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Abstract

We couple a tumor growth model embedded in a microenvironment, with a bio distribution model 

able to simulate a whole organ. The growth model yields the evolution of tumor cell population, of 

the differential pressure between cell populations, of porosity of ECM, of consumption of 

nutrients due to tumor growth, of angiogenesis, and related growth factors as function of the 

locally available nutrient. The bio distribution model on the other hand operates on a frozen 

geometry but yields a much refined distribution of nutrient and other molecules. The combination 

of both models will enable simulating the growth of a tumor in a whole organ, including a realistic 

distribution of therapeutic agents and allow hence to evaluate the efficacy of these agents.
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1. Introduction

Cancer is an extraordinarily complex disease. It is now recognized that methods commonly 

used in physics can help reducing the complexity of cancer to a manageable set of 

underlying principles and phenomena (Michor et al. 2011; Moore et al. 2011). Among the 
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fields to which oncophysics can contribute belong the evolution and evolutionary theory of 

cancer, information coding and transfer in cancer, deconvolution of cancer complexity, and 

transport oncophysics. Transport oncophysics views cancer as a disease of multiscale mass 

transport dysregulation involving biological barriers. In fact each one of us is the sum of a 

multiplicity of transport differentials (i.e., gradients of metabolites, chemotherapy, oxygen) 

between cellular compartments (e.g., DNA, organelles, cytosol, cellular membranes, 

extracellular matrix, and vasculature) and these multiscale mass transport differentials 

distinguish malignant from normal cells and tissues (Koay and Ferrari 2014). Understanding 

the disorganization of these differentials in cancer opens a realm of possibilities in all 

aspects of oncological research. Transport aspects further control delivery of therapeutic 

agents (e.g. chemotherapeutics or molecularly targeted therapeutics such as T cells, 

antibodies, particles) which must pass through different and heterogeneous tumor and 

healthy compartments (e.g. vascular, stroma) with distinct physical properties (Ferrari 2013; 

Ferrari 2010). Delivery of drugs is an extremely complex procedure involving different 

spatial and temporal scales and taking place over several levels ranging from the organism to 

the intercellular environment. The underlying transport phenomena at individual tumor 

compartments may act as transport barriers possibly contributing to poor survival rates in 

cancer therapy (Ferrari 2013; Freyer et al. 1997).

In this paper we address a computational tool necessary for simulating simultaneously 

different aspects involved in transport oncophysics: tumor growth within the local tumor 

environment including angiogenesis, and bio distribution of nutrients, interstitial fluid flow 

and blood flow in the vasculature. This tool, together with imaging, analysis and 

quantification, will help to understand and predict cancer development and the efficacy of 

therapy, with the aim to design patient specific solutions for this complex disease.

Before presenting our tumor growth model we recall that the most advanced computational 

models for tumor growth prediction belong mainly to two types: multi-parameter and multi-

phase models. Multi-parameter models are based on mixture theory (Cowin and Cardoso 

2012) where the relevant balance equations are written directly at the level of interest and 

the thermodynamic consistency is satisfied at the same level. The evolution of phases and 

species within multi-parameter models is obtained either by use of phase field approach 

(Hawkins-Daarud et al. 2013; Lima et al. 2016; Lima et al. 2015; Oden et al. 2016; Oden et 

al. 2013; Oden et al. 2010; Rahman et al. 2017; Rocha et al. 2018; Vilanova et al. 2018) or 

of Volterra-Lotta (predator/prey like) equations (Carotenuto et al. 2018; Fraldi and 

Carotenuto 2018). Recent multiphase models (Kremheller et al. 2018; Sciumè et al. 2014a; 

Sciumè et al. 2013) are based on the Thermodynamically Constrained Averaging Theory 

(TCAT) (Gray and Miller 2014) where the model derivation proceeds systematically from 

known microscale relations to mathematically and physically consistent larger scale 

relations. This is accomplished by the use of averaging theorems. The thermodynamic 

analysis is consistent between scales, in the definitions of variables at different scales and in 

satisfying the entropy inequality. The closure relationships are obtained from a Simplified 

Entropy Inequality (SEI). Interfaces between constituents arise naturally from the solution of 

an initial-boundary value problem that must comprise the mass balance equations of all 

phases involved.
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Our model is of the multiphase type with a deformable solid matrix (ECM) pervaded by 

three fluid phases, tumor cells (TCs), healthy cells (HCs) and interstitial fluid (IF),

(Santagiuliana et al. 2016; Sciumè et al. 2014a; Sciumè et al. 2014b; Sciumè et al. 2013). In 

this model the extracellular matrix is a porous solid which may undergo remodeling and the 

fluid phases fill its pores. Tumor cells partition into living cells and necrotic cells. Healthy 

cells are in homeostasis. The IF transports chemical species such as nutrients, oxygen, 

signaling molecules like Tumor Angiogenic Factor (TAF), cytokines, etc.. Transport within 

extravascular space takes place by convection and diffusion. The model is able to simulate 

growth, hypoxia, necrosis and lysis of the TCs, migration of cells through the ECM, invasion 

and infiltration of the TCs into the healthy tissue, different stiffness of cell population with 

respect to the ECM, deposition and remodeling of ECM, build-up of cortical tension 

between HCs and TCs, adhesion of the cells to their ECM as well as adhesion among cells, 

and possible detachment. Angiogenesis is modeled as follows (Santagiuliana et al. 2016): 

when the oxygen mass fraction is lower than a critical value the tumor living cells produce 

TAF in response to hypoxia. TAF diffuses in the surrounding tissue and creates a chemical 

gradient between the tumor and any existing vasculature. Endothelial cells (ECs), lining the 

blood vessels, respond to the TAF. In our model endothelial cells are a species transported in 

the IF, which diffuse following their own gradient and that of TAF. The density of 

endothelial cells represents the concentration of capillary sprouts formed by accumulation of 

endothelial cells which are recruited from the parent vessel. This smeared representation of 

the neovasculature is an ideal intersection with the bio distribution model described next. 

The choice of a smeared representation instead of a discrete one is justified by the fact that 

the neovasculature is extremely chaotic and that there is no relationship between vessel 

diameter and flow velocity (Dewhirst and Secomb 2017; Discher et al. 2005).

The model for the bio distribution introduced by the group of Prof. Kojic, developed at the 

Houston Methodist Research Institute and Bioengineering R&D Center Bioirc in Serbia, 

simulates the diffusion of molecules, oxygen, and the smeared capillary network in the 

tumor environment. The basic idea of the smeared concept consists in: 1) transformation of 

the 1D mass transport into the equivalent continuum form; 2) use of a standard continuum 

representation with the pressure and concentration fields within the particular domains of the 

composite finite elements; and 3) formulation of connectivity finite elements for membrane 

(capillary and cell walls) transport (Kojic et al. 2018; Kojic et al. 2017a; Kojic et al. 2017b; 

Milosevic et al. 2018). The composite smeared finite element (CSFE) includes continuum 

domains occupying the corresponding volume fraction and also connectivity elements at 

each node. This concept simplifies the model generation of complex biological media, 

including tumors, and still provides satisfactory accuracy, particularly investigated in 

(Milosevic et al. 2018).

In sections 2 we recall briefly the governing equations of the tumor growth and in section 3 

the basic relations of the CSFE formulation. Section 4 deals with the coupling of both 

models including operational aspects. The results are reported in section 5 where two 

simulations are shown: the first one is a 2D example of a tumor growing within a square 

domain, and the second one deals with melanoma growth in an axisymmetric setting. Finally 

the conclusions highlight the capability of the new code achieved by the connection of two 

original models.
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2. The tumor growth model: the governing equations

The tumor growth model is a continuum model where the TCs and HCs are presented 

as ”adhesive” fluids within a porous matrix (ECM). TCs may become necrotic upon 

exposure to low nutrient concentrations or excessive mechanical stresses. The HCs are in 

homeostasis. The IF is an aqueous solution of biological molecules, cell nutrients, oxygen 

and waste products and the Representative Elementary Volume (REV) is schematically 

shown in Fig. 1.

As already mentioned the model is built within the TCAT framework which is used to 

transform known microscale relations to mathematically and physically consistent 

macroscale relations by using averaging theorems (Gray and Miller 2014; Gray et al. 2013). 

These relations are adequate and sufficient to describe tumor development while filtering out 

high frequency spatial variability. The governing equations of the model are closed by 

introducing constitutive relations in the macroscale equations.

The ECM is a deformable porous solid with porosity ε. The volume fraction of the solid 

phase is εs =1− ε. The other phases, tumor cells (εt), healthy cells (εh) and interstitial fluid 

(εl), occupy the rest of the volume. The volume fractions for all phases add up to unity

εs + εh + εt + εl = 1 (1)

The saturation degree of a fluid phase α is: Sα=εα/ε. Using porosity, ε, and volume fraction, 

εα, (1) yields

Sh + St + Sl = 1 (2)

The macroscopic mass and momentum balance equations of phases and species have been 

derived in (Sciumè et al. 2013) and their transformation to take the differential pressures as 

primary variables has been obtained in (Sciumè et al. 2014a). The model has been enhanced 

in (Santagiuliana et al. 2015) to include ECM deposition by the tumor cells through new 

mass exchange terms, M
ECM

l s
, and lysis, M

lysis

t l
.

Below the general form of the governing equations for each phase is shown. ρα is the 

density and vα is the velocity of the phase α, see Appendix A of (Sciumè et al. 2014a), 

while the v s is the velocity of the solid phase (ECM) that is the time derivative of the solid 

phase (ECM) displacements u s. The final form of the governing equations is then obtained 

from the general forms by introducing some simplifications and closure relationships such as 

a generalized Darcy’s equation for flow of the fluid phases (Santagiuliana et al. 2016; 

Sciumè et al. 2013).

The mass balance equation of the ECM is
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∂ε
∂t = ∇ ⋅ vs + (1 − ε)

ρs
∂ρs

∂t − ∇ ⋅ εvs −
M

ECM

l s

ρs (3)

The mass balance equation of TCs reads

∂ εtρt

∂t + ∇ ⋅ εtρtvt = M
 growth 

l t
− M

lysis

t l
(4)

where M
growth

l t
 is an inter-phase exchange of mass between the phases l and t, and represents 

the mass of IF consumed by tumor cell growth.

The mass balance equation of HCs is

∂ εhρh

∂t + ∇ ⋅ εhρhvh = 0 (5)

There are no mass exchange terms in eq. (5) because the HCs are in homeostasis.

The mass balance equation of IF reads

∂ εlρl

∂t + ∇ ⋅ εlρlvl = M
lysis

t l
− M

growth

l t
− M

ECM

l s
(6)

where the mass exchange terms are the opposite of those seen in previous equations.

Similar are the mass balance equations for the species, presented below. Remind that the 

tumor cells are a phase composed of two species, the viable tumor cells and the necrotic 

ones. The governing equation for necrotic cells is

∂ εtρtωNt

∂t + ∇ ⋅ εtρtωNtvt − εtrNt + M
lysis

t l
= 0 (7)

where ωNt is the mass fraction of TCs, εtrNt is a reaction term, that is the death rate of tumor 

cells or rate of generation of necrotic cells. M
lysis

t l
 takes into account of mass exchange 

between the necrotic tumor cells and the IF phase due to lysis.

The mass balance equation of the nutrient, by including a Fickian type equation for the 

diffusion of species, reads

Santagiuliana et al. Page 5

Biomed Microdevices. Author manuscript; available in PMC 2019 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



∂ εlρlωnl

∂t + ∇ ⋅ εlρlωnlvl − ∇ ⋅ εlρlDeff
nl ∇ωnl + M

nl t
= 0 (8)

where De f f
nl  is the effective diffusivity of the nutrient species in the extracellular space, ωnl 

the mass fraction of nutrient species n and M
nl t

 is the mass of nutrient consumed by tumor 

cells via metabolism and growth.

The other species considered are TAF and ECs. Since we have only four phases at disposal 

in Castem (the code referenced below), we model the endothelial cells as a transported 

species in the IF (Santagiuliana et al. 2016). The respective mass balance equations are

∂ εlρlωT AF

∂t + ∇ ⋅ εlρlωT AFvl − εlρlDe f f
T AF ∇ωT AF − M

T AF t
= 0 (9)

and

∂ εlρlωEC

∂t + ∇ ⋅ εlρlωECvl − εlρlDe f f
EC ∇ωEC − ∇ωT AF − M

EC t
= 0 (10)

where De f f
T AF and De f f

EC  are the effective diffusivity of the TAF and ECs in the extracellular 

space, ωTAF and ωEC the mass fractions of TAF and ECs.

The last governing equation is the linear momentum balance of the solid phase expressed in 

rate form as

∇ ⋅
∂te f f

s

∂t − α∂ ps

∂t 1 = 0 (11)

where the interaction between the solid and the three fluid phases is accounted for through 

the effective stress te f f
s  in the sense of porous media mechanics

te f f
s = ts + αps1 . (12)

1 is the unit tensor, ts is the total stress tensor in the solid phase, α is the Biot’s coefficient 

α = 1 − K /Ks, with K the compressibility of the empty ECM. In the modeled problem, K/Ks 

tends to zero hence we can assume a Biot’s coefficient equal to 1. The solid pressure ps is 

given as in (Gray and Schrefler 2007)
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ps = Shph + Stpt + Slpl = pl + 1 − Sl phl + Stpth (13)

where the Bishop parameter of each fluid phase (solid surface fraction in contact with the 

phase) has been taken equal to its own degree of saturation; pt, ph, pl are respectively the 

tumor cells pressure, the host cells pressure and the interstitial fluid pressure; phl and pth are 

the pressure differences between, respectively, host cells and interstitial fluid, and tumor 

cells and host cells. A large deformation regime is assumed for the elasto-visco-plastic ECM 

(solid phase).

The governing equations have been introduced in the finite elements code CAST3M or 

Castem (http://www-cast3m.cea.fr) of the French Atomic Energy Commission.

3. Coupling diffusion within capillary and tissue

We summarize now the methodology, which will be further used as the basis for the 

development of the composite smeared finite element to model diffusion within capillary 

network and tissue.

We write the balance equation for diffusion in a form used in our smeared formulation. 

Hence, according to equation (8) we have

− ∂ωnl

∂t − ∂ωnl

∂xi
vi + ∂

∂xi
Dij

∂ωnl

∂x j
+ 1

εlρl M
nl t

= 0, sum on i, j; i = 1, 2, 3 (14)

where Dij are diffusion tensor coefficients (De f f
nl  of a nutrient in extracellular space in (8))

Considering the diffusive transport through the wall, a 1D linear approximation for radial 

diffusion will be used, since the vessel wall thickness is small with respect to the vessel 

radius. The mass balance equation has the following form,

− ∂ωnl

∂t + Dw
∂2ωnl

∂x2 = 0 (15)

where Dwall is the capillary wall diffusive coefficient; convection through the wall is 

neglected which in reality is small. Mass transport through capillary walls does not have a 

mass exchange term because we assume that consumption is present in the tissue domain but 

not in capillary walls. For simplicity of writing, consistent with the references related to the 

smeared concept, we will further use c ≡ ωnl as the nutrient (oxygen) mass fraction called 

also concentration.

We further assume that concentration within capillaries is uniform and given as the systemic 

concentration Csys(t) function of time. This assumption can be taken as a reasonable 
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approximation when considering a small tissue domain, e.g. a tumor, because convection 

within capillaries is a much faster process than the convection-diffusion within tissue.

Consider diffusion through a capillary wall as schematically shown in Fig. 2. First, the 

elementary area of the surface of the internal wall dAcap can be related to the elementary 

volume dVcap and further to the elementary total volume dV, as follows:

dAcap = rAVdV cap=rAVrVdV (16)

where rAV is the capillary area-to volume ratio (called further surface ratio), and rV is the 

capillary volumetric (mass) ratio within tissue, or capillary density; the volume of tissue is 

(1−rv)dV. Note that in case of a straight capillary, the surface ratio is rAV=4/Dcap where Dcap 

is the capillary internal diameter; in case of complex geometries rAV can be different, and 

can be evaluated from imaging data. We emphasize that the capillary density is the ratio 

between the volume occupied by the fluid (blood) and total volume. The above ratios are 

parameters of the capillary bed. The expression (16) can be considered as the most 

fundamental one in our smeared models, where the discrete wall surface is smeared over the 

volume of the continuum.

Next, we assume that the mass concentration is linearly distributed through the wall 

thickness (between points 1 and 2 in Fig. 2), which is acceptable for thin capillary walls; this 

is in accordance with (15). Then, the flux through the wall at point 2, corresponding to the 

elementary surface dAcap, including partitioning P1 and P2 at the internal and external 

capillary surface, can be expressed as

dQw = Dwall P1Csys − P2Ctissue  − hP
6Δt P1C − Ct

sys
− h

3Δt P2C − Ct
 tissue  rAVrVdV

(17)

where CSyS, Csys
t , Ctissue, Ctissue

t  are the concentration in the lumen, and concentration within 

tissue at the end and start of time step, respectively, and h is the wall thickness. Note that 

Dwall represents the overall transport coefficient of the wall (with pores, fenestrations, etc.); 

it can be related to the diffusion coefficient of the wall porous material coefficient Dmaterial 

as Dwall = h Dmaterial. Partitioning coefficient P is used as a measure of repelling or attraction 

of molecules at the boundary between two media which produces a discontinuity at the 

common surface (P=C1/C2 where C1 and C2 are concentrations at two sides of the surface). 

As can be seen from Figure 2, point 1 is in lumen and point 2 in tissue domain, hence P1 is 

partitioning at lumen/capillary wall interface, and P2 is partitioning at capillary wall/tissue 

interface.
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We have now the tissue continuum within which capillaries are distributed and are producing 

the source of mass according to (17). Therefore, the nodal fluxes of a continuum finite 

element are

QwI = ∫
V

NIdQw = ∫
V

NI(…) 1 − rV dV (18)

where terms within the parenthesis (…) follow from (17), and NI are the continuum 

interpolation functions of the element with volume V. When evaluating the integral (18), 

concentration Ctissue is the current concentration within the tissue at an integration point. 

Note that the factor (1−rV) is used since the volume of tissue is reduced due to presence of 

capillaries.

Instead of using source terms at FE integration points, connectivity elements can be assigned 

at each continuum node. Then, the balance equation for the connectivity element at a 

continuum node I can be written as

1
Δt M22 + K22 P2ΔCI = − K21 + 1

Δt M21 P1Csys − 1
Δt M22 + K22 P2CI + 1

Δt M21Csys
t

+ 1
Δt M22CI

t

(19)

where

M22 = 1
3P2AcapIhI, M21 = 1

6P2AcapIhI

K22 = − K21 = AcapIP2D(wall)I

(20)

and CI and CI
t  are concentrations at node I at end and start of time step, respectively. Also, P1 

and P2 are partitioning coefficients as in (17); D(wall)I is the wall diffusion coefficient, hI is 

the wall thickness at node I; and AcapI is the wall surface area belonging to the node I, which 

is

AcapI = rAVrV I
V I (21)

with (rV)I, (rAV)I and VI the volumetric ratio, the area coefficient and the volume of the 

continuum which belongs to the node, respectively. The volume VI can numerically be 

evaluated as
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V I = ∑
elements

∫
V

NIdV (22)

where summation includes all elements containing the node I. We found that convergence 

was improved by applying the concept of these connectivity elements at nodes instead of 

continuously distributed source terms.

It can be concluded from the above that diffusive transport between capillaries and tissue can 

be performed by discretizing the continuum (tissue) only. The parameters of the model, 

assigned to each continuum node I include geometrical data (the volumetric ratio of 

capillaries (rV)I, the surface ratio (rAV)I, the wall thickness (hI)) and material data of 

capillaries consisting of wall diffusion coefficient (Dwall)I and partition coefficients P1I and 

P2I at the capillary surfaces. Effects of partitioning are neglected in this study.

4. Coupling the models

4.1 Numerical solution and computational procedure for the tumor growth model

The weak form of the governing equations is obtained by means of the standard Galerkin 

procedure and is then discretized in space by means of the finite element method. Integration 

in the time domain is carried out by the Finite Difference Method adopting a quasi-Crank-

Nicolson scheme (θ-Wilson method with θ = 0.52). Within each time step the equations are 

linearized by the Newton-Raphson method.

Five computational units are used in the staggered scheme: the first is for the nutrient mass 

fraction ωnl, the second for the TAF mass fraction ωT AF, the third is for the endothelial cells 

mass fraction ωEC, the fourth to compute pth, phl and pl, the difference of pressure between 

TCs and HCs, HCs and IF respectively and the pressure of IF, and the fifth is used to obtain 

the displacement vector us. Within each iteration the mass fraction of NTC, ωNt , is updated 

using (7).

The final system of equations can be expressed in matrix form as follows,

Ci j(x)∂x
∂t + Ki j(x)x = fi(x) (23)

with
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Ci j =

Cnn 0 0 0 0 0 0

0 CTT 0 0 0 0 0

0 0 CEE 0 0 0 0

0 0 0 Ctt Cth Ctl 0

0 0 0 Cht Chh Ctl 0

0 0 0 Clt Clh Cll 0

0 0 0 0 0 0 Cuu

Ki j =

Knn 0 0 0 0 0 0

0 KTT 0 0 0 0 0

0 0 KEE 0 0 0 0

0 0 0 Ktt Kth Ktl 0

0 0 0 Kht Khh Ktl 0

0 0 0 Klt Klh Kll 0

0 0 0 0 0 0 0

, fi =

fn
fT
fE
ft
ft
fh
fl
fu

(24)

where XT = ωnl, ωT AF, ωEC, pth, phl, pl, us . The nonlinear coefficient matrices Cij(x), Kij(x) 

and fi(x) are given in (Santagiuliana et al. 2016).

The endothelial cells diffusion dependence on TAF concentration has been taken into 

account in the code by adding a coupling matrix for the endothelial cells and the TAF as a 

condition on the diffusion of the endothelial cells.

4.2 Formulation of the smeared finite element to model mass transport in the capillary-
tissue system

Here we summarize the basic relations in formulating the composite smeared finite element 

(CSFE), according to (Kojic et al. 2017a). The basic requirement of the smeared concept for 

modeling transport within the capillary-tissue system, is that the transport characteristics of 

the system should appropriately be preserved in the smeared model.

A schematic representation of this element is shown in Fig. 3. The domains and the nodal 

variables used here are those relevant for this tumor growth model – capillary and tissue, 

while extension to include different cell groups and intracellular transport with cytosol and 

organelles (Kojic et al. 2018) is not considered.

The capillary network is represented by the fraction rV of the FE volume (mass) and the 

nodal variables are pressure and concentrations. The fundamental step now is to transform 

1D fluid flow and diffusion to the adequate continuum form. This is achieved by introducing 

the corresponding Darcy and diffusion tensors. The Darcy tensor can be derived in the form 

(Kojic et al. 2017a)
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kDi j = 1
Atot

∑
K

kpK𝓁Ki𝓁K j = π
128μAtot

∑
K

dK
4 𝓁Ki𝓁K j (25)

where dK are capillary diameters, ℓKi are directional cosines, μ is the fluid viscosity, and Atot 

is the total cross-sectional area of capillaries at a considered spatial point vicinity, 

Atot = ∑K AK = π
4 ∑K dK

2 . Here, the Hagen-Poisseuile law is assumed for flow within 

capillaries. Likewise, the diffusion tensor can be expressed as

Di j = 1
Atot

∑
K

DcapKAK𝓁Ki𝓁K j (26)

where DcapK are diffusion coefficients within capillaries and AK are the cross-sectional 

areas. Therefore, we model the capillary network by a continuum; for convenience and 

efficiency we first evaluate the continuum volume VJ belonging to each FE node, (22) and 

use the area-to-volume ratio rAV to evaluate the capillary wall surface AJ needed for nodal 

connectivity elements. The balance equations for connectivity elements are given by (19). 

The CSFE is built into our FE code PAK (Kojic et al. 2010).

4.3 Computational procedure for coupling the models

We will use three different modules to couple the models: Castem, CAD, and PAKT. Castem 

is the FE software for numerical simulation in structural mechanics and other types of 

scientific problems. CAD is indoor user interface for pre- and post-processing results for the 

package PAKT, and PAKT (a module of the PAK software package) is the indoor FE solver 

for concentration field which incorporates the smeared finite element.

The complete process of coupling the models is shown in the sequence diagram of Fig. 4, 

and consist of the following steps:

1. Run first time step in Castem and create outputs.

2. Import Castem’s mesh into CAD software.

3. Load data from Castem into CAD and run PAKT simulation. Data loaded from 

Castem are: ε, εt, ωnl, ωT AF, ωEC, ωNt , and pth.

4. Pick up PAKT oxygen nodal mass fractions (concentrations) and send them to 

Castem.

5. If there are no more time steps to calculate go to step 6, otherwise go back to 

step 3.

6. Load results into CAD for post-processing.
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5. Results

In the next paragraphs two examples of simulations are shown. The first one is a 2D example 

with an initial circular tumor growing within a squared domain with a blood vessel on a side. 

The second one is an example of the cutaneous melanoma growth in axial-symmetric 

conditions. Both simulations are performed with the coupled codes above described 

CAST3M and PAKT, and are compared with results of the simulations achieved with the 

code CAST3M only, i.e. just with the tumor growth model.

5.1 Simulation of a 2D example

A circular tumor with diameter 50 μm is situated in a square domain 1000 × 1000 μm2 with 

a blood vessel on the right side, see Fig. 5. HCs, ECM and IF are present in the whole 

domain. The oxygen diffuses in the IF. As initial conditions the oxygen mass fraction is 

fixed at 4.2 10−6 in the whole domain, the ECM volume fraction is 0.2, the TCs volume 

fraction is 0.02, the HCs volume fraction is 0.45. The endothelial cells are present on the 

blood vessel on the right side of the domain, with initial mass fraction 3 10−5. The boundary 

conditions are imposed on all the sides of the square for oxygen and TAF; for the endothelial 

cells zero concentration is prescribed in the upper, bottom and left sides. The parameters for 

the growth of tumor cells, for the ECM, for the HCs and for the diffusion of oxygen are 

listed in Tables 1, 2, 3 (Sciumè et al. 2014b). The whole domain is discretized with 

triangular elements.

The fields for the oxygen mass fraction, obtained by the Castem and Castem-PAK solvers 

are shown in Fig. 6. A higher consumption of oxygen appears in the first analysis (Castem). 

In the coupled analysis (Castem-PAK) the oxygen mass is larger because the supply from 

the capillary network is taken into account. The capillary domain in the smeared model is 

only present at FE nodes where the endothelial cell mass fraction (determined by the 

Castem) is different from zero. The nodal mass fraction of capillaries ωcap (capillary 

density) is determined as

ωcap = DcapωEC / 4δEC (27)

where Dcap and δEC are capillary diameter and thickness of the endothelial layer (see Table 

2).

The graphs in Fig. 7, 8, 9 show differences in oxygen concentration over time for the total 

oxygen mass fraction, in the tissue, and in tumor, respectively, obtained by using Castem and 

Castem-PAK software. It can be seen from Fig. 7 and 8 that the difference between the 

oxygen mass fraction of the two analyses remains almost constant in time, but the coupled 

solution curve is above that obtained by the Castem only. In the zone of the tumor (Fig. 9) 

this difference tends to zero as time progresses because the oxygen consumption increases 

with the tumor growth. By comparing Fig. 7 and 8 it appears that most of the oxygen is in 

the tissue.
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When the oxygen concentration is lower than a fixed threshold, the living tumor cells 

produce the tumor angiogenic factor (TAF) that diffuses from the tumor into the IF. 

Solutions for the TAF concentration obtained by Castem and Castem-PAK, for three 

different time stations, are shown in Fig. 10 and 11. It can be seen that lower concentration 

in the Castem solution produces larger TAF concentrations.

As response to the TAF the endothelial cells start moving from the vessel based on the right 

side of the domain towards the tumor as shown in Fig. 12 after 5 days for the coupled 

analysis Castem-PAK. Note that PAK doesn’t change endothelial cells mass fraction, hence 

in fact only Castem results are shown.

In Fig. 13 the graph for the endothelial cells mass fraction over time is depicted. After the 

initial response to the TAF where endothelial cells concentration remains constant, there is 

an almost linear increase as time progresses.

Fig. 14 shows tumor growth after 1 day, 5, 10 and 15 days. Note how the tumor rim becomes 

irregular as the tumor grows. For this example, Castem and Castem-PAK produce very 

similar results of the tumor size and shape (this also can be seen in Fig. 15). Hence only 

Castem results are shown.

Fig. 15 shows the tumor growth according to the two analyses. With the coupled codes the 

final tumor growth is larger because of the higher oxygen concentration due to supply. The 

difference between the two models is not significant because angiogenesis is low (small 

endothelial mass fraction, Fig. 13).

5.2 Simulation of melanoma growth

Cutaneous melanoma growth with angiogenesis has been simulated in (Santagiuliana et al. 

2016). Here the simulation is repeated by using the coupled models and results are 

compared. A detailed description of the physical problem can be found in (Santagiuliana et 

al. 2016) together with the geometry, boundary and initial conditions. We recall that the 

melanoma first expands radially, then a penetration through the basement membrane occurs 

and angiogenesis begins as described above.

The geometry of the skin is drawn in Fig. 16.

The parameters used are indicated in Table 4.

The parameters in for the four phases and the oxygen are those of Tables 1 and 2. For the 

ECM, the parameters are in Table 4 (Sciumè et al. 2014b). The parameters for TAF and 

Endothelial cells in Table 5 stem from literature, (Anderson and Chaplain 1998; Breward et 

al. 2003; Eikenberry et al. 2009) and from sensitivity analysis.

The problem of Fig. 16 is simulated in axial symmetry and the domain is discretized by 

3720 plane four node elements. The boundary conditions are described in Fig. 17.

In the whole domain the initial interstitial fluid pressure (IFP), p1, is set equal to 0 Pa, while 

the HC-IF pressure difference, phl, is set equal to 719 Pa, which correspond to a saturation 
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degree of IF, in EP, MZ and DZ respectively equal to 0.44, 0.40, and 0.48. At time t = 0 h, 

all four phases coexist in the purple region of Fig. 17 (it has a radius of 40 μm), while in the 

remaining regions of the domain no TCs are present. Within the purple region, the initial 

saturation degree of the tumor cells (TC) is set to 0.125, corresponding to pth ≈ 59 Pa. 

Oxygen is here the sole nutrient species, and in the whole domain its mass fraction is 

initially set equal to 4.2.10−6, which corresponds to the average of the dissolved oxygen in 

the plasma of a healthy individual. Initial TAF concentration is zero. When the oxygen is 

less than a critical value, fixed for this simulation as 3.0.10−6, i.e. when there is hypoxia, the 

living tumor cells produce TAFs that diffuse. The boundary condition for TAF is zero 

concentration at the base of dermis. The endothelial cells are initially present at the base of 

the dermis, in the blood vessel with mass fraction equal to 4.0.10−1. At the upper boundary 

(B1), there are no fluxes of phases and species nor applied forces. At the right boundary 

(B2) the primary variablesp pl, phl, pth and ur are fixed in time (Dirichlet boundary 

conditions) and zero flux is imposed for oxygen. At the lower boundary (B3), the primary 

variables pl, phl,pth and uz are fixed in time (see Fig. 17). The boundary conditions at the z 

axis are assumed respecting cylindrical symmetry. The results of this simulation are now 

shown. Fig. 18 depicts the oxygen concentration fields at four time instants, according to the 

tumor growth model alone and the coupled model. It can be seen that oxygen concentrations 

are larger when the capillary network is included within the smeared model.

In Fig. 19 and 20 mean oxygen concentrations are shown, respectively for the total oxygen 

concentration in tumor and tissue, and the oxygen concentration in tissue alone. After an 

initial short period the evolution is quite similar and it can be seen that most of oxygen is in 

the tissue.

Tumor oxygen concentrations are shown in Fig. 21. As time goes on there is a bit less 

oxygen in the tumor when the coupled model Castem-PAK is used as compared to the 

Castem solution. Tumor consumes oxygen and this seems to be the predominant behavior.

TAF concentrations from Castem and Castem-PAK are shown in Fig. 22 for four different 

time instants. It appears, see also Fig. 23, that lower oxygen concentration in the Castem 

model produces larger TAF.

The endothelial cells mass fraction determined by the Castem model is shown in Fig. 24. 

Over time concentration of endothelial cells grows. It can be seen that after two weeks 

endothelial cells migrate towards tumor because of the gradient of the TAF. Mean mass 

fraction of ECs is depicted in Fig. 25. The increase of ECs is almost linear. Tumor growth, 

with the tumor domains progressing with time, is shown in Fig. 26 for both models and for 

four different time instants.

The mean volume fraction of tumor, which represents the tumor growth, is drawn against 

time in Fig. 27. The tumor volume is larger when using the coupled models (Castem-PAK) 

instead of just the tumor growth model alone (Castem). There is more oxygen available with 

the presence of capillaries, see Fig. 19 and 20. Comparing the tumor growth in the two 

examples, Fig. 15 and 27, it also appears that the effect of oxygen supply from capillaries on 

tumor growth is larger in the melanoma tumor; this is due to difference in the evolution rate 
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of endothelial cells (around two order of magnitude larger in melanoma tumor, see Fig. 13 

and 25) and therefore of the rate of angiogenesis.

6. Conclusions

A very general multiphase porous media model for tumor growth has been coupled with a 

bio distribution model. This coupled code allows to simulate a more realistic dynamics of 

molecules involved in proliferating tumors. The tumor growth model yields as a function of 

the available nutrient, evolution of tumor cell population, both viable and necrotic, of the 

differential pressure between cell populations, of porosity of ECM, of consumption of 

nutrients due to tumor growth, of angiogenesis and related growth factors. On the other hand 

the bio distribution model integrates the tumor growth model with the diffusion of 

molecules, oxygen and the smeared capillary network in the tumor environment. The two 

models and their connection have been presented in detail. The code coupling is the new 

aspect of this paper. Two examples have been shown: a 2D example of tumor growth in a 

square domain and an axisymmetric example of melanoma growth. In both cases 

comparison has been carried out between the new results from the coupled codes and the 

result from the tumor growth code alone. The model connection offers a better insight into 

regulation of the oxygen diffusion and of possible other molecules including therapeutic 

agents e.g. chemotherapeutics or molecularly targeted therapeutics such as T cells, 

antibodies for immunotherapy, and of nanoparticles and multistage platforms. The combined 

models appear as an appropriate tool for simulating the growth of a tumor in a whole organ 

allowing at the same time to evaluate the efficacy of the therapeutic agents.
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Fig. 1. 
Representative Elementary Volume (REV)
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Fig. 2. 
Diffusion from capillary to tissue through elementary capillary wall surface dAcap which 

corresponds to the capillary volume dVcap and total volume dV; dVtissue is the volume 

occupied by tissue
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Fig. 3. 
Composite smeared finite element (CSFE) with capillary and tissue domain and connectivity 

elements at each node; list of nodal parameters is given in the figure
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Fig. 4. 
Sequence diagram of automated exchange between Castem and PAKT, with using CAD user 

interface
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Fig. 5. 
Geometry of the problem with boundary conditions
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Fig. 6. 
Oxygen concentration (mass fraction) field obtained by using Castem and Castem-PAK, for t 

= 1, 5, 15 days
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Fig. 7. 
Mean oxygen concentrations in whole domain as function of time, Castem and Castem-PAK 

solutions
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Fig. 8. 
Mean oxygen concentrations in tissue as function of time, Castem and Castem-PAK 

solutions
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Fig. 9. 
Mean oxygen concentration in tumor as function of time, Castem and Castem-PAK solutions
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Fig. 10. 
TAF concentrations using CASTEM and CASTEM-PAK, for t = 1, 5 and 15 days
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Fig. 11. 
Mean TAF concentration as function of time, Castem and Castem-PAK solutions
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Fig. 12. 
Endothelial cells mass fraction, after 5 days
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Fig. 13. 
Mean mass fraction of endothelial cells as a function of time
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Fig. 14. 
Tumor growth for t = 1, 5, 10 and 15 days. Results are almost the same for Castem and 

Castem-PAK model
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Fig. 15. 
Mean volume fraction of tumor as function of time, for Castem and Castem-PAK
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Fig. 16. 
Skin structure and geometry of the modeled case, redrawn with permission from 

(Santagiuliana et al. 2016)
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Fig. 17. 
Discretization of the domain and boundary conditions, redrawn with permission from 

(Santagiuliana et al. 2016)
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Fig. 18. 
Oxygen field concentrations obtained using Castem and Castem-PAK, for t = 3 days, 1 

week, 2 weeks and 20 days
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Fig. 19. 
Mean oxygen concentrations in tumor and tissue as function of time, for Castem and 

Castem-PAK coupled model
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Fig. 20. 
Mean oxygen concentrations in tissue as function of time, for Castem and Castem-PAK 

coupled model

Santagiuliana et al. Page 37

Biomed Microdevices. Author manuscript; available in PMC 2019 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 21. 
Mean oxygen concentrations in tumor as function of time, for Castem and Castem-PAK
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Fig. 22. 
TAF concentrations obtained using Castem and Castem-PAK models, for t = 3 days, 1 week, 

2 weeks and 20 days
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Fig. 23. 
Mean TAF concentrations as function of time, Castem and Castem-PAK models
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Fig. 24. 
Endothelial cells mass fraction for t = 3 days, 1 week, 2 weeks and 20 days, Castem model

Santagiuliana et al. Page 41

Biomed Microdevices. Author manuscript; available in PMC 2019 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 25. 
Mean mass fraction of endothelial cells as function of time, Castem model.
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Fig. 26. 
Tumor growth according to Castem and Castem-PAK models, for t = 3 days, 1 week, 2 

weeks and 20 days
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Fig. 27. 
Mean volume fraction of tumor as function of time, for Castem and Castem-PAK
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Table 1

Parameters

Parameter Symbol Value Unit

Density of the three fluid phases (α = h, t and l) ρα 1000 kg/m3

Dynamic viscosity of IF (Sciumè et al. 2014b) μl 1·10−2 Pa·sec

Dynamic viscosity of TC (Sciumè et al. 2014b) μt 20 Pa·sec

Dynamic viscosity of HC (Sciumè et al. 2014b) μh 20 Pa·sec

Critical mass fraction of oxygen ωcrit
nl 2.0·10−6 —

Growth coefficient of tumor cells (Sciumè et al. 2013)(Sciumè et al. 2014a) γgrowth
t 4·10−2 kg/(m3·s)

Necrosis coefficient (Sciumè et al. 2013)(Sciumè et al. 2014a) γnecrosis
t 1·10−2 kg/(m3·s)

Consumption related to growth in eqn (Sciumè et al. 2013)(Sciumè et al. 2014a) γgrowth
nl 2·10−4 kg/(m3·s)

Consumption related to metabolism in eqn (Sciumè et al. 2013)(Sciumè et al. 2014a) γ0
nl 3·10−4 kg/(m3·s)

HC-IF interfacial tension (Sciumè et al. 2014b) σhl 72 mN/m

TC-HC interfacial tension (Sciumè et al. 2014b) σth 36 mN/m

TC-IF interfacial tension (Sciumè et al. 2014b) σtl 108 mN/m
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Table 2

Parameters related to oxygen diffusion, including those for the smeared model

Parameter Symbol Value Unit

Diffusion coefficient of oxygen in interstitial fluid (Sciumè et al. 2013)(Sciumè et al. 2014a) D0
nl 3.2·10−9 m2/sec

Coefficient δ (Sciumè et al. 2013)(Sciumè et al. 2014a) δ 2 —

Normal mass fraction of oxygen in tissue (Sciumè et al. 2013)(Sciumè et al. 2014a) ωenv
nl 4.2·10−6 —

Mean capillary diameter Dcap 10 μm

Thickness of the endothelial layer δEC 1 μm

Diffusion coefficient of oxygen through endothelial layer Dwall 8.73·10−10 m2/s

Mass fraction of oxygen in capillaries ωsys 0.2451·10−3 —
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Table 3

Parameters depending for ECM taken from (Sciumè et al. 2014b)

Parameter Symbol Value Unit

Density of the solid phase ρs 1·103 kg/m3

Poisson’s ratio of the ECM ν 0.4 —

Young’s modulus of the ECM Efin 2.0·102 Pa

Volume fraction of ECM (initial) εs 0.0 —

Coefficient a a 590 Pa

Intrinsic permeability k 1.8·10−15 m2

Yield effective stress limit teff
s , y 0.5·101 Pa

Viscosity η 5 Pa·sec

Hardening modulus H 1.0·102 Pa
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Table 4 -

Parameters depending on ECM type taken from (Sciumè et al. 2014b), redrawn with permission from 

(Santagiuliana et al. 2016)

Parameter Symbol Value Unit

Density of the solid phase ρs 1000 kg/m3

Poisson’ ratio of the ECM ν 0.4 —

Young’s modulus of the ECM

EEZ 2·102

EMZ 3·102 Pa

EDZ 1·102

Volume fraction of ECM (initial)

εEZ
s

0.2 —

εMz
s

0.3 —

εDz
s

0.1 —

Coefficient a in eqs (23)

aEZ 590

aMZ 516 Pa

aDZ 664

Intrinsic permeability

kEZ 1.80·10−15

kMZ 1.21·10−15 m2

kDZ 2.56·10−15

Yield effective stress limit teff
s , y 0.5·101 Pa

Viscosity η 5 Pa·sec

Hardening modulus H 1.0·102 Pa

Biomed Microdevices. Author manuscript; available in PMC 2019 August 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Santagiuliana et al. Page 49

Table 5

Parameters for TAF end Endothelial cells, redrawn with permission from (Santagiuliana et al. 2016)

Parameter Symbol Value Unit

Limit mass fraction of oxygen for hypoxia ωhyp
nl 4.0·10−6 —

Diffusion coefficient of TAF in interstitial fluid (Anderson and Chaplain 1998) D0
T AF 3.5·10−4 m2/sec

Diffusion coefficient of endothelial cells in interstitial fluid (Eikenberry et al. 2009) D0
end 1.29·10−12 m2/sec

coefficient for uptake of TAF by endothelial cells νTAF 1.00·10−15 —

degradation rate coefficient for TAF demise βTAF 8.00·10−13 —

coefficient for TAF and EC production c 1.00·10−3 —

coefficient for new oxygen brought by the new capillary network ϕ 1.00·10−8 —
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