Table 2.
Provinces | OTE | PTE | SE | ||||||||
Estimated eff. | Bias corrected | Lower bound | Upper bound | Estimated eff. | Bias corrected | Lower bound | Upper bound | Estimated eff. | Scale efficient | RTS | |
Beijing | 0.8091 | 0.7759 | 0.7284 | 0.8075 | 1.0000 | 0.9849 | 0.9667 | 0.9972 | 0.8091 | Scale inefficient | DRS |
Tianjin | 0.9757 | 0.9356 | 0.8804 | 0.9729 | 1.0000 | 0.9868 | 0.9220 | 1.0000 | 0.9757 | Scale efficient | MPSS |
Hebei | 0.9260 | 0.8601 | 0.7651 | 0.9137 | 1.0000 | 0.9945 | 0.9706 | 1.0000 | 0.9260 | Scale efficient | MPSS |
Shanxi | 0.8637 | 0.7801 | 0.6799 | 0.8407 | 0.9999 | 0.9973 | 0.9790 | 0.9999 | 0.8638 | Scale efficient | MPSS |
Inner Mongolia | 0.7836 | 0.7435 | 0.6817 | 0.7700 | 0.9999 | 0.9998 | 0.9998 | 0.9999 | 0.7837 | Scale inefficient | DRS |
Liaoning | 0.7150 | 0.6441 | 0.5700 | 0.6893 | 1.0000 | 0.9998 | 0.9986 | 1.0000 | 0.7150 | Scale inefficient | DRS |
Jilin | 0.8054 | 0.7566 | 0.6841 | 0.7945 | 0.9999 | 0.9999 | 0.9998 | 0.9999 | 0.8055 | Scale inefficient | DRS |
Heilongjiang | 0.7818 | 0.6941 | 0.6033 | 0.7508 | 0.9999 | 0.9998 | 0.9992 | 0.9999 | 0.7819 | Scale inefficient | DRS |
Shanghai | 0.8291 | 0.7952 | 0.7519 | 0.8264 | 1.0000 | 0.9743 | 0.9613 | 0.9859 | 0.8291 | Scale inefficient | DRS |
Jiangsu | 0.8195 | 0.7840 | 0.7379 | 0.8126 | 1.0000 | 0.9930 | 0.9809 | 0.9992 | 0.8195 | Scale inefficient | DRS |
Zhejiang | 0.8357 | 0.7885 | 0.7415 | 0.8245 | 1.0000 | 0.9877 | 0.9756 | 0.9964 | 0.8357 | Scale inefficient | DRS |
Anhui | 0.9830 | 0.9031 | 0.8060 | 0.9660 | 0.9999 | – | – | – | 0.9830 | Scale efficient | MPSS |
Fujian | 0.9471 | 0.8988 | 0.8317 | 0.9336 | 1.0000 | 0.9752 | 0.9371 | 0.9940 | 0.9471 | Scale efficient | MPSS |
Jiangxi | 1.0000 | 0.8779 | 0.7628 | 0.9438 | 1.0000 | – | – | – | 1.0000 | Scale efficient | MPSS |
Shandong | 0.8090 | 0.7458 | 0.6637 | 0.7890 | 1.0000 | 0.9991 | 0.9950 | 1.0000 | 0.8090 | Scale inefficient | DRS |
Henan | 0.8873 | 0.7934 | 0.6873 | 0.8641 | 1.0000 | 0.9969 | 0.9820 | 0.9999 | 0.8873 | Scale inefficient | DRS |
Hubei | 0.7577 | 0.6705 | 0.5829 | 0.7256 | 1.0000 | 0.9997 | 0.9980 | 1.0000 | 0.7578 | Scale inefficient | DRS |
Hunan | 0.8835 | 0.7964 | 0.6920 | 0.8641 | 0.9999 | 0.9974 | 0.9812 | 0.9999 | 0.8836 | Scale efficient | MPSS |
Guangdong | 1.0000 | 0.9345 | 0.8750 | 0.9770 | 1.0000 | – | – | – | 1.0000 | Scale efficient | MPSS |
Guangxi | 1.0000 | 0.8911 | 0.7719 | 0.9673 | 1.0000 | – | – | – | 1.0000 | Scale efficient | MPSS |
Hainan | 0.9666 | 0.9186 | 0.8530 | 0.9481 | 1.0000 | 0.9916 | 0.9485 | 1.0000 | 0.9667 | Scale efficient | MPSS |
Chongqing | 0.8500 | 0.8097 | 0.7489 | 0.8453 | 1.0000 | 0.9995 | 0.9953 | 0.9999 | 0.8500 | Scale inefficient | DRS |
Sichuan | 0.8068 | 0.7230 | 0.6260 | 0.7910 | 0.9999 | 0.9996 | 0.9964 | 0.9999 | 0.8069 | Scale inefficient | DRS |
Guizhou | 0.9946 | 0.8963 | 0.7748 | 0.9810 | 0.9999 | – | – | – | 0.9947 | Scale efficient | MPSS |
Yunnan | 0.9999 | 0.9225 | 0.8159 | 0.9937 | 0.9999 | – | – | – | 1.0000 | Scale efficient | MPSS |
Tibet | 0.9724 | 0.9486 | 0.9099 | 0.9681 | 0.9991 | 0.9979 | 0.9880 | 0.9991 | 0.9733 | Scale efficient | MPSS |
Shaanxi | 0.8101 | 0.7658 | 0.7045 | 0.8034 | 1.0000 | 0.9996 | 0.9987 | 1.0000 | 0.8102 | Scale inefficient | DRS |
Gansu | 0.8947 | 0.8083 | 0.7136 | 0.8713 | 0.9999 | 0.9957 | 0.9691 | 0.9999 | 0.8948 | Scale inefficient | DRS |
Qinghai | 0.7390 | 0.7022 | 0.6551 | 0.7314 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.7392 | Scale inefficient | DRS |
Ningxia | 0.8160 | 0.7791 | 0.7285 | 0.8028 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.8161 | Scale inefficient | DRS |
Xinjiang | 0.7081 | 0.6685 | 0.6097 | 0.7045 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.7084 | Scale inefficient | DRS |
Mean | 0.8652 | 0.8022 | 0.7251 | 0.8492 | 0.9999 | 0.9947 | 0.9815 | 0.9988 | 0.8653 | – | – |
Means statistical inference cannot be provided for some provinces due to too few bootstrap replications where those observations lie within the bootstrap frontier.
DRS, decreasing returns to scale; MPSS, most productive scale size; OTE, overall technical efficiency; PTE, pure technical efficiency, SE, scale efficiency; RTS, returns to scale.