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Abstract

Genome sequencing of environmental bacteria allows identification of biosynthetic gene clusters 

encoding unusual combinations of enzymes that produce unknown natural products. We identified 

a pathway in which a ribosomally synthesized small peptide serves as a scaffold for non-ribosomal 

peptide extension and chemical modification. Amino acids are transferred to the C-terminus of the 

peptide through ATP and amino acyl-tRNA-dependent chemistry that is independent of the 

ribosome. Oxidative rearrangement, carboxymethylation, and proteolysis of a terminal cysteine 

yields an amino acid derived small-molecule. Microcrystal electron diffraction demonstrates that 

the resulting product is isosteric to glutamate. We show that a similar peptide extension is used 

during the biosynthesis of the ammosamides, cytotoxic pyrroloquinoline alkaloids. These results 

suggest an alternative paradigm for biosynthesis of amino acid derived natural products.
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Amino acids are added to the C-terminus of gene-encoded scaffold peptides, followed by 

maturation and proteolytic release.

Bacteria produce many small-molecule natural products that play important roles in 

communication, symbiosis, and competition (1). Historically these compounds have been 

discovered by activity-based screens, but an alternative avenue for their discovery starts with 

identification of their biosynthetic gene clusters now that bacterial genomes have revealed 

the tremendous diversity of natural products that remain to be discovered (2). In this study 

we focus on a group of biosynthetic gene clusters for which the final products were not 

known and could not be predicted.

Ribosomally-synthesized and posttranslationally-modified peptides (RiPPs) (3) include 

lantibiotics and thiopeptides that are used in food and agriculture (4). They are 

biosynthesized from a precursor peptide consisting of a leader peptide that serves as a 

recognition motif for the biosynthetic enzymes and a core peptide that is converted to the 

final product. During their maturation, Ser and Thr residues are glutamylated by LanB 

enzymes in a glutamyl-tRNA dependent mechanism (5, 6). Subsequently, the glutamate is 

eliminated to generate dehydroamino acids (Fig. 1A). A survey of >100,000 publicly 

available bacterial genomes revealed more than 600 genes encoding LanB-like proteins in 

which the elimination domain is not present within the cluster or genome.

In the plant pathogen Pseudomonas syringae pv. maculicola ES4326, such a protein (TglB) 

is encoded near an open reading frame encoding a 50-amino acid peptide (TglA; Fig. 1B). 

Co-expression of His6-TglA and TglB in Escherichia coli and subsequent purification of the 

peptide demonstrated an increase in mass by 103 Da (Fig. 1C). This increase is inconsistent 

with glutamylation, but could be the result of condensation with a cysteine residue. High 

resolution tandem mass spectrometry analysis of the peptide suggested that the adduct was 

attached to the C-terminal alanine instead of the anticipated ester linkage to a Ser in the 

peptide (Fig. 1D). We expressed TglA and TglB individually as His6-tagged proteins and 

purified them. In vitro incubation with Cys, ATP, tRNACys and Cys tRNA synthetase 

(CysRS) resulted in the same product (TglA-Cys; Fig. 2A) as that isolated from co-

expression in E. coli confirming that TglB adds a Cys to the C-terminus of TglA in a tRNA 

dependent manner (fig. S1A). This C-terminal peptide extension not only constitutes a 

previously unknown posttranslational modification but also seems counterintuitive since a 

more logical route to the product appears to be encoding the Cys on tglA. We next purified 

Cys-tRNACys and showed that TglB does not transfer the Cys to the C-terminus of TglA 

unless ATP is present, which is converted to ADP and phosphate (fig. S1B). Performing the 

reaction in buffer made with H2 18O and subsequent MS analysis demonstrated that the 

product contains one 18O atom (fig. S1C), and addition of hydroxyl amine to the assay 

allowed trapping of C-terminally activated TglA as the hydroxamate (fig. S1D). These 

findings are consistent with activation of the C-terminus of TglA by phosphorylation, 

subsequent amide bond formation with the amino group of Cys-tRNA, and release of the 

tRNA by hydrolysis (fig. S1E). The observations rule out the use of the activated ester of 

Cys-tRNA for the non-ribosomal peptide extension (fig. S1E). TglB accepted a 12-mer 

peptide corresponding to the C-terminus of TglA as a minimal substrate (fig. S1F), and 
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kinetic experiments showed that TglB has a turnover number of 28 min−1 using full length 

TglA (fig. S1G).

We next interrogated the other proteins encoded in the biosynthetic gene cluster. TglH has 

low homology to a structurally characterized dinuclear non-heme iron dependent protein for 

which no activity has been reported (7). The C-terminal domain of TglI has homology with 

known leader peptide binding domains in RiPP biosynthetic enzymes (Fig. 1B) (5, 8). We 

co-expressed TglA with TglB, TglH and TglI in E. coli and isolated a product that was 

decreased in mass by 14 Da from TglA-Cys (fig. S2A). We treated the peptide with trypsin 

to generate a C-terminal tetrapeptide. Chemical assays with thiol- and carboxylate-reactive 

electrophiles indicated that the product still contained these functional groups (fig. S3) 

suggesting structure 1 as the product of TglHI (Fig. 2A). We next repeated this experiment 

but using an E. coli strain that is auxotrophic for Cys and that was grown in minimal media 

supplemented with 13C-labeled Cys. Isolation of the peptide and analysis by MS showed 

that it is the cysteine β-carbon that is removed (fig. S4).

The biosynthetic cluster also contains a pair of genes (tglEF) encoding proteins similar to a 

recently characterized carboxy-S-adenosylmethionine (Cx-SAM) synthase and a SAM-

dependent methyltransferase, respectively (9, 10). We added compound 1 to Cx-SAM and 

TglF in vitro and isolated product 2 with a mass increase of 58 Da (Fig. 2C), consistent with 

carboxymethylation of a thiol. This hypothesis was confirmed by treating the TglHI product 

with iodoacetic acid, which resulted in the same outcome, as did co-expression of 

TglABEFHI in E. coli (fig. S2B). The in vitro prepared peptide was treated with trypsin and 

the C-terminal tetrapeptide 3 was characterized by 1H NMR spectroscopy and tandem MS, 

which supported structure 2 for the TglF product (Fig. 2A; fig. S5). Given the unusual 

architecture, we also chemically synthesized peptide 3 as two diastereomers (Supplementary 

Information) and demonstrated that the 1H NMR spectrum of one isomer was identical to 

the enzymatic product (fig. S5). We tried to obtain crystals to assign the stereochemistry of 

either isomer and made several chemical derivatives but were unable to obtain crystals for 

X-ray diffraction.

We next turned to the cryoEM method microcrystal electron diffraction (MicroED) (11–13). 

A small amount of powder of the diastereomer that was obtained in higher amounts and in 

more pure form was placed onto an EM grid, plunged into liquid nitrogen and investigated 

under cryogenic conditions in an electron microscope. The seemingly amorphous powder 

contained numerous nanocrystals on the grid suitable for MicroED analysis, each consisting 

roughly of femtograms of material that diffracted to ~1 Å resolution. MicroED data was 

collected from each nanocrystal but the sample was highly susceptible to beam damage such 

that no useful diffraction was observed after the first few frames of the MicroED movie. 

Despite >150 data sets collected on a CMOS-based CetaD camera, nanocrystals succumbed 

to radiation damage too fast preventing structure determination. It is possible that the peptide 

was particularly susceptible to damage because of the 3-thiaglutamate, consistent with an 

earlier study that showed that radiation damage is particularly prevalent at Cys residues (14). 

We then turned to the Falcon III direct electron detector, one of the most sensitive cameras 

for cryoEM that was recently demonstrated to be suitable for MicroED data collection and 

structure determination and that minimizes radiation damage because of its high sensitivity 
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and high frame rate (15). Atomic resolution data from seven nanocrystals were collected 

each covering an angular range of ~50° before damage was observed. Data from five 

nanocrystals were merged to yield a 96% complete data set to 1.0 Å resolution and the 

structure was determined by direct methods (Fig. 3; Crystallographic Table S3; 

Supplementary Information). The atomic-resolution MicroED structure was thus solved 

demonstrating the D configuration of the 3-thiaGlu in this peptide (D-3), which in turn 

provided the stereochemical assignment for L-3 which co-elutes with and has the same 

spectral data as the enzymatic product. These results demonstrate that the TglHI-catalyzed 

reaction occurred with retention of configuration at the α-carbon (Fig. 3B–D). These 

findings highlight the utility of MicroED to determine the structure and stereochemistry of a 

previously unknown natural product. Thus, collectively TglBEFHI convert TglA into a 

peptide containing L-3-thiaglutamate at its C-terminus (TglA-thiaGlu, 2; Fig. 2A).

We next investigated the TglHI-catalyzed reaction with purified proteins. Neither protein 

could be expressed in soluble form individually, but co-expression resulted in co-purification 

and metal analysis indicated TglHI contained 2.5 Fe. In vitro TglHI converted TglA-Cys to 

1 under aerobic conditions with a turnover number of 1.1 min−1 (Fig. 2B) whereas under 

low oxygen concentrations product formation was negligible, confirming oxygen-

dependency of the reaction (fig. S6A). To investigate if TglHI can functionalize internal 

cysteine residues, the extension mutant TglA-CysAla was prepared. This peptide was not 

modified by TglHI (fig. S6B). TglHI also did not modify other unrelated peptides that end in 

Cys (fig. S6C), and N-terminal truncation of TglA-Cys led to diminished or abolished TglHI 

activity (fig. S6D). Thus, the enzyme has high specificity for TglA-Cys. To identify the fate 

of the lost carbon atom, 13C-labeled TglA-Cys was reacted with TglHI and formate was 

observed by 13C NMR spectroscopy (Fig. 3E). Moreover, when [2,3,3,−2H]-Cys was used, 

the product contained one deuterium illustrating that the α-hydrogen is likely not removed 

during the transformation (fig. S4D). Thus, TglHI catalyzes a net four-electron oxidation of 

TglA-Cys, modifying the redox states of both the α and β carbons of the C-terminal cysteine 

installed by TglB. Based on the in vitro studies, we propose a mechanism for the formation 

of 1 and formate from TglA-Cys (fig. S7). The chemistry catalyzed by TglHI expands the 

range of post-translational modifications in natural product biosynthesis (16) to include a 

remarkable excision of a methylene group from cysteine. Additional TglHI-like enzymes are 

present in the genomes (fig. S8) including in the biosynthetic gene cluster encoding the 

methanobactin precursor (17–19).

The last four genes in the biosynthetic cluster encode a putative membrane bound protease 

(TglG), a putative pyridoxal-phosphate dependent enzyme (TglC) that is sometimes missing 

in homologous clusters, and two putative transporters (TglD and TglJ). Like TglB and TglI, 

TglG contains a RiPP leader peptide recognition motif suggesting it will act on a TglA-

derived peptide (Fig. 1B) and homologous enzymes have cytoplasmic active sites (20). 

When TglA-thiaGlu was exposed to the membrane fraction of cell lysate of E. coli 
expressing GFP-TglG, the peptide was cleanly converted into TglA (fig. S9). TglA-Glu was 

also a substrate but not TglA-GluAla, illustrating that the protease cannot distinguish Glu 

and 3-thiaGlu but does not tolerate extension of the peptide. Thus, TglA appears to be a 

scaffold on which 3-thiaGlu is assembled and final proteolytic release regenerates TglA for 
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another round of biosynthesis (Fig. 2A). Were cysteine merely encoded in tglA, then each 

ribosomally produced peptide could make only a single 3-thiaglutamate. Instead, the use of 

TglA as a scaffold peptide is conceptually more efficient than the stoichiometric use of 

leader peptide in other RiPP pathways (4). At present we do not know the function of 3-

thiaGlu, nor whether this unstable compound is further chemically modified. Plants were 

recently shown to use Glu for a systemic signaling response to pathogens (21), and it is 

possible that 3-thiaGlu or a product derived from it interferes with Glu signaling similarly to 

other anti-metabolite toxins made by P. syringae that block jasmonate and ethylene signaling 

pathways (22).

We note that 3-thiaGlu is not a RiPP because it is not ribosomally synthesized, but it is made 

by posttranslational modification reactions. Perhaps this unusual pathway evolved because 

of the significant relative burden of leader peptide production for a single amino acid 

product. Bioinformatic prediction of TglA transcriptional regulation (23) suggests precursor 

production is not driven by a separate promoter, which is consistent with putative catalytic 

use of the peptide (fig. S10). This contrasts with most RiPP pathways in which expression of 

the substrate peptide is controlled by its own promoter followed by a read-through 

transcriptional terminator to allow the precursor peptide to be present in excess over the 

biosynthetic machinery (24, 25).

It is the Cys-tRNA-dependent enzyme TglB that allows the proposed catalytic use of TglA. 

Similar small LanB-encoding genes are found in several bacterial phyla, with some clusters 

encoding multiple such proteins and a range of additional putative modification enzymes 

(fig. S11). To assess the generality of the function of small LanB proteins and provide 

further support for a catalytic role of the scaffold peptide, we investigated ammosamide 

biosynthesis. A previous study of these Trp-derived pyrroloquinoline natural products (Fig. 

4A) hinted that the compounds could be derived from a small peptide AmmA ending in Trp 

encoded in the gene cluster (Fig. 4B) (26). However, when this Trp was mutated to Ser or 

deleted altogether, ammosamide was still produced (26). The ammosamide gene cluster 

encodes four small LanB proteins. We tested all four for activity in vitro and in E. coli with 

AmmA (previously annotated Amm6) and AmmA lacking the C-terminal Trp but observed 

no activity. We noted that AmmA has homology with other peptides encoded in clusters with 

small LanB proteins (Fig. 4B), but that AmmA appears to have a C-terminal extension. 

When we removed this extension, AmmB2 (previously annotated Amm9), but not the other 

three AmmB proteins, added a Trp in a Trp-tRNA dependent fashion to the C-terminus of 

the peptide in vitro and in E. coli (Fig. 4C). This finding explains the observation that 

mutation or deletion of the C-terminal Trp still resulted in ammosamide production, and 

supports catalytic use of the peptide. Such use provides an attractive explanation for the 134 

mg/L of ammosamide C produced by the producing bacterium (26) because stoichiometric 

use would require production of 3.0 g of AmmA. Given this second example of tRNA-

dependent activity, we suggest the name peptide-amino acyl tRNA ligase (PEARL) for the 

small LanB proteins. The biosynthesis of a metabolite on a small peptide scaffold is 

uncommon, with the closest similarity found in the biosynthesis of amino acids linked by 

isopeptide bonds to a glutamate residue on amino-carrier proteins in some bacteria (27, 28).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Function of a small LanB enzyme, TglB, found in P. syringae.
(A) LanB enzymes glutamylate Ser/Thr residues and subsequently eliminate the glutamate 

to form dehydroamino acids. Small LanB proteins lack the elimination domain. Dha, 

dehydroalanine; Dhb, dehydrobutyrine. (B) Biosynthetic gene cluster in P. syringae 
encoding a small LanB. (C) Matrix-assisted laser desorption ionization with time-of-flight 

(MALDI-TOF) mass spectra of TglA coexpressed with TglB. (D) Analysis of the TglB 

product by tandem electrospray ionization (ESI) mass spectrometry.
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Figure 2. The cysteine added by TglB is modified by other enzymes from the tgl cluster.
(A) Inferred biosynthetic pathway towards 3–thiaglutamate. (B) MALDI-TOF mass 

spectrum of in vitro reaction of TglHI with TglA-Cys. (C) MALDI-TOF mass spectrum of 

in vitro reaction of TglF with compound 1. Color-coding of shaded peaks in panels B and C 

are shown in panel A.
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Figure 3. In vitro TglHI reacts with 13C-labeled TglA-Cys to produce 13C-formate and 1 with 
retention of configuration.
(A) Diffraction pattern of D-3 with resolution ring at 0.9 Å. (B) Atomic MicroED structure 

of D-3 determined at 1.0 Å resolution. X refers to 3-thiaGlu. (C) Structure of chemically 

synthesized tetrapeptides (VFAX) containing D-thiaGlu (D-3) and L-thiaGlu (L-3). (D) 

Determination of stereochemical configuration of thiaGlu by comparison with synthetic 

standards. High-performance liquid chromatograms are shown. VFAXenz was obtained by 

TglHI modification of TglA-Cys followed by 2-iodoacetic acid alkylation and trypsin digest. 

(E) 13C NMR spectra showing the β-carbon of the C-terminal cysteine in 13C-labeled TglA-

Cys (26.3 ppm, top), and a new signal at 171.0 ppm that corresponds to 13C-formate after 

reaction with TglHI (bottom).
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Figure 4. Ammosamide biosynthesis involves addition of L-Trp to the C-terminus of a 
ribosomally synthesized peptide.
(A) Pyrolloquinoline alkaloids ammosamides A-C. (B) Sequence alignment of the C-

terminus of the AmmA precursor peptide and its homologs showing a C-terminal extension 

for AmmA relative to most homologs. The gene cluster for ammosamide biosynthesis in 

Streptomyces sp. CNR698 comprises 27 orfs. The encoded proteins include four small 

LanBs, two proteases, one halogenase and a transporter. (C) AmmB2 adds L-Trp to 

AmmA*, a truncated peptide of AmmA, to afford AmmA*W in vitro in an ATP, tRNATrp 

and Trp-RS dependent reaction. Red MALDI-TOF mass spectrum is AmmA* and the blue 

spectrum shows the product of the reaction. HR-ESI MS/MS confirms addition of L-Trp to 

the C-terminus.
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