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Objectives: Pneumocystis jirovecii pneumonia (PJP) is an important cause of morbidity
and mortality in HIV-positive patients. Polymorphisms in immune genes are increas-
ingly reported to influence susceptibility to fungal infections. We analysed the role of 21
single nucleotide polymorphisms from 19 candidate genes on PJP development in
patients from the Swiss HIV Cohort Study.

Design and methods: The analysis included patients with a nadir CD4þ T-cell count
less than 200 cells/ml, divided into a discovery (N¼1645) and a replication (N¼1861)
cohort. The associations were analysed by using cumulative incidence curves as well as
competing risk regression over 18 years, starting from the estimated date of HIV
infection, considering death a competing risk, with censoring at lost follow-up, and
assuming the dominant mode of inheritance.

Results: The minor allele of rs2243250 in IL-4 was associated with the risk of PJP in the
discovery cohort (cumulative incidence 0.18 versus 0.12, P¼0.002). This association
was replicated in the validation cohort (0.16 versus 0.12, P¼0.02). It was still
significant in multivariate models, adjusted for HIV transmission mode, viral load,
CD4þ T cells slope, age, antiretroviral therapy, tobacco smoking, hepatitis C virus
coinfection, year of cohort entry and PJP prophylaxis (global subhazard ratio 1.42, 95%
confidence interval 1.17–1.73, P¼0.0004).

Conclusion: Our data suggest rs2243250, a single nucleotide polymorphism known to
influence IL-4 production, is associated with susceptibility to PJP in HIV-positive
patients. Copyright � 2019 The Author(s). Published by Wolters Kluwer Health, Inc.
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Introduction
Pneumocystis jirovecii is an opportunistic fungus causing
severe pneumonia in HIV/AIDS and other populations
of immunosuppressed patients [1]. It is one of the most
common AIDS-defining conditions and an important
cause of AIDS-related deaths [2–4]. P. jirovecii pneumonia
(PJP) typically manifests among individuals with a
CD4þ T-cell count of less than 200/ml, in particular
when the HIV viral load is elevated [5]. Other factors
such as ethnicity [6] and HIV transmission mode [7] have
been reported to alter susceptibility to PJP in some
studies, but this was not universally confirmed [8].

Increasing evidence suggests that polymorphisms in host
immune genes influence the course of infections due to
fungal pathogens. Single nucleodide polymorphisms
(SNPs) in genes encoding pattern recognition receptors
(PRRs) such as pentraxin 3 [9–11] and Dectin-1 [12–14]
are emerging as reliable predictors of the future
occurrence of invasive aspergillosis among onco-hema-
tological patients as well as hematopoietic stem cell and
solid organ transplant recipients [15,16]. Similarly,
polymorphisms in genes encoding cytokines were
associated with both invasive aspergillosis (IL1B
[17,18]) and candidiasis (TNFa [19], IL-4 [20]). Fewer
studies examined the role of immune gene polymor-
phisms in susceptilbly to PJP or AIDS progression. One
study associated low producing mannose binding lectin 2
(MBL2) haplotype [21] with PJP infection in a small
cohort of HIV-infected individuals. Other polymor-
phisms apparently associated with PJP in HIV-positive
patients are in fact markers of rapid progression to AIDS
[22–24].

In this study, we analysed the role of polymorphisms from
21 candidate genes encoding relevant fungal PRRs and
cytokines/chemokines with regards to the predisposition
to PJP in the patients from the Swiss HIV Cohort Study
(SHCS).
Methods

Study cohort and design
The SHCS (www.shcs.ch) is a prospective observational
multicenter cohort of seven Swiss hospitals (Basel, Bern,
Geneva, Lausanne, Zurich, Lugano and St. Gallen [25]).
More than 20 000 HIV-infected patients have been
enrolled in Switzerland since 1988 [25,26]. The clinical
stage of the patients was defined according to the 1993
classification system for HIV infection of the Centers for
Disease Control and Prevention [27]. Demographic
characteristics including age, duration of HIV infection,
CD4þ T-cell count nadir, opportunistic infections, HIV
maximal viral load and antiretroviral therapy used were
extracted from the SHCS clinical database [28]. Written
informed consent was obtained from all patients,
including consent for the genetic studies. All patients
whose CD4þT-cell count was of less than 200 cells/ml for
at least 3 months were selected. Patients were randomly
stratified into a discovery group and a validation group at a
1 : 1 ratio. Additional patients who were entered into the
cohort after the randomization process were added to the
validation group.

Definite and presumptive PJP infections were defined
according to standard definitions [29]. Briefly, a definitive
diagnosis required the identification of the pathogen from
respiratory samples by cytology/microscopy or histology.
The presumptive diagnosis was made on a combination of
clinical signs/symptoms and radiological findings (http://
www.shcs.ch/122–4-cdc-category-c-diagnoses#4.2.1).
The CD4þ T-cell loss rate was calculated for each
individuals using a linear regression of time on the square
root of CD4þ T-cell counts as described elsewhere [30].
Unknown HIV-infection dates were estimated by using a
joint back calculation model as described elsewhere [31].

Genotyping
A total of 21 SNPs from 19 genes were selected based on a
systematic literature review, including SNPs previously
associated with fungal infections. Genomic DNA was
extracted from cell pellets or whole blood with use of a
MagNA Pure LC DNA Isolation Kit (Roche Applied
Science, Munich, Germany) according to the manufac-
turer’s protocols. The SNPs were part of a customized
Golden Gate Genotyping Assay (Veracode technology,
Illumina) or were genotyped using a Competitive Allele
Specific PCR system (KBioscience/LGC Genomics;
http://www.lgcgenomics.com). Genotype data were
analyzed on a BeadXpress Reader or a KlusterKaller
software (KBioscience/LGC Genomics) according to the
standard protocols and quality controls [32].

Statistical analysis
Statistical analyses were performed in Stata 15.1
(StataCorp LLC, College Station, Texas, USA). Cumu-
lative incidence of PJP was assessed over a 18 years period
starting at the estimated date of the HIV infection with
censoring at last follow-up and considering death as a
competing event, by using stcrreg implemented in Stata.
For simplicity a dominant mode of inheritance was
assumed for each SNP and the first episode of PJP was
considered. Multivariate analyses were performed by
using stcrreg, with adjustment for co-variables possibly
associated with PJP, considering a cut-off P value of 0.1 in
the univariate analyses. CD4þ T-cell counts were
accounted for either by using the CD4þ slope before
antiretroviral therapy (as described above) or as a time-
varying covariable. Other variables such as hepatitis C
virus (HCV) or hepatitis B virus infection, as well as
antiretroviral and anti-Pneumocystis carinii pneumonia
(PCP) drugs were accounted for either as present/absent
at any time during follow-up (e.g demographic tables) or

http://www.shcs.ch/
http://www.shcs.ch/122-4-cdc-category-c-diagnoses
http://www.shcs.ch/122-4-cdc-category-c-diagnoses
http://www.lgcgenomics.com/
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as time-varying covariables (time-dependent analyses).
Associations were first analysed among patients from the
discovery cohort and, when significant, replicated in the
validation cohort. The linkage disequilibrium and
Hardy–Weinberg equilibrium (HWE) tests were assessed
by using the pwld and hwe softwares implemented in
Stata. Bonferroni’s correction was used to adjust data for
the number of tests included in the models. MBL2
haplotypes were phased using PHASE software version
2.1 (University of Washington, Seattle, Washington,
USA).
Results

A total of 3506 Caucasian individuals were included
(1645 in the discovery and 1861 in the replication
study, Table 1), among whom 470 developed PJP (413
definite and 57 presumptive). Patient characteristics
were equally distributed in the discovery and the
replication studies, with a mean age of 33 years (range
10–74) at time of cohort entry, a male predominance
(77%), a mean CD4þ T-cell nadir count of 90.5 cells/
ml (range 0–199) and a mean maximal log viral load of
5.20 copies/ml (range 1–8). HIV infection was
acquired by male-male sexual contact in 40%, by
heterosexual contact in 31% and by intravenous drug
use in 26%.
Table 1. Demographic characteristic of the patients.

Discove

Variable N

Age at cohort entry (mean years; range) 32.5
Male sex 12
ART/HAART therapy at any time 16
HIV maximal viral load (mean RNA log10 copies/ml; range)a 5.2
Nadir CD4þ T-cell count (mean cells/ml; range)b 89.9
CD4þ slope before ART/HAART initiation (mean; range)c �2.1
PJPd 24
At presentation
During follow-up
Type of HIV transmission

Male–male sexual contact 68
Heterosexual contact 46
Intravenous drug user 44
Other/unknown 5
HCV coinfectione 55
Active HBV infectionf 6
Tobacco smokersg 98

ART, antiretroviral therapy; HBV, hepatitis b virus; HCV, hepatitis C virus
aMean maximal HIV RNA load, was missing in two and seven patients in
bLowest level of a CD4þ T-cell count.
cRate of CD4þ depletion in the absence of HAART, was missing in 24 an
dAmong PJP cases, 202 (84%) were definitive and 38 (16%) presumptive in th
in the replication cohort.
eReflected by HCV serology.
fHBV serostatus, defined by the presence of HBsAg in the blood.
gAt cohort entry: more than 10 packet unit year.
All the SNPs were at the HWE equilibrium and had
minor allele frequencies (MAF) comparable to the ones
known for the white population (Supplementary Table
S1, http://links.lww.com/QAD/B490). In the discov-
ery cohort, associations (P< 0.05) were observed for
four polymorphisms in four genes, including rs2243250
in IL-4 [cumulative incidence (CI) 0.18 versus 0.12,
P¼ 0.002, Fig. 1a], rs4252125 in plasminogen (CI 0.11
versus 0.16, P¼ 0.005), rs16910526 in Dectin-1
(CLEC7A; CI 0.08 versus 0.14, P¼ 0.01) and
rs17886395 in surfactant protein A (CI 0.10 versus
0.15, P¼ 0.03, Table 2).

Among those, only one association was significant after
Bonferroni correction for multiple testing (21 tests,
rs2243250 in IL-4). This association was also significant in
the replication cohort (CI 0.16 versus 0.12, P¼ 0.02;
Fig. 1b). Furthermore, the association was still significant
in a multivariable regression model in both the discovery
(subhazard ratio, SHR¼ 1.43, 95% confidence interval
1.07–1.92, P¼ 0.02) and replication (SHR¼ 1.42, 95%
confidence interval 1.08–1.85, P¼ 0.01, Table 3) studies.
In the combined cohorts after adjustment for the maximal
HIV viral load, antiretroviral therapy, CD4þ slope, age at
estimated time of HIV infection, PJP prophylaxis,
tobacco use, HCV coinfection, period of cohort entry
as well as the mode of HIV transmission, the association
was more significant (SHR¼ 1.42, 95% confidence
interval 1.17–1.73, P¼ 0.0004). The association
between PJP and rs2243250 were significant when the
ry, N¼1645 Replication, N¼1861 All patients, N¼3506

(%) N (%) N (%)

(10–73) 33 (13–74) 32.8 (10–74)
73 (77) 1425 (77) 2698 (77)
41 (99) 1856 (99) 3495 (99)
0 (2–8) 5.21 (1–8) 5.20 (1–8)
(0–199) 91.0 (0–199) 90.5 (0–199)

2 (�7–1) �2.16 (�6–2) �2.14 (�7–2)
0 (15) 260 (14) 500 (14)
135 162 297
105 98 203

1 (41) 725 (39) 1406 (40)
2 (28) 611 (33) 1071 (31)
6 (27) 462 (25) 908 (26)
8 (4) 63 (3) 121 (3)
1 (33) 616 (33) 1165 (33)
4 (4) 82 (4) 146 (4)
5 (60) 1118 (60) 2103 (60)

; PJP, Pneumocystis jirovecii pneumonia.
the discovery and replication cohort, respectively.

d 25 patients in the discovery and replication cohort, respectively.
e discovery cohort and 237 (91%) definitive and 23 (9%) presumptive

http://links.lww.com/QAD/B490
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Fig. 1. Cumulative incidence of Pneumocystis jirovecii pneumonia according to IL-4 rs2243250 in the discovery [(a) n U 1426
patients with available genotypes] and replication [(b) n U 1832] studies. Graphs were performed using the cumulative incidence
function in stcurve after competing risk regression with stcrred, considering death as competing risk (Stata).



IL-4 polymorphism and Pneumocystis jirovecii pneumonia Wójtowicz et al. 1723

Table 2. Cumulative incidence of Pneumocystis jirovecii pneumonia according to candidate gene polymorphisms in HIV-positive patients from
Swiss HIV Cohort Study cohort.

Discovery study, N¼1645 Replication study, N¼1861

Cum. Incid. Cum. Incid.

Gene rs number ntjaa change MAF Na WT MUT Pb Na WT MUT Pb

Pattern recognition receptors
CLEC7A rs16910526 Y238X 0.08 1639 0.08 0.14 0.01
TLR3 rs3775291 L412F 0.29 1632 0.15 0.12 0.1
TLR1 rs5743611 R80T 0.08 1631 0.15 0.13 0.3
MBL2 Haplotype Low MBL 0.27 1548 0.11 0.14 0.3
PTX3 rs3816527 A48D 0.40 1531 0.13 0.14 0.5
TLR2 rs5743708 R753Q 0.02 918 0.12 0.14 0.7
TLR6 rs5743810 S249P 0.36 1623 0.14 0.13 0.8
TLR1 rs5743604 S602I 0.33 1622 0.13 0.13 0.8
TLR4 rs4986790 D299G 0.05 1623 0.13 0.13 0.9

Cytokines/Chemokines and other genes
IL4 rs224333250c �590 C/T 0.14 1426 0.18 0.12 0.002d 1832 0.16 0.12 0.02
PLG rs4252125 D472N 0.31 1632 0.11 0.16 0.005e 1839 0.14 0.12 0.2
SPA2 rs17886395 A91P 0.14 1590 0.10 0.15 0.03
IL1A rs1800587 �889 C/T 0.28 1598 0.15 0.12 0.05
TNFa rs1800629 �308 G/A 0.13 1465 0.11 0.14 0.08
IL1B rs1143627 �31 T/C 0.34 1633 0.12 0.15 0.1
IL4RA rs1805015 S503P 0.15 1624 0.15 0.12 0.1
IL19 rs1800896 �1082 A/G 0.44 1634 0.13 0.14 0.5
CXCL10 rs3921 1642 G/C 0.43 1634 0.13 0.14 0.6
DEFB1 rs1800972 �44 C/G 0.19 1612 0.14 0.13 0.7
FCGR2A rs1801274 R131H 0.48 1614 0.14 0.13 0.9

CI, confidence interval; CLEC7A, C-type lectin domain 7, also known as Dectin-1; CXCL10, CXC-chemokine ligand-10; DEFB1, human beta-
defensin 1; FCGR2A, Fc Fragment of IgG receptor IIa; HR, hazard ratio; IL, interleukin; IL4RA, IL4 receptor subunit alpha; LD, linkage
disequilibrium; MAF, minor allele frequency; MBL2, mannose binding lectin 2; PJP, Pneumocystis jirovecii pneumonia; PLG, plasminogen;
PTX3, pentraxin 3; SHCS, Swiss HIV cohort study; SPA2, surfactant protein A2; TLR, Toll-like receptor; WT, wild type.
aN stands for the number of available genotypes for each SNP (after quality testing).
bAssocaitions were analysed by using stcrreg, considering dominant mode of inheritance (patients homo- and heterozygous for the rare allele are
compared to the others).
cBecause some genotypes were missing, the association was also run for rs2070874, which is in strong LD with rs2243250 (R2¼0.96). The P value
for rs2243250 was 0.0008.
dP¼0.047 and P¼0.016 for rs2243250 and rs2070874, respectively, after Bonferroni correction (21 tests).
eP¼0.099 after Bonferroni correction (21 tests).
presumptive PJP cases were removed from the model
(SHR¼ 1.36, 95% confidence interval 1.10–1.68,
P¼ 0.004), and when CD4þ T cells were accounted
for as a time-dependent covariates instead of a slope
(SHR¼ 1.41, 95% confidence interval 1.14–1.75,
P¼ 0.00016, Supplementary Table 3, http://links.lww.-
com/QAD/B490).

The association with rs4252125 in plasminogen tended to
be associated after corrections for multiple tests (21 tests,
P¼ 0.1) but was not replicated.
Discussion

In this study, we show for the first time an association
between a SNP in the IL-4 gene and susceptibility to
PJP. This association discovered in a study of
1645 patients was validated in a replication cohort of
1861 individuals. It was still present in multivariate
analyses accounting for potential confounding factors
such as CD4þ T-cell decline over time. It is further
supported by several lines of evidence for a key role of
IL-4, a cytokine, in the adaptive immune responses
against P. jirovecii.

The IL-4 gene located on chromosome 5q31.1 encodes
IL-4, a polyfunctional cytokine produced by activated T
cells, type 2 innate lymphoid cells and mast cells, which is
involved in adaptive immunity [33]. Its biological activity
is mediated through a heterodimeric structured receptor
(IL-4R) consisting of IL-4Ra together with either a g
chain (type1 receptor) or a IL13R-a-1 (type2 receptor)
molecule (reviewed in [34,35]). IL-4 promotes the
differentiation of CD4þ T cells into the Th2 phenotype
(also mediated by IL-13 and IL-10), leading to B-cell
activation and production of neutralizing antibodies such
as IgE and IgG1 [34]. It also counterbalances the Th1
phenotype (mediated by IFNg and TNFa) and subse-
quent activation of cell-mediated immunity and phago-
cytic activity [36].

http://links.lww.com/QAD/B490
http://links.lww.com/QAD/B490
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Table 3. Multivariate analysis of factors associated with Pneumocystis jirovecii pneumonia.

Discovery studya, N¼1424 Replication studya, N¼1825 All patientsa, N¼3210

SHR 95% CI Pa SHR 95% CI Pa SHR 95% CI Pa

Ageb 1.00 0.99–1.02 0.8 1.01 1.00–1.02 0.06 1.01 1.00–1.02 0.1
Male sex 0.78 0.53–1.15 0.2 0.95 0.69–1.30 0.7 0.87 0.68–1.11 0.3
CD4þ slopec 0.17 0.11–0.26 <0.0001 0.16 0.11–0.24 <0.0001 0.17 0.13–0.22 <0.0001
Maximal HIV RNA

(log copies/ml)
1.37 1.11–1.69 0.003 1.67 1.38–2.01 <0.0001 1.53 1.33–1.76 <0.0001

Type of HIV transmission
MSM Ref. Ref. Ref.
Heterosexual 1.22 0.87–1.71 0.2 0.98 0.72–1.34 0.9 1.09 0.87–1.37 0.5
Intravenous drug use 1.00 0.61–1.63 1.0 0.72 0.49–1.04 0.08 0.85 0.63–1.14 0.3
Other 1.64 0.92–2.91 0.09 1.27 0.77–2.11 0.3 1.39 0.96–2.03 0.09

Cohort entry (years)
<1995 Ref. Ref. Ref.
1995–2000 0.98 0.70–1.38 0.9 0.83 0.60–1.14 0.3 0.90 0.71–1.13 0.4
2001–2005 0.77 0.49–1.20 0.2 0.92 0.66–1.27 0.6 0.90 0.70–1.15 0.4
>2005 0.32 0.04–2.63 0.3 0.20 0.06–0.69 0.01 0.25 0.09–0.69 0.008

PJP prophylaxisd 0.44 0.32–0.60 <0.0001 0.31 0.24–0.40 <0.0001 0.36 0.30–0.44 <0.0001
ART/HAARTe 0.79 0.75–0.83 <0.0001 0.75 0.71–0.80 <0.0001 0.77 0.74–0.80 <0.0001
HCV coinfectione 0.93 0.87–1.00 0.05 0.94 0.89–0.99 0.01 0.93 0.90–0.97 0.001
Tobacco smokingf 0.77 0.57–1.03 0.08 0.89 0.68–1.15 0.4 0.83 0.68–1.01 0.06
IL-4 rs2243250 TT/TC

versus CCg
1.43 1.07–1.92 0.02 1.42 1.08–1.85 0.01 1.42 1.17–1.73 0.0004

ART, antiretroviral treatment; CI, confidence interval; HCV, hepatitis C virus; OR, odds ratio; PJP, Pneumocystis jirovecii pneumonia; SHR,
subhazard ratio (competing risk regression).
aVariables potentially associated with Pneumocystis carinii pneumonia (cut-off P<0.1 by univariate testing, Supplemental Table 2, http://
links.lww.com/QAD/B490) were entered into the multivariate analysis, with age and sex forced into the model. The number of patients is slightly
lower than the number of patients included in the studies because some covariables are missing for some patients (refer to Table 1 for details).
bAt estimated HIV infection date (refer to Methods section); SHR is calculated per 1 additional year of age.
cRate of CD4þ depletion before HAART (refer to Methods section); Note: similar results were found when CD4þ were accounted for as a time-
dependent covariates (refer to Supplemental Table 3, http://links.lww.com/QAD/B490).
dAt any time during follow-up.
eTime-dependent covariates.
fAt cohort entry: more than 10 U packet-year.
gGenetic associations are for the dominant mode of inheritance (patients homozygous and heterozygous for the rare allele are compared with the
other). Because some genotypes were missing for rs2243250 in the discovery study, the association was also run for rs2070874, which is in strong
LD with rs2243250 (R2¼0.96): OR¼1.37, 95% CI 1.05–1.80, P¼0.02 (model including 1629 patients).
A number of studies have shown that immunity against
Pneumocystis spp. is mediated by both Th1 and Th2
responses [37]. Inhibition of the Th1 response by using
anti-TNFa antibodies induced decreased [36] or delayed
[38] pathogen clearance in two different mice models of
PCP. Reversely, stimulation of Th1 responses by using an
adenoviral vector encoding IFNg protected T cells
depleted mice from PCP [39] and recombinant IFNg
increased survival in a rat model of PCP. Inhibition of B
cells in mice by using antibodies targeting CD20 also leads
to increased susceptibility for PJP [40]. The risk of
Pneumocystis spp. infections in humans is increased in
patients with primary immune deficiencies, such as
X-linked hyper-IgM syndrome [41], as well as in patients
treated with monoclonal antibodies against the CD20þ
antigen on B cells (rituximab or obinutuzumab [42,43]),
the CD52 antigen on B and T cells (alemtuzumab [44]),
or with Bruton’s tyrosine kinase inhibitor (ibrutinib [45]).

Several studies suggested that the presence of the -590Tallele
in rs2243250 is associated with increased serum or plasma
IL-4 levels [46–49], although this was not universally
confirmed [50,51]. Higher IL-4 gene expression may result
froma newbinding site for nuclear factorof activatedTcells,
the main transcription factor for the IL-4 expression, at
the nucleotide position -590 (Supplemental Fig. S2,
http://links.lww.com/QAD/B490) [52]. Conversely,
the -590T allele was associated with reduced IFNg
and TNFa expression and/or production by human
immune cells stimulated with phorbol myristate acetate/
Ionomycin (including neutrophils, monocytes and
lymphocytes), suggesting that higher IL-4 production
could counteract Th1 responses, leading to decreased
Pneumocystis spp. clearance [46].

Altogether, this data suggest that increased IL-4 levels in -
590T allele carriers result in increased susceptibility to
infections mainly as a results from reduced Th1 responses,
and that this defect cannot be adequately compensated by
a concomittant or subsequent increase in Th2 responses.
Consistent with this hypothesis, the -590T allele was
associated with an increased risk of vulvo-vaginal
candidiasis, as well as increased vaginal IL-4 levels, in a
cohort of 85 Latvian women [53] and a higher risk
of paracoccidioidomycosis in a cohort of 81 Brazilian
individuals [51]. In a cohort of adult leukemia patients,

http://links.lww.com/QAD/B490
http://links.lww.com/QAD/B490
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the -590T allele was protective for hepatosplenic
candidiasis, as a possible result of diminished immune
reconstitution after neutropenia [20]. In addition,
numerous studies associated the -590T variant with
susceptibility to pathogens other than fungi, such as
respiratory syncytial virus (RSV) [54–57], Plasmodium
falciparum [58], Brucella spp. [59], Clostridium difficile [60]
and bacteria causing periodontitis [61–65].

Also consistent with this hypothesis, animal studies
showed that IL-4 deficiency is associated with protection
against fungal, mycobacterial and parasitic infections. In a
cyclophosphamide-induced mice model of invasive
aspergillosis, mice deficient in IL-4 had increased survival
[66] and increased broncho-alveolar lavage IFNg levels,
compared to WT mice. In a mouse model of tuberculosis,
IL-4-deficient mice had decreased disease severity and
increased TNFa lung expression compared to WT mice
[67]. In a mouse model of RSV infection, overexpression
of IL-4 was associated with decreased viral clearance and
neutralization of IL-4 with a reduced illness score [68,69].
In a murine model of Leishmania major infection, parasite
clearance was positively correlated with the production of
IFNg (Th1) and negatively correlated with that of IL-4,
IL-5 and IL-13 (Th2) [70].

Like other genetic association studies, our study has some
limitations. The date of HIV-1 infection was estimated by
using a joint back calculation model in seroprevalent
patients [31]. Although it is by far the largest association
study for PJP infection, our study may have failed to
detect associations with rare variants, such as those in
Dectin-1 (MAF¼ 0.08), Toll-like receptor 1 (TLR1)
(MAF¼ 0.08) or TLR4 (MAF¼ 0.05), which have been
associated with susceptibility to infections due to other
fungi. Our study did not replicate a previously reported
association with MBL2 low expression haplotypes [21],
despite reasonable power to do so (>80% power to detect
an association with hazard ratio¼ 1.5; Supplemental
Table S1, http://links.lww.com/QAD/B490). Despite
substantial evidence for a role for rs2243250 on IL-4
production, baseline IL-4 levels have not been measured
in study patients to further support genetic associations.
In addition, while the SHCS is a well established
longitudinal cohort with robust follow-up, patients
management strategies including prophylaxis and antire-
troviral treatment have been evolving over year. Yet,
despite the limitations, association with IL-4 SNP was still
significant in multivariate models accounting for pro-
phylaxis and different periods of cohort entry.

In conclusion, this data demonstrates an association
between PJP and the presence of the interleukin-4-
590T/C polymorphism in a large cohort of HIV patients.
This SNP may influence the Th2/Th1 responses required
for appropriate immunity against Pneumocystis spp. and
increase susceptibility to infection in HIV-positive
patients with low level of CD4þ T cells.
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