter et al. 1999; Hromadka et al. 2008; Chambers et al. 2014;
Issa et al. 2014; Kato et al. 2015). In awake marmosets, it is sug-
gested that as long as a proper auditory stimulus is found
almost every A1 neuron can be driven vigorously (Wang et al.
2005). However, it is probably impractical to test every possible
stimulus. In this study, by cross-examining neuronal respon-
siveness, we found a large overlap between responsiveness of
simple sounds, such as tones and noise, and many other more
complex sounds. In particular, a noise-responsive neuron can
respond to almost all the sound types tested. Out of hundreds of
neurons recorded, we only found a few cells that, while respond-
ing to tones, were not driven by broadband noise. In other
words, when the type of sound is considered, selectivity of the
responding neurons appear somewhat weak, while within a spe-
cific sound category a neuron’s selectivity can be well character-
ized (e.g., as the preferred tone frequency or preferred direction
of FM sweeps). For the majority of neurons that remained nonre-
sponding under any tested sound categories, it is still possible
that they are selective for some special auditory features not
included in our stimulus sets. In other words, these neurons
may exhibit extremely high selectivity or lifetime sparseness
(Vinje and Gallant 2000; Willmore and Tolhurst 2001). In the
future, the preferred stimulus of these neurons may be identi-
fied by using stimulus evolution techniques that allow rapid tai-
loring of stimulus features according to real-time variations in
neuronal firing rate (Chambers et al. 2014).

Due to their large coverage of other sound types in terms of
responsiveness, noise and tones could be used to evaluate a
lower bound of cortical sparseness and to explore the mecha-
nisms underlying differential responsiveness within the neuro-
nal population. We found that noise can drive about one-third
of L2/3 excitatory neurons in A1, supporting the previous obser-
vations of sparse representation in the primary auditory cortex
(Issa et al. 2014; Kato et al. 2015). Sparseness level is not only
dependent on stimulus type but may also depend on the cortical
area examined. For example, the mouse visual cortex appears to
have a lower sparseness level than auditory and somatosensory
cortices, as Ca2+ imaging studies have shown that about 50–60%
of visual cortical neurons in superficial layers respond to a natu-
ral scene movie (Kampa et al. 2011; Ko et al. 2011). In addition,
sparseness level may be influenced by the brain or behavioral
state, since the internal state of the brain also plays a role in
modulating neuronal responses (Crochet and Petersen 2006;
McGinley et al. 2015). Recently, it has been reported that locomo-
tion reduces auditory cortical responses relative to the station-
ary state (Schneider et al. 2014; Zhou et al. 2014). Since our
recordings were carried out mostly in the stationary state, it is
expected that in the locomotion state the sparseness level could
be even higher than observed in this study.

Laminar and Cell-type Dependence

We demonstrate that sparseness level is dependent on laminar
location. It is much higher in L2/3 than the other layers, sug-
gesting that local L2/3 circuits contribute primarily to the
enhancement of sparseness. It has been suggested that this
cortical layer performs more elaborate sensory processing, as
manifested by more pronounced tuning for some sensory fea-
tures (Adesnik et al. 2012; Petersen and Crochet 2013; Li et al.
2014). Sparse representation could then be an outcome of the
specialization of sensory processing functions. Sparse repre-
sentation is absent in the L2/3 PV inhibitory neuron population,
as nearly all the PV cells respond to noise and tones. This prop-
erty is consistent with a generally weak selectivity in sensory
responses of these cells (Kerlin et al. 2010; Ma et al. 2010; Hofer
et al. 2011; Kuhlman et al. 2011; Li et al. 2015; Scholl et al. 2015).
The high-level responsiveness of PV neurons as well as their
weak selectivity can be explained by the broad connectivity of
this cell type with nearly all nearby excitatory neurons (Fino
and Yuste 2011).

In a recent study, it has been reported that L3 excitatory neu-
rons have lower responsiveness than L2 excitatory neurons, and
that they are morphologically distinct (Oviedo et al. 2010). In the
current study, R and NR cells did not appear to differ in dendritic
morphology or cortical depth (Supplementary Fig. S3F–H).
Therefore, it is unlikely that the R and NR cells specifically corre-
spond to L2 and L3 neurons described in the previous study. More
likely, the R and NR cells belong to the same pyramidal cell class
receiving different levels of synaptic input.

Synaptic Mechanisms Underlying Sparse
Representation

Using sequential cell-attached and whole-cell recordings, we
have been able to directly investigate the excitatory and inhibi-
tory synaptic mechanisms underlying the sparse representa-
tion. First of all, it cannot be attributed to sparse synaptic
input. Regardless of R or NR cells, the recorded neurons always
exhibited auditory-evoked excitatory and inhibitory inputs,
suggesting that all neurons in the circuit can be engaged by
auditory stimulation. Second, we found that R and NR neurons
differ in the strength of excitatory but not inhibitory input.
They do not differ in other properties such as resting mem-
brane potential, input resistance or spike threshold. The strong
correlation between responsiveness and excitatory input
strength observed in this study raises a concern of whether the
weaker excitation observed in some cells could be due to
damages of apical dendrites and excitatory synapses on these
dendrites by the recording electrodes, whereas inhibition could
be much less affected since inhibitory synapses might be
mostly peri-somatic. However, our results from noise-rearing
experiments argue against this possibility: the manipulation of
sensory environment during development changes the sparse-
ness level and E/I ratio in the adult cortex, but there is no rea-
son to assume that such manipulation would affect the
chances of damaging apical dendrites in the recording proce-
dure. Together, our results suggest that the differential levels of
excitatory drive (i.e., synaptic amplitude) and E/I ratio contrib-
ute primarily to the differential responsiveness within the
excitatory cell population, considering that E/I ratio determines
the reversal potential of synaptic response (Borg-Graham et al.
1998) and excitatory drive largely determines whether the
membrane potential response can possibly reach the expected
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reversal potential. The relatively more homogenous inhibitory
input strength is consistent with the high responsiveness of PV
inhibitory neurons, which ensures that excitatory neurons
receive a blanket of inhibition (Fino and Yuste 2011) under any
given sensory stimuli. This finding is consistent with a pro-
posed role of inhibition in regulating sparse responses (Poo and
Isaacson 2009; Crochet et al. 2011).

By using 2 methods (optogenetically suppressing PV or L1
inhibitory neurons) to manipulate E/I balance in L2/3 neurons,
we found that it was possible to acutely turn NR into R cells
and thus reduce sparseness level. These results support the
critical role of E/I balance in determining responsiveness.
Interestingly, a recent study suggests that cortical circuits can
compensate for reduced inhibition so that optogenetically sup-
pressing PV neurons results in unexpected increases of both
excitation and inhibition to L2/3 pyramidal neurons (Moore
et al. 2018). If this is the case, then the enhancement of evoked
firing in L2/3 pyramidal neurons under optogenetic suppression
of PV cells may be attributed mainly to the increased excitation,
but not necessarily decreased inhibition. As for the L1 manipu-
lation, it has been suggested that L1 interneurons can mediate
both the centered disinhibitory and surrounding inhibitory cir-
cuits (Jiang et al. 2013; Larkum 2013; Lee et al. 2015). Therefore,
suppressing L1 neurons unselectively may produce a mixture
of both inhibitory and disinhibitory effects. It is possible that by
selectively suppressing surround or center L1 neurons, sparse-
ness level could be manipulated in opposite directions. Such
modulation of sparseness level could be potentially achieved
via long-range projections into L1 (Letzkus et al. 2011; Ibrahim
et al. 2016). Together, our finding of E/I balance playing a critical
role in determining sparse representation is consistent with its
reported impacts on neuronal output responses (Poo and
Isaacson 2009; Liu et al. 2011; Wu et al. 2011; Atallah et al. 2012;
Li et al. 2014; Yu et al. 2014).

Developmental Emergence of Sparse Representation

Previously, sparse representation has not been examined in
developing sensory cortices. In the current study, the establish-
ment of stable unbiased recordings in awake immature A1
allowed us to address this issue. We have now demonstrated
that sparse representation in L2/3 emerges during postnatal
development. This process is accompanied by a progressive
sharpening of neuronal TRFs. By the end of a critical period for
the cortical development of frequency representation (Kim
et al. 2013), the sparseness has reached a similar level as in
adult. The emergence of sparse representation is experience-
dependent. Disruption of a normal acoustic environment with
noise exposure impaired the developmental emergence of
sparse representation, as well as the developmental sharpening
of neuronal TRFs. These results suggest that sparse representa-
tion may result from the functional differentiation of A1 neu-
rons (Zhang et al. 2001; Sun et al. 2010). Similar as receptive
field properties, sparse representation can be an indicator for
the functional maturation of cortical circuits.

Similar as in adult, R cells in the developing A1 generally
have higher E/I ratios than NR cells. However, the distribution
of E/I ratios in the entire population is different between young
and adult ages. In early development, it is consistent with a
normal distribution, suggesting that the initial formation of
synaptic connections is through stochastic processes. With
development, the proportion of neurons with lower E/I ratios is
significantly increased, resulting in an overall decrease in E/I
ratio and changing from a unimodal to bimodal distribution of

E/I ratios. In other words, there is more separation between NR
and R cells. Since E/I balance determines the synaptic reversal
potential, the lower E/I ratio (i.e., more hyperpolarized synaptic
reversal potential) in the NR group (Fig. 5F) implies that it is
even harder for this group of cells to spike. This lowering of E/I
ratio in the NR group can be attributed to selective weakening
of excitation in some cells and unselective strengthening of
inhibition in all cells. Together, the developmental changes
in E/I balance would result in reduced responsiveness,
and possibly combining with other changes, for example, those
in membrane properties, lead to the emergence of sparse
representation.

As our data from noise-reared animals have supported a
critical role of experience in the developmental emergence of
response sparseness, it is possible that sensory related activity,
when kicks in, shapes the network connectivity by selectively
stabilizing/strengthening some connections while weakening
many others (Ko et al. 2011; Xue et al. 2014; Cossell et al. 2015).
A previous slice recording study on L2/3 pyramidal neurons in
the mouse visual cortex suggests that through developmental
plasticity inhibition can be matched to the different amounts of
excitation in individual pyramidal cells so that E/I ratios are
equalized across the pyramidal cell population (Xue et al. 2014).
In the present study, our data on sound-evoked responses in
auditory cortex in vivo, however, suggest that E/I ratio is regu-
lated specifically in individual pyramidal cells and can be dif-
ferent between different subsets of these neurons. While this
may reflect a difference between different sensory modalities,
our results suggest that differentially regulating E/I balance in
individual cells may be important for optimizing sensory repre-
sentation of the external world.

Implications for Nonresponding Neurons

That the majority of excitatory neurons in L2/3 of A1 are not
driven by any of our testing sound stimuli is surprising. Here,
we propose the following scenarios for the potential functional
relevance of these “silent” neurons. First, they may be function-
ally very specialized, that is, they only respond to some special-
ized sound features (e.g., features of vocalization sounds)
which are not included in our test sets. Second, although audi-
tory input alone is not sufficient to drive these neurons, com-
bining with some other inputs (e.g., neuromodulatory or cross-
modal sensory inputs) may be able to drive them. Third, as
these neurons all receive auditory-evoked synaptic inputs, they
have the potential to boost their responsiveness through
changing synaptic strengths, which could occur during learning
processes (Weinberger and Bakin 1998; Letzkus et al. 2011;
Nabavi et al. 2014). In other words, these neurons may serve as
a large reserve pool of undercommitted sensory neurons to be
recruited under specific conditions as the cortex adapts to the
changing external environment. It is of particular interest to
investigate in the future under what natural conditions new
responses to any features of auditory stimuli can be induced in
the NR neurons, as a recent study in hippocampal CA1 neurons
has shown that appropriately timed, conjunctive CA3 and ento-
rhinal cortical inputs can induce the formation of new place
fields in initially silent cells (Bittner et al. 2015). Finally, even
without spiking responses, the NR neurons may still be able to
influence sensory coding, since their subthreshold responses
can contribute to the local field potential and may affect syn-
chronous firing of other neurons and thus oscillatory activity in
the local circuit (Barth and Poulet 2012). Future investigations
will be needed to test these intriguing possibilities.
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