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Abstract

Metabolic disorders present a public health challenge of staggering proportions. In diabetes, there 

is an urgent need to better understand disease heterogeneity, clinical trajectories, and related 

comorbidities. A pressing and timely question is whether we are ready for precision medicine in 

diabetes. Some biological insights that have emerged during the last decade have already been 

used to direct clinical decision making, especially in monogenic forms of diabetes. However, 

much work is necessary to integrate high-dimensional explorations into complex disease 

architectures, less penetrant biological alterations, and broader phenotypes, such as type 2 

diabetes. In addition, for precision medicine to take hold in diabetes, reproducibility, 

interpretability, and actionability remain key guiding objectives. In this review, we examine how 

mounting data sets generated during the last decade to understand biological variability are now 

inspiring new venues to clarify diabetes nosology and ultimately translate findings into more 

effective prevention and treatment strategies.

Keywords

precision medicine; diabetes; diabetes heterogeneity; omics

Precision medicine

The concept of precision medicine has evolved from an initial focus on individualized 

preventive strategies and patient care (personalized medicine) to a wider and more realistic 

notion that intends to convey the principle that, although therapeutics are rarely developed 

for single individuals, subgroups of individuals with unique features may be increasingly 

defined and treated in more efficient ways. This is now possible owing to the comprehensive 

capture of multiple data points across orthogonal axes of information, the development of 
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analytical methods that permit the interpretation of complex data and enable the construction 

of more refined categories, and concomitant advances in targeted therapeutics.

Precision medicine is not a new construct—but our ability to implement it in a sophisticated 

and rational manner has finally come of age. Indeed, the science of medicine has been 

historically focused around notions of subgroups and categorization. In ancient Greek 

civilization, health (“a gift from the gods”) and illness (“divine punishment”) were presumed 

to be affected by a few categories, such as gender, geographic localization, social class, 

humors, diet, trauma, beliefs, and mindset.1 From that initial understanding, the concept of 

heath and disease has progressed, and the number of categories (now considered disease risk 

factors) has increased exponentially. This is due to the widespread adoption of the scientific 

method, by which clinical investigators observe, predict, test, and generalize.2,3 Evidence-

based medicine is the application of the scientific method in biomedicine and has become 

the gold standard to advance knowledge and make decisions about patient care. The 

continuous updating of the scientific method to maximize preventive strategies and patient 

care has launched thriving research initiatives to explore the ways in which several axes of 

biological information and environmental characteristics drive disease pathogenesis and 

influence responses to therapy.3 However, as the scientific method is systematically 

deployed across all areas of medicine, it has become apparent that large disease 

heterogeneity and response variability exist. Thus, the generalizability of diagnostic groups 

and the extrapolation of average responses from clinical trials, predicated on the assumption 

that medical interventions should work ubiquitously in individuals sharing a limited set of 

similar characteristics, can often be misleading.4,5

The mounting troves of data generated during the last decade to understand biological 

variability are now inspiring new venues for complex disease prevention, treatment, and cure 

through a deeper understanding and characterization of underlying molecular processes.6,7 

One early step toward the historical change in the global reach of biological inquiry started 

just a few decades ago with the Human Genome Project, whose major contribution was to 

hand the world a complete resource of detailed information about the structure, organization, 

and function of the full set of human genes.8 Since then, technological and analytical 

advances have enabled the design of genome-wide association studies (GWASs), which have 

generated the discovery of hundreds of associated loci across the human genome for many 

complex diseases of large public health impact.9–11 Led by genomics, other high-throughput 

technologies have emerged recently, providing comprehensive information about the 

epigenome, transcriptome, proteome, metabolome, and microbiome. This information is 

allowing investigators to explore complementary biological axes in greater breadth and 

depth.12–17 Although each layer of information provides relevant insights into disease 

nosology, the interplay between diverse biological layers, even within the same tissue or 

metabolic condition, hinders the translation of the newly generated knowledge, given that it 

cannot be assessed by a simplified reduction approach.18 In addition, tissue-specific 

regulation and cross talk between tissues orchestrating the same molecular process in 

response to different environmental or physiological triggers presents an extra level of 

difficulty in unraveling the biological basis of complex diseases like diabetes.
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Some areas of biomedicine are more amenable to the integration of these features. In cancer, 

each tumor can be seen as a unique and localized set of genetic and epigenetic changes 

resulting in a definite molecular signature. Successful examples of personalized medicine in 

cancer often rest on the direct detection of penetrant somatic mutations in the diseased 

tissue. For example, somatic mutations in dominant melanoma oncogenes, such as BRAF, 

have been shown to be relevant in some nonmelanoma cancers, making BRAF a generally 

targetable oncogene and practically redefining cancer types by their primary molecular 

pathogenic defects rather than their tissue of origin.19 A potential source of heterogeneity in 

cancer cell response may be attributable to the specific tumor microenvironment, in part 

captured through chromatin regulation and catalyzing the emergence of chromatin regulation 

as a new druggable objective for resistant cancers.20 Other approaches for resistant cancers 

include personalized vaccines that take advantage of differences in DNA sequence between 

tumor and healthy cells to re-engineer more efficient T cells.21 For example, two recent 

phase I clinical trials showed that a personalized T cell–based vaccine to treat people with 

skin cancer successfully enhanced the immune response, and no signs of tumor recurrence 

were reported in the majority of participants after a follow-up period of up to 32 months 

after vaccination.22,23

Whether knowledge generated in cancer is ready to be implemented in other metabolic 

complex diseases, such as diabetes, is less clear. The genetic architectures of diabetes and 

cancer are quite different: both type 1 and type 2 diabetes (T1D and T2D, respectively) are 

caused by the combination of genetic predisposition and environmental triggers, with most 

germline variants (with the exception of the HLA region in T1D) conferring only modest 

effects on risk; whereas in cancer a specific high-penetrance somatic mutation in a given 

gene in a particular cell type is likely to start cancer initiation, in some cases also triggered 

by an external insult and modified by additional gene variants.11,24

Diabetes is a heterogeneous disease

Diabetes, albeit with the common denominators of relative insulin deficiency and 

consequent elevated blood glucose, is a much more heterogeneous disease than the present 

classification into T1D and T2D suggests.25,26 T1D, with a typical onset at an early age, 

develops as a result of autoimmune destruction of the insulin-producing β cells, whereas 

T2D is due to a combination of insulin resistance superimposed on an insulin-secretory 

defect. However, the spectrum of diabetes has broadened in the past few decades with the 

realization that several different overlapping mechanisms can lead to diabetes, suggesting 

that individuals might have features of different biological alterations (Fig. 1). For example, 

latent autoimmune diabetes of adults (LADA; also known as autoimmune diabetes in adults, 

type 1 and 1/2 diabetes, and slow-onset diabetes in adults) might constitute a category of 

diabetes on its own, since patients share features of both T1D (autoimmunity, eventual 

insulin dependence) and T2D (onset at later ages, insidious presentation).27,28 Recent work 

suggests that the genetic architecture of LADA is closer to T1D than to T2D.29 Ketosis-

prone diabetes (KPD) in adults is another hybrid form of diabetes with features of both T1D 

and T2D, but without the autoimmune characteristics of LADA.30 These individuals, often 

of Asian or Afro-Caribbean ancestry, are characterized by relative insulin deficiency and are 

prone to developing diabetic ketoacidosis.31
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Despite these hybrid forms of diabetes, T2D is the major cause of diabetes worldwide and 

accounts for nearly 90–95% of diabetes cases. T2D by itself is also a heterogeneous disease, 

as patients can range from those with a predominantly insulin-resistance phenotype but with 

sufficient β cell reserve to remain insulin independent to those who may require insulin 

treatment early in the course of their disease.26 The need for escalation of therapy with 

additional agents differs across individuals, as does the likelihood of progression to specific 

macrovascular or microvascular complications. In addition, the influence of obesity on T2D 

risk varies greatly across populations, with individuals of East Asian descent developing 

T2D at much lower indices of adiposity.32,33 As more diverse populations are examined, it is 

becoming apparent that differences in allele frequencies across populations may explain 

disparities in prevalence.34–36

Subclassification of type 2 diabetes

Given the heterogeneity in diabetes phenotype, several attempts to define molecular 

subgroups of particular forms of diabetes through clinical features have been implemented 

(Fig. 1). For example, up to four different phenotypes have been described in KPD, 

depending on the presence or absence of islet cell autoantibodies (A− or A+) and β cell 

functional reserve (β− or β+).37 This classification, based on both immunologic and β cell 

function criteria, has the highest accuracy and predictive value in classifying patients with 

KPD with regard to clinical outcomes and pathophysiologic subtypes.38 In addition, a long-

term longitudinal follow-up study including KPD A−β+ patients has revealed that this 

phenotype comprises two distinct subtypes distinguished by whether T1D-associated HLA 

susceptibility is present or not.39 In gestational diabetes (GDM), about half of women with 

GDM had predominant insulin-sensitivity defects with hyperinsulinemia, a phenotype that 

was linked with altered adipokine profiles, larger infants, and greater risk of GDM-related 

complications; these were not observed among women with GDM due to predominant 

insulin-secretion defects, suggesting uneven characteristics within GDM.40 Finally, a recent 

data-driven cluster analysis of six simple clinical variables (age, body mass index (BMI), 

GAD antibody status, hemoglobin A1c, and homeostasis model assessments of β cell 

function and insulin resistance) measured at baseline in patients with newly diagnosed 

diabetes identified five replicable clusters of patients with different clinical presentations. 

The five diabetes subtypes (severe autoimmune diabetes, severe insulin-deficient diabetes, 

severe insulin-resistant diabetes, mild obesity-related diabetes, and mild age-related 

diabetes) also showed varying degrees of risk of diabetic complications. For example, 

individuals with severe insulin-resistant diabetes had significantly higher risk of diabetic 

kidney disease, while those with severe insulin-deficient diabetes had the highest risk of 

retinopathy.41

The revolution of omics profiling technologies can help identify subgroups of individuals 

with diabetes sharing unique biological features. Among all available approaches for more 

detailed personalized profiling, assaying genetic variation has taken the lead and made rapid 

progress. This is the case for a number of reasons, including (1) the ability to query millions 

of variants across the human genome in a single experiment;42,43 (2) the development of 

accurate analytical methods and stringent statistical standards to interpret results with 

appropriate statistical rigor;42 (3) the unique feature that germline genetic variation is fixed 
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in the individual and thus needs to be measured only once in the person’s lifetime;44 and (4) 

the potential to derive causal inference, since genetic variation is free from conventional 

confounding owing to the unidirectional arrow of time (the variant always precedes the 

phenotype and is unaffected by the disease process or its treatment) and the random 

independent assortment of alleles at meiosis.45

To date, well over 100 genetic loci have been identified in successive waves of GWAS meta-

analyses as robustly associated with T2D and/or related traits.46–52 Comprehensive 

sequencing studies that capture both common and rare variation suggest that most genetic 

variation influencing T2D appears to reside at common variant sites.11 Although genetic risk 

variants at these loci have modest effects on disease predisposition (collectively accounting 

for 10–15% of overall disease risk),11,50 the knowledge gained has paved the way to 

elucidate the molecular taxonomy of the disease and the potential identification of novel 

therapeutic approaches.42,53 To highlight disease heterogeneity, ethnic-specific alleles are 

emerging, thanks to genotyping and sequencing experiments in diverse populations. For 

example, a nonsense polymorphism in the TBC1D4 locus (with a minor allele frequency 

(MAF) of 17% in Inuit populations, but almost nonexistent in other groups), raises 2-h 

glucose and increases T2D risk 10-fold.54 As TBC1D4 is implicated in transducing the 

insulin signal in skeletal muscle, it is believed that these individuals suffer from a type of 

T2D mostly defined by muscle insulin resistance and might benefit preferentially from 

treatment with an insulin sensitizer, a hypothesis that can be tested in a pharmacogenetic 

clinical trial.55 Similarly, a risk haplotype in the SLC16A11 locus is common (MAF < 40–

50%) among people of Mexican or Latin American descent but rare among Europeans and 

absent in Africa; together with other such variants, it might explain some portion of the 

increased T2D prevalence in Mexico.34 A recent functional study demonstrated that lower 

levels of monocarboxylate transporter 11 (the protein encoded by SLC16A11) in the plasma 

membrane of primary human hepatocytes are associated with T2D-relevant changes in fatty 

acid and lipid metabolism.56 Though the mechanism of action is incompletely understood, 

therapies targeting this monocarboxylate transporter and enhancing its function in 

hepatocytes may be particularly effective in people whose risk of developing T2D is driven 

by this disrupted mechanism.57 In another example, a missense polymorphism in HNF1A 
(MAF of 2% in Mexicans with T2D) increases the risk of T2D fivefold.36 Because carriers 

of loss-of-function mutations in this gene experience a more favorable response to 

sulfonylureas, it is possible that these patients might be better treated with those agents as 

well, at least early in their disease course. Finally, whole-exome sequencing data have 

uncovered a single coding variant in PAX4 that was strongly associated with T2D, but only 

in people from East Asian countries, including Korea, China, and Singapore.11

Another approach to better define particular subtypes of T2D is to use T2D-associated 

genetic variants as biomarkers in unsupervised classification methods or aggregate them into 

biologically relevant polygenic risk scores (GRS). Using unsupervised clustering analysis of 

37 established T2D susceptibility loci, it was shown that T2D risk loci may fall into different 

groups related to (1) insulin sensitivity, (2) insulin secretion, (3) insulin processing, and (4) 

insulin processing and secretion without a detectable change in fasting glucose levels.58 

Hierarchical clustering analysis using 19 common genetic variants associated with fasting 

insulin–based measures identified 11 variants associated with a metabolic profile consistent 
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with a mild form of lipodystrophy.59 A GRS composed of these 11 prioritized risk alleles 

was paradoxically associated with lower BMI but increased visceral to-subcutaneous 

adipose tissue ratio and caused metabolic alterations, such as higher triglycerides and 

elevated transaminases or hepatic steatosis and lower HDL or adiponectin. In a follow-up 

reciprocal analysis, a GRS of 11 favorable adiposity variants was associated with lower T2D 

relative risk and higher body fat percentage, with greater subcutaneous storage capacity.60 

Once variants are aggregated into physiologically meaningful clusters, the next step is to 

verify whether GRS based on such a classification can also group individuals in clinically 

meaningful categories, particularly at the extreme ends of the distribution.

As the number of T2D-associated variants continues to mount, the construction of GRS 

allows for a continuous and quantitative measure of T2D genetic susceptibility that can help 

to identify relevant subgroups. For example, with rising populationobesity, distinguishing 

T1D and T2D in patients with new-onset diabetes has proven difficult, particularly in 

clinical scenarios, because more young people are developing T2D, and many individuals 

with T1D will be obese.61 Accordingly, up to 15% of young adults with diabetes are 

estimated to be wrongly classified and consequently incorrectly treated, which may have 

consequences in poor glycemic control, inappropriate insulin regimens, and the risk of life-

threatening ketoacidosis.62 A study assessing a T1D GRS based on 30 T1D-associated risk 

variants provided evidence that the GRS is highly discriminative and indicative of T1D, 

especially in young adults, where the T1D GRS alone predicted progression to insulin 

deficiency.63 In aseparate study, a similar T1D GRS improved the discrimination of 

monogenic diabetes from T1D,64 confirming the relevance of genetics to correctly classify 

individuals based on divergent pathophysiological processes.

Finally, more comprehensive methods based on high-dimensional data from electronical 

medical records combined with genetic information have been implemented to attempt to 

characterize the heterogenic complexity of T2D and its complications.65–67 A recent study 

suggested thata topological analysis of many clinical features gives rise to three distinct 

subgroups of T2D:67 subtype 1 was characterized by T2D microvascular complications, 

including diabetic nephropathy and diabetic retinopathy; subtype 2 was enriched for cancer 

malignancy and cardiovascular diseases; and subtype 3 was associated most strongly with 

cardiovascular diseases, neurological diseases, allergies, and HIV infections. Distinct sets of 

genetic variants could be mapped to these subtypes. However, it is difficult to replicate these 

types of high-dimensional explorations, as their biological relevance is not obvious, and no 

clear clinical decision-making implications have emerged. For precision medicine to take 

hold in diabetes, reproducibility, interpretability, and actionability remain key guiding 

objectives.

Another angle to characterize diabetes into distinct categories and provide biological 

insights into early metabolic alterations is via particular metabolomic profiling.68,69 During 

the last decade, metabolomics has emerged as an integrative tool for biological states 

through the global measurement of chemical endophenotypes that lie downstream of 

genomic, transcriptomic, and proteomic variability.70 One key advantage of metabolomics is 

that the measured entity is closer to the organismal phenotype than genetic variation and 

integrates a number of biological processes; thus, the effect size on the trait of interest is 
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typically larger. Disadvantages include the complex and incompletely characterized nature 

of the metabolome, the unknown nature of many measured metabolites, the diversity of 

technologies and data-analysis techniques used, and the correlational nature of most 

analyses where causal inference is challenging. As a result, generalizability and replication 

has been difficult, though standardized methods for metabolite identification and reporting 

are beginning to emerge.71

Despite intrinsic limitations, particular attention has focused on metabolomics of insulin 

resistance and T2D. Several large prospective analyses using either targeted or untargeted 

metabolomics approaches have validated the association between branched-chain amino 

acids (BCAAs) and aromatic amino acids with insulin resistance and T2D.72,73 Beyond 

BCAA, downstream BCAA metabolic products, such as branched-chain ketoacids and 

acylcarnitines, were significantly elevated in both individuals with impaired fasting glucose 

and subjects with T2D compared with control subjects.74 Other products of amino acids 

catabolism, such as 2-aminoadipic acid or α-hydroxybutyrate, have been found to be 

strongly correlated with incident T2D.75,76 These findings are consistent with a model in 

which excess of BCAAs contributes to impaired efficiency of fatty acid oxidation, resulting 

in the accumulation of incompletely oxidized lipid species, perhaps of particular relevance in 

insulin resistance.70 Whether these metabolite alterations are common to all patients with 

T2D or serve to identify specific subgroups requires further exploration.

Recently, GWASs have been integrated with high-throughput metabolomic profiling to 

provide biological insights into how genetic variation influences metabolism and how such 

metabolic differences in plasma can help to identify relevant genes within genomic regions 

associated with complex diseases.77 In addition, the integration of genomics with 

metabolomics can help place specific metabolites on causal pathways. For instance, a study 

that pooled data from four European cohorts found that CYP7A1, which encodes the rate-

limiting enzyme in bile acid synthesis, was associated with lower concentrations of 

deoxycholic acid and higher T2D risk.78 In addition, this study also identified variants in or 

near the genes encoding sphingosine-1-phosphate phosphatase 1 (SGPP1), glucokinase 

regulator (GCKR), and fatty acid desaturase 1 and 2 (FADS1/2) that were associated with 

diabetes-associated phospholipids and T2D risk. Finally, using Mendelian randomization in 

combination with plasma metabolomics suggested a causal role for lower levels of 

palmitoleic acid and oleic acid on insulin resistance.79 Two recent Mendelian randomization 

studies (see Ref. 45 for methodological details) have implicated BCAAs in the pathogenesis 

of T2D and suggested that genetically raised insulin resistance drives higher circulating 

fasting BCAA levels.80,81 In a recent analysis of 1622 nondiabetic participants from the 

Framingham Heart Study, the combination of genetics, metabolomics, and clinical factors 

increased the prediction of future T2D.82 In brief, a 62-variant GRS showed an area under 

the curve (AUC) of 64%; addition of metabolites increased the AUC to 82%, and the 

combination of genetics, metabolomics and clinical factors achieved an AUC of 88%. The 

results from this study suggest that metabolite and genetic traits also provide complementary 

information to each other for the prediction of future T2D. This emerging information may 

help classify individuals at high risk for different forms of T2D and potentially translate 

findings into more personalized prevention or treatment strategies.
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The observation that the great majority of GWAS variants identified for T2D do not affect 

protein-coding sequence suggests that gene regulation has a central role in the development 

of the disease.83 New analytical methods exploiting available data sets that describe gene 

expression patterns and epigenetic marks obtained from cells and tissues at different stages 

of development and disease states have become an extremely useful resource.84 In diabetes, 

one of the most salient findings is the discovery that T1D GWAS signals localize to 

enhancer sequences active in the thymus, T and B cells, and CD34+ stem cells, confirming 

the regulatory disruption of the immune component in the etiology of T1D.85 A landmark 

study using integrative analysis was conducted for the fat-mass obesity (FTO) locus, the 

strongest genome-wide association signal for obesity.86,87 In brief, using a variety of data 

sets, the authors predicted the cell type (preadipocyte) and regulatory element (enhancer) 

disrupted by the causal variant and linked the predicted enhancer (ARID5B motif) to two 

target genes (IRX3 and IRX5) involved in early adipocyte differentiation. Finally, the 

investigators were able to restore the correct expression of the affected target genes in cells 

isolated from patients and a mouse model using CRISPR–Cas9 genome editing and to 

demonstrate major allele-dependent effects on thermogenesis in adipocytes.87 Though 

additional mechanisms could be at play, these integration efforts illustrate how resource 

building can result in major biological insights into the functional consequences of genetic 

alterations, uncovering novel pathways that could be harnessed for therapeutic development. 

In addition, improved mechanistic understanding is a first step in determining whether such 

processes are uniformly operational across the entire phenotypic spectrum of diabetes or 

could serve to describe specific subtypes.

Convincing evidence suggests that the dysbiotic state conferred by gut microbiota 

composition is associated with metabolic diseases.88 Previous profiles of the gut microbiome 

in T2D have found compositional changes between patients and healthy controls, showing 

increased capacity for oxidative stress resistance and a decreased capacity for flagellar 

assembly and riboflavin metabolism.89,90 However, the human microbiome contains vast 

numbers of uncharacterized enzymes, limiting our functional understanding of this 

community and its effects on host health and disease. A possible mechanism linking the gut 

microbiome and insulin resistance may be due to specific microbiota species (Prevotella 
copri and Bacteroides vulgatus), which have been reported to drive the association between 

biosynthesis of BCAAs and insulin resistance in ~200 individuals with insulin resistance.91 

However, given the large number of microbiota species and interconnected metabolic 

pathways between species, efforts to distinguish which bacterial species increases diabetes 

risk in a causal manner or to define diabetes subgroups according to metagenome 

characterization are still largely unrealized.

Does omic information make a difference for treatment?

The clinical management of diabetes is currently based on reducing plasma glucose to levels 

that are associated with a low risk of developing long-term complications.92 However, 

significant variability exists in response to these interventions, indicating that treatment 

heterogeneity may reflect underlying biological differences. For example, genetic factors 

can influence the glycemic response to metformin, explaining from 21% to 34% of its 

variance depending on how response is defined.93 A better understanding of the underlying 
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causes for differential pharmacological response of subgroups of diabetic individuals may 

catalyze the delivery of the most accurate intervention strategy to a given individual based 

on his or her unique characteristics.

For monogenic diabetes, the implementation of precision medicine can be considered an 

early success, given that there are discrete subgroups that are easily defined by molecular 

genetics. For example, neonatal diabetes is defined by an extreme phenotype (onset of 

hyperglycemia within the first 6 months of life), often caused by penetrant mutations in a 

well-understood locus (ABCC8, which encodes the sulfonylurea receptor SUR1 and the 

adjacent gene KCNJ11 encoding its associated ATP-dependent potassium channel).94 This 

biological understanding has led directly to genetically driven individualized therapy (high-

dose sulfonylureas).95 Other monogenic diabetes forms, such as maturity-onset diabetes of 

the young (MODY), also provide proof of concept that genetic information can guide 

therapy. The most common causes of MODY include mutations in the genes encoding the 

hepatocyte nuclear factor 1α (HNF1A) and the enzyme glucokinase (GCK) and HNF4A.
96,97 Individuals with loss-of-function HNF1A mutations, which cause MODY 3, are 

extremely sensitive to the hypoglycemic effects of sulfonylureas. This knowledge has key 

translational implications when the diagnosis of MODY 3 is genetically confirmed: in 

patients who were mistakenly diagnosed as having T1D (on the basis of the early onset of 

disease and lean body habitus), the clinician can discontinue insulin therapy and initiate 

treatment with sulfonylureas, whereas in those who were mistakenly diagnosed as having 

T2D (on the basis of absence of autoimmunity and a nonketotic presentation), the clinician 

can substitute metformin for low-dose sulfonylureas.98 Individuals with a heterozygous, 

inactivating mutation in GCK (MODY 2) have a defect in glucose sensing; hence, glucose 

homeostasis is maintained at a higher set point, resulting in mild, asymptomatic fasting 

hyperglycemia (5.5–8.0 mmol/L) that shows little deterioration with age, does not require 

escalation of therapy, and is not associated with cardiovascular complications.99 The general 

consensus is that treatment is not recommended outside of pregnancy.100 Insulin treatment 

might be required during pregnancy to prevent excess fetal growth only if the fetus has not 

inherited the GCK mutation.101 Similar to individuals with MODY 3, carriers of mutations 

in HNF4A (MODY 1) display progressive β cell dysfunction; hence, low-dose sulfonylureas 

is the preferred tailored intervention.102 However, a subgroup of phenotypically different 

patients with MODY 1 due to a common mutation in HNF4A(p.R114W) was recently 

described.103 These individuals showed reduced sensitivity to low-dose sulfonylurea 

treatment, reduced penetrance, and no effect on birth weight and therefore may need high-

dose sulfonylurea treatment.

T2D is considerably different from monogenic diabetes. The genetic architecture of T2D is 

mostly composed of small-effect common variants that hinder the use of any of these 

variants as a handle to reverse the disease. However, the precise combination of risk and 

protective variants carried by any given individual is likely to be unique, offering potential 

translational opportunities.104 Accordingly, research efforts are now moving to determine 

where the boundaries of risk lie and how to eventually predict whether a patient is likely to 

develop T2D in his/her lifetime or respond differently to conventional treatments.105 As a 

critical factor in T2D pathogenesis seems to be early β cell dysfunction, tailored 
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interventions might be administered to individuals with specific β cell risk factors early in 

the disease course, when insulin secretion has not yet markedly deteriorated. Future T2D 

pharmacotherapy may focus on preserving normal glucose homeostasis by β cell–based 

interventions from different angles, including β cell genetic reprogramming, differentiation, 

or enhancement of activity.

Metformin is currently recommended as a first-line drug for the treatment of T2D: it is 

effective at reducing hyperglycemia primarily by inhibiting hepatic glucose production and 

secondarily by modestly increasing insulin sensitivity.106 Whether metformin has different 

effects on β cell function preservation is a matter of debate. For example, the ADOPT study 

showed that the durability of metformin monotherapy was better than that of sulfonylureas, 

but it still resulted in a 21% failure rate at 5 years in participants with recently diagnosed 

T2D.107

Genetic studies for metformin response may help to prioritize which individuals are more 

likely to respond better to metformin and achieve greater β cell preservation. Initial 

candidate gene approaches focused on SLC22A1 (encoding the organic cation transporter 1) 

or SLC47A1 (encoding the multidrug and toxin extrusion 1) have failed to produce a definite 

picture of the genetic determinants of metformin response.108

GWASs have identified two metformin response loci (ATM and SLC2A2). The ATM (ataxia 

telangiectasia mutated) locus, located in a large linkage dis-equilibrium block on 

chromosome 11 that includes a total of seven potential candidate genes, has been associated 

with glycemic response to metformin.109 A functional study to comprehensively identify 

genes and regulatory elements associated with metformin treatment has showed that variants 

in linkage disequilibrium with the ATM GWAS lead SNP (rs11212617) had increased 

enhancer activity. Expression quantitative trait locus analysis and CRISPR–Cas9 activation 

suggest that this enhancer haplotype could be regulating ATM in the liver and activating 

transcription factor 3, leading to gluconeogenesis repression.110 A noncoding variant in 

SLC2A2 (encoding the facilitated glucose transporter GLUT2) represents another identified 

genome-wide signal for metformin response, and it was associated with reduction in 

hemoglobin A1c in 10,577 participants of European ancestry.111 This regulatory variant 

influences GLUT2 expression in the human liver, identifying hepatic GLUT2 as an effector 

of metformin action. However, the increased response to metformin in carriers of this variant 

did not prevent diabetes in participants from the Diabetes Prevention Program,112 indicating 

that perhaps genetic influences on drug response are also dependent on the metabolic state 

of the individual, with differential interactions occurring at diverse stages of disease 

progression.

In terms of sulfonylurea response, a limited number of polymorphisms in sulfonylurea drug 

target genes and T2D risk genes has been studied, and most of the results have been limited 

to small, observational studies. Prior research has found that individuals carrying 

homozygous loss-of-function mutations in CYP2C9 (encoding the cytochrome P450 2C9 

enzyme responsible for liver sulfonylurea metabolism) improved glycemic control after 

sulfonylurea therapy.113 It should be noted that, in all of these pharmacogenetic studies, 
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while the effects seen thus far are interesting mechanistically, their magnitude is too small to 

underwrite individualization of therapy.

Conclusions: a working model

Clinical decision making is, by necessity, dichotomous: on the basis of complex and often 

continuous information, the practitioner needs to decide whether to act or not to act, to 

intervene or to merely observe. One course must be taken among several possible options, 

and the key question is whether modern omics technologies will be able to capture enough 

biological variation to enable the construction of sensible discrete categories to facilitate 

rational decision analysis, or this will remain the province of “boutique” rare forms of 

diabetes.

The answer to that question will depend, to a great extent, on the underlying biology. In 

T2D, the emerging picture is one in which a large constellation of genetic factors (from 

many hundreds to a few thousands, according to some empirical estimates50) work in 

concert with environmental and demographic factors to increase T2D risk. The number of 

potential variations in these interactions can be linked to the colors on a painter’s palette,7 

where hues and tones are mixed, and individual primary colors might be difficult to discern. 

There may still be sections of the “McCarthy palette,” where a particular color (or genetic 

variant or environmental exposure) may predominate, in which case a targeted intervention 

may be feasible; and specific subtypes might be defined by the extremes along empirical 

scores that combine genetic and other variables. Where that is possible, at least some 

individuals may be placed in strata in which specific surveillance, prevention, lifestyle, 

pharmacological, and/or surgical strategies might be deployed. Figure 2 hypothetically 

illustrates how precision medicine might deconstruct traditional symptom-based categories 

through the study and integration of several biological axes of information to parse current 

heterogeneous syndromes into homogeneous clusters.

As new treatments are introduced, it will be crucial to verify whether they are equally 

effective across all subtypes; if comparatively greater effectiveness is demonstrated for a 

specific segment of the population, this information may be used in a public health setting to 

prioritize the subgroups more likely to benefit. The body of knowledge that will guide these 

decisions must be developed, and the experiments designed to answer this question ought to 

be reproducible, interpretable, and actionable. Decision-making support tools must be 

implemented at the point of care, so clinicians can easily act on available information in a 

seamless fashion. The new technologies that generate data relevant to health outcomes will 

need be scaled up and made accessible in community settings, so that they help us 

understand, rather than deepen, existing health disparities.
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Figure 1. 
Heterogeneity of diabetes. The pie chart represents the multiple ways people can develop 

hyperglycemia and reach the diagnosis of diabetes. The size of each piece only represents an 

approximate proportion of prevalence in the population. IR, rare genetic forms of insulin 

resistance; MIDD, maternally inherited diabetes and deafness; MODY, maturity-onset 

diabetes of the young; type 1, type 1 diabetes; PGA, diabetes caused in the setting of 

polyglandular autoimmune syndrome; LADA, latent autoimmune diabetes of adults; KPD, 

ketosis-prone diabetes; type 2a–2e, hypothetical subgroups of type 2 diabetes.
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Figure 2. 
Implementing precision medicine in diabetes. A hypothetical example illustrating how 

precision medicine might deconstruct traditional clinical-based categories through the study 

and integration of the many axes of biological information that can serve to parse current 

heterogeneous syndromes into homogeneous clusters. The example suggests that the way to 

prevent new cases of diabetes or treat individuals with diabetes should be tailored to the 

specific molecular event or pathway that raises glycemia.
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