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Abstract

Electrophysiology is a direct measure of neuronal processes, and it is uniquely sensitive to 

canonical neural operations that underlie emergent psychological operations. These qualities make 

it well suited for discovery of aberrant neural mechanisms that underlie complicated disease states. 

This technique is routinely utilized in vitro, in vivo, and in outpatient neurological clinics, offering 

a translatable bridge between animal models and human patients. The bench-to-bedside potential 

of this approach is unparalleled, yet it also remains undeveloped due to the slow inertia of legacy 

techniques and interpretations. In this review, I discuss these strengths of the method, and I detail 

compelling reasons why future advancements can have a direct and tangible influence over clinical 

practice. I hope to motivate a blurring of traditional boundaries between preclinical, 

computational, imaging, and clinical fields by advancing electrophysiology as a common hub for 

methodological integration and theoretical advancement.
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“Beware the man of one method or instrument … he tends to become method-

oriented rather than problem-oriented … Strong inference redirects a man to 

problem-orientation, but it requires him to be willing repeatedly to put aside his last 

methods and teach himself new ones.”

John Platt, 1964

“Whether you can observe a thing or not depends on the theory which you use. It is 

theory which decides what can be observed.”

Albert Einstein to Werner Heisenberg, 1926

1 | INTRODUCTION

This review presents a case for increased utilization of a specific technique, with an altered 

interpretation of what it can mean. As Platt warns in the introductory quote, a focus on any 

one technique can lead to narrowed thinking. Hopefully, he would agree that sometimes the 

problem is in the theory and not the technique. Einstein’s perspective may offer a solution. 
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Theory matters, even the theory about how your measurements can be used to draw 

conclusions.

The aim of this theoretical review is to motivate an increased utilization of electrophysiology 

in the understanding of neural coding, the translation of findings across species, and for 

diagnosis and prognosis in clinical practice. The basis for this motivation is predicated on 

the assertion that electrophysiological oscillations allow a unique measure of the neural 

computations that underlie cognition. This has particularly promising implications for 

advancing clinical practice. These qualities of oscillations, computations, and implications 

are described below.

1.1 | Oscillations: Electrophysiology offers a direct measure of neuronal activity

It is important to move beyond the platitude that “electrophysiology has good temporal 

resolution” and appreciate why timing matters (Cohen, 2011; Nadasdy, 2010). Neuronal 

populations participating in a given frequency perturbation will be more (trough) or less 

(peak) likely to be excited as a function of the population oscillation, and thus will more 

likely to interact, exchange information, and modulate synaptic plasticity together (Fries, 

2005). Electrophysiological recordings encompass multiple scales of measurement in a 

hierarchical, integrated manner. Coupling between single spikes and local fields provides a 

direct line of interpretation from the neural code (Rieke, Warland, de Ruyter van Stevenick, 

& Bialek, 1999), and local fields couple all the way up scalp-recorded EEG. Regardless of 

scale (depth, dura, scalp, etc.), one is always measuring field activity (Buzsáki, Anastassiou, 

& Koch, 2012). Common techniques for measuring human neural activities are either 

fundamentally related to electrophysiology (e.g., magnetoencephalogram [MEG]) or are 

epiphenomenal measures of information coding in the brain (blood-oxygen-level-dependent 

[BOLD], positron-emission tomography [PET], functional near-infrared spectroscopy 

[fNIRS]). This makes electrophysiology uniquely well suited for addressing questions about 

neural information processing.

1.2 | Computations: Event-related electrophysiological responses reflect canonical 
neural computations

Canonical neural computations are stereotyped patterns of neural activity that sculpt 

information processing (Fries, 2009; Siegel, Donner, & Engel, 2012). Event-related EEG 

activities are stereotyped patterns that are modulated by changing demands in information 

processing (Luck, 2005). Here, the question of scale becomes critical: To what degree are 

electrophysiological signals representative of underlying neural mechanisms that compute 

cognition? As described later in this review, this inference can be informed by convergent 

cognitive process models, neural network simulations, or by more abstract theories of 

information processing in neural circuits.

1.3 | Implications: EEG is highly sensitive to aberrant processes in neurological and 
psychiatric diseases

Identification of aberrant neural mechanisms underlying a disorder may be a more fruitful 

target for clinical translation than expanded phenotypic characterization (Insel et al., 2010; 

Montague, Dolan, Friston, & Dayan, 2012). EEG activities are highly sensitive to neural 
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dysfunction in varied psychiatric and neurological disorders, and many have good reliability 

(Hämmerer, Li, Völkle, Müller, & Lindenberger, 2013; Leue, Klein, Lange, & Beauducel, 

2013; Meyer, Bress, & Proudfit, 2014; Towers & Allen, 2009; Weinberg & Hajcak, 2011). If 

specificity can be improved, then EEG can offer an ideal biomarker for disease presence and 

trajectory. In this review, I discuss how existing clinical infrastructure can facilitate rapid 

application of new EEG-based biomarkers.

1.4 | Three tenets: Oscillations, computations, and implications

These three qualities suggest that local fields are highly promising for advanced inference of 

neural function, translation of findings across species, and direct application to clinical 

practice. In subsequent sections, evidence is provided to support the aim of this review. 

Section 2 contrasts conventional interpretations of event-related EEG signals with alternative 

interpretations that have been proposed. A goal of objective, system-defined, quantitative 

interpretation of event-related EEG is advanced. Section 3 elucidates how computational 

modeling can help achieve this goal, with convergent evidence from other imaging methods 

and causal testing using cross-species models. Section 4 describes how current clinical 

infrastructure would allow a rapid and inexpensive adoption of promising 

electrophysiological biomarkers and concludes with a vision for future engagement across 

traditional fields of neural science.

2 | IT IS THEORY WHICH DECIDES WHAT CAN BE OBSERVED

As a foundation of psychophysiology, Cacioppo and Tassinary’s (1990) treatise builds on the 

logic offered by Platt, Donders, James, and Popper to detail the inferential challenges in an 

inherently correlative technique. This approach affords a taxonomy of brain-behavior 

relationships, but it still doesn’t answer the question of what an EEG signal means (see 

Cohen, 2017). In the sections below, I argue that the status quo procedures for addressing 

this question need to be advanced and that the history of this field is ripe with promising 

suggestions.

2.1 | Psychological inference of event-related EEG

Over fifty years of research on cognitive ERP components has advanced the understanding 

of numerous psychological events.1 While a description of the limitations of this method 

does not denigrate these foundational findings, it would be a mistake to consider a 

component-based focus as the sine qua non of event-related EEG. In principle, ERP 

components are inferred by indicators such as polarity, latency, and topography, yet their 

ultimate definition relies upon a presumed latent computational operation (Luck, 2005), 

which can complicate a straightforward identification by manifest indicators. This often 

requires an understanding of what the experimenter did to elicit them, which forces a 

definition based on external (experimenter) influence and not on intrinsic brain operations. 

In practice, components are often identified by peaks and troughs that tend to strongly 

correspond with components, yet do not necessarily define them. To summarize, ERP 

components have three inherent deficits when inferring psychological states: (a) they are not 

1These sources would be too numerous to cite individually, so the reader is referred to chapter 1 of Luck (2005).
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objectively definable, (b) they rely on the point of view of the observer and not the system, 

and (c) current practice uses idiosyncratic and simplified shortcuts, again forcing a 

qualitative definition.

The nebulous practice of defining EEG features as ERP components may hinder the ultimate 

aim of understanding common parsimonious mechanistic processes underlying varied neural 

events. A goal for continued advancement should rely on objective, system-defined, 

quantitative interpretation of our observations. By defining processes in mathematical terms, 

computational models address these desiderata. Notably, these interpretations are unlikely to 

be concepts common to cognitive psychology and ERP component interpretation (e.g., 

working memory, attention, categorization, evaluation, etc.). Theoretical frameworks for 

such a physiological perspective have been advanced, but they remain outside the status quo, 

as detailed below.

2.2 | Physiological inference of event-related EEG

Many EEG researchers have been well trained on the best techniques (Cohen, 2014a; Luck, 

2005) and proper psychological interpretations (Cacioppo & Tassinary, 1990). Yet, the field 

lacks a prevalent influence of approaches that have aimed to answer mechanistic questions 

of neural function. In the tripartite logic of Marr and Poggio (1976), neural systems have a 

particular computational goal, executed via algorithms that are instantiated with some 

physiological mechanism. If you can identify the goal of a system (e.g., line orientation in 

V1), then you can derive how this goal is achieved through information processing and 

observe what the physical implementation of this process looks like. In contrast to the 

informal orthodoxy advanced by Marr, I propose to work backward in this logic. By 

interpreting event-related fields mechanistically and using experimental demands to evoke a 

specific algorithmic demand, we can infer the computational goal of the generative system.

2.3 | Mechanism

Event-related local field oscillations are closely linked to any neuronal mechanism that 

implements neural computations (Bastos et al., 2012; Friston, 2005; Siegel et al., 2012; 

Womelsdorf, Valiante, Sahin, Miller, & Tiesinga, 2014). Any definition of the necessary unit 

of neural computation often becomes a question of scale: Is it the dendritic field, cortical 

microcircuit, cortical column, or network assembly? Regardless of one’s preference for an 

answer, local fields are present at all these levels. As a consequence of summed postsynaptic 

potentials and membrane voltage change, local fields can create temporal windows for 

network formation. Whether this quality at any scale is facilitating (necessary for the 

computation) or epiphenomenal (unnecessary for the computation) is often debated. Until 

these questions are resolved, the most conservative interpretation—epiphenomena—still 

offers a closer measure of neural coding than any other measure of human imaging (e.g., 

blood flow) and may be interpreted as a marker of mechanistic processes.

The idea of a field-based marker or a “spectral finger print” from canonical circuits has been 

advanced within systems neuroscience, but this approach is rarely discussed at the level of 

scalp recording. Groups of neurons (circuits) can implement a generic computational 

function (algorithms) that is reflected by a frequency-specific fingerprint (motif; Siegel et 
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al., 2012; Womelsdorf & Everling, 2015; Womelsdorf et al., 2014). There is good reason to 

think that stereotyped circuit motif fingerprints and the computations therein scale up to 

systems observable on the scalp (Bastos et al., 2012; Buzsáki et al., 2012; Cohen, 2014b; 

Womelsdorf et al., 2014). Event-related EEG responses are stereotyped patterns evolving 

from specific, low-level, sensory responses toward generic, high-level, modality-independent 

phenomena. These responses appear to represent overlapping circuit motifs that facilitate 

canonical neural computations (Fries, 2009; Siegel et al., 2012).

Basar (1998a) theorized that ERPs are a compound superposition of temporally coupled 

damped oscillations from different neural systems or, to rephrase, different phase- and 

frequency-specific phase patterns (i.e., motifs). He described these processes as self-

sustained attractor states with predictable decay, reflecting a transition of unrelated brain 

processes into an ordered state. The superposition of activities evolving over time begins 

with faster frequency events reflecting low-information sensory reactions, culminating into 

slower frequency events that integrate increasingly varied cognitive interpretations. We 

observe the summation of the resonant parallel systems in the ERP (see Gruber, Klimesch, 

Sauseng, & Doppelmayr, 2005) and in component variations that often reflect one-quarter or 

one-half cycle alterations of existing frequency-specific phase patterns (see Figure 1). If we 

could understand the information content of these underlying motifs, we may achieve a 

physiology-level understanding of the signal with our interpretation reflecting the system 

operations and not the experimenter’s choice of interpretative terminology.

2.4 | Algorithm

The information content of many neural computations can be algorithmically represented as 

surprise signals within select areas of the neural hierarchy (Friston, 2010; Marr, 1970). 

Friston (2003, 2005, 2010) has shown how event-related EEG is specifically sensitive to the 

temporal and hierarchical evolution of surprise, which is the same basic information quantity 

that underlies abstract models like reinforcement learning (Sutton & Barto, 1998). This may 

be a disappointing outcome for asking what an event-related EEG signal means, since the 

answer is almost always “surprise.”2 But, surprise is a common neurocomputational 

currency that has specific representational content depending on the generative neural 

system (den Ouden, Kok, & de Lange, 2012) and temporal order (Kolossa, Kopp, & 

Fingscheidt, 2015). In other words, even if algorithm and implementation are common, 

different spatiotemporal-frequency aspects of a signal can reflect different computational 

goals in a temporally evolving network.

As an example of motifs underlying a temporally evolving network, consider how 

feedforward and feedback surprise predictions may be mechanistically communicated with 

gamma versus beta/alpha cycles (Antzoulatos & Miller, 2016; Arnal & Giraud, 2012; 

Michalareas et al., 2016). Slower oscillations such as theta may be long-term readers of fast 

activities (Buzsáki, 2010; Jensen & Colgin, 2007; Womelsdorf, Vinck, Leung, & Everling, 

2010), and later low-frequency bursts may be low-entropy attractor states of integrated 

processes (Womelsdorf & Everling, 2015). Together, these examples provide a mechanistic 

2Motor system responses may be a minor exception to this idea.
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explanation of the observation that fast activities underlie earlier sensory processes and 

slower activities underlie later cognitive and decision processes (Basar, 1998b).

Joint understanding of algorithm and implementation afford an understanding of the 

computational goal of a system—one that is based on the point of view of the system and 

not the experimenter’s terminology. In Section 3 below, I detail how, using 

electrophysiology as a hub between disciplines, we can address interpretative dilemmas by 

identifying distinct computational goals, testing circuit mechanisms in animal models, and 

ultimately translate novel findings toward direct clinical utility.

3 | ELECTROPHYSIOLOGY AS A HUB FOR THE NEURAL SCIENCES

Advanced inference will require convergent evidence across many subfields of neuroscience. 

Fortunately, electrophysiology is uniquely positioned at the crossroads of many of these 

subfields. Figure 2 details this vision for electrophysiology as a common hub for 

methodological integration and theoretical advancement across preclinical, computational, 

other imaging, and clinical fields. Event-related frontal midline theta band activities are used 

as a common illustrative thread between each major point below.3

3.1 | Computational goals

Cognitive process models, neural network models, and simulations have all led to better 

understanding of the nature of event-related EEG. Cognitive process models offer a way to 

objectively define a specific algorithmic feature that may be expected to be reflected within 

neural circuits. As an example of the evolution of definitions, consider the P3b (also called 

P300). Theoretical accounts of P3b (Donchin, 1981; Johnson, 1986; Nieuwenhuis, Aston-

Jones, & Cohen, 2005; Polich, 2007) suggest that it reflects the meaning- and surprise- 

driven updating of cognitive schema. However, descriptors in these influential reports vary 

among investigator-defined, experiment-specific psychological terms like context, strategy, 

meaning, attention, and working memory. A recent objective, system-defined, quantitative 

interpretation of P3b suggests that it represents the updating of predictive surprise during 

Bayesian estimation (Kolossa et al., 2015), which could be considered a quantitative 

definition of context updating. Admittedly, predictive surprise summarizes the total update 

process, and it does not dissociate the influence of meaning from subjective probability, but 

this is an empirically testable goal. Predictive surprise can also be defined as the evolution of 

evidence during a decision process (Kolossa et al., 2015), also known as the drift rate in drift 

diffusion modeling (Ratcliff, 1978). The drift rate corresponds very closely to the slope of 

the P3b (O’Connell, Dockree, & Kelly, 2012; Philiastides, Heekeren, & Sajda, 2014; 

Twomey, Murphy, Kelly, & O’Connell, 2015). This drift rate-based modeling of P3b slope 

was directly motivated by highly influential work from nonhuman primates detailing how 

neurons can integrate firing rates from lower-level visual stream areas in order to build 

evidence toward a decision (Gold & Shadlen, 2007). This physiological and computational 

interpretation of P3b thus allows translation across multiple fields of the neural sciences (for 

a recent review, see O’Connell, Shadlen, Wong-Lin, & Kelly, 2018). While these studies 

3The use of frontal midline theta as an example throughout is primarily motivated by the author’s familiarity with this measure. This is 
hopefully only one of many suitable signals that can address these topics.
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focus on the generative slope of the P3b, the oft-overlooked downslope may reflect the 

decay of this attractor state (Basar, 1998b) and may simply be a physiological consequence 

of facilitating the algorithmic process of decision formation.

Cognitive process models also offer a way to objectively define how a signal does not reflect 

a specific type of information content. Reinforcement learning defines a special form of 

surprise as a reward prediction error that includes a valence term to motivate behavior (after 

reward) or inhibit it (after punishment). Like the neural responses shown in Figure 1, frontal 

midline theta band power is sensitive to negative reward prediction error (surprising 

punishments: Cavanagh, Frank, Klein, & Allen, 2010). Yet, neither frontal theta nor the N2 

are specific to negative prediction error, as they are both elicited by a variety of surprising 

perceptual or decision events (Folstein & Van Petten, 2008; Holroyd, 2002; Wessel, 

Danielmeier, Morton, & Ullsperger, 2012). Most importantly, frontal theta and N2 can be 

enhanced by highly surprising rewards, particularly if they inform strategic adjustments 

(Cavanagh, Figueroa, Cohen, & Frank, 2012; Oliveira, McDonald, & Goodman, 2007; 

Talmi, Atkinson, & El-Deredy, 2013). This finding demonstrates that this neural response is 

sensitive to other forms of surprise besides negative prediction error. In sum, while frontal 

theta reflects information content that can be highly similar to negative prediction error, it 

does not faithfully represent this construct. Since phasic pauses in midbrain dopamine 

underlie formal negative prediction errors and cortical responses do not reflect this 

information quantity, the theory that these systems work in tandem can be falsified (Holroyd 

& Coles, 2002). We have suggested that the computational goal of this generative system is 

thus not specific to learning and is instead a more generic orienting system involved in 

signaling the need for cognitive control (Cavanagh & Frank, 2014). A generic orienting 

response can then invoke adaptive control processes (see Wessel, 2018), possibly due to 

theta band phase-based coupling between brain regions (Cavanagh, Cohen, & Allen, 2009; 

see Figure 3a). It is fair to call out the irony within this definition, since cognitive control is a 

psychological term. However, computational models have a solution for that, too.

Neural network models have been very influential for defining the information content and 

computational role of frontal control signals (e.g., error-related negativity [ERN], N2, etc.), 

as well as generating testable hypotheses (Holroyd & Coles, 2002; Yeung, Botvinick, & 

Cohen, 2004). Network models allow definitions of high-level latent psychological 

constructs, such as defining “conflict” as Hopfield energy between competing units 

(Hopfield, 1982) and defining “control” as synchronous activity between detector, goal, and 

effector representations (Botvinick, Braver, Barch, Carter, & Cohen, 2001; Yeung et al., 

2004). More recent models have focused on biological plausibility by demonstrating how 

frontal theta oscillations can emerge from reentrant projections and facilitate phase-

amplitude gamma coupling during events indicating the need for control (Gratton, 2018; 

Verguts, 2017). Theory and data can be contrasted with simulations of different event-related 

phase- and power-based perturbations, allowing empirical comparisons of controversial 

issues like oscillatory phase reset and potential influence of filter ringing in the ERN 

(Trujillo & Allen, 2007; Yeung, Bogacz, Holroyd, Nieuwenhuis, & Cohen, 2007). Together, 

these cognitive process, network, and simulation models suggest that frontal theta is a well-

characterized candidate mechanism underlying the ability to realize and communicate the 

need for cognitive control.
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3.2 | Translation

Neural mechanisms are often addressed at molecular and cellular levels, but the extension to 

complex behavior may be best suited by a neural circuit-level perspective. Electrophysiology 

is a promising tool for this extended vision, as it is a viable method for animal-to-human 

translation of complex behaviors. There is good reason to theorize that some scales of 

electrophysiological activities remain preserved across species. There is a marked 

preservation of temporal scales across vertebrate brains, likely due to architectural 

adjustments that evolved to prioritize the retention of temporal coding schemes (Buzsáki, 

Logothetis, & Singer, 2013).

A direct correspondence between a signal in humans and a similar spatiotemporal frequency 

signal in another species would provide ideal evidence of preserved neural processes. 

Nonhuman primates have similar error, conflict, and feedback field responses at the scalp 

(Godlove et al., 2011), dura (Vezoli & Procyk, 2009), and within cingulate cortex (Emeric, 

Leslie, Pouget, & Schall, 2010), although the spectral representation of these signals has not 

been defined. Rats have a frontal midline theta-dominant control network that is transiently 

instantiated following an imperative tone, affording a chance to causally manipulate this 

network and draw parallel conclusions to humans (Narayanan, Cavanagh, Frank, & 

Laubach, 2013). This common theta-band electrophysiological response is diminished in 

Parkinson’s patients as well as in a dopamine depletion rodent model (Parker, Chen, 

Kingyon, Cavanagh, & Narayanan, 2015), allowing a novel model of cognitive dysfunction 

in Parkinsonism.

In the case of an indirect correspondence between a signal in humans and a different 

spatiotemporal frequency signal in rat, a computational approach affords a chance for 

translational logic. Some neural processes may be comparable in their computational goal 

even if they differ in spectral fingerprint; regression with model parameters like reward 

prediction error or drift rate offer a way to objectively define such coding. Sometimes, 

concerns about correspondence between species can be ignored, as there is a lot to be 

learned in preclinical studies that are necessary to inform human-level inferences. 

Computationally informed theories about layer-specific circuit motifs contributing to human 

scalp activity (Cohen, 2014b) may require animal models for testing. A better understanding 

of the role of interneurons in oscillatory sculpting (see Markram et al., 2004) would be very 

helpful, particularly in creating different frequency bands (Chen et al., 2017; Dumitriu, 

Cossart, Huang, & Yuste, 2007), differentiating computational motifs (Womelsdorf et al., 

2014), or enabling long-distance synchrony (Medalla & Barbas, 2009, 2010).

3.3 | Clinical biomarkers

As a preserved measure of primitive information processing, event-related EEG activities are 

promising biomarkers of dysfunction in psychiatric and neurological disease. Frontal theta is 

reliably altered in groups with frontal distress, but this alteration is not isomorphic across 

disease states. Figure 3b shows varied patterns of frontal midline theta power and 

mediolateral phase synchrony in different patient groups (compared to matched controls). 

These findings suggest different deficits in the realization versus the signaling of the need 

for control, which can generate novel hypotheses. For example, current work in my lab is 
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investigating the influence of disturbed white matter tracts on mediolateral phase synchrony 

following acute traumatic brain injury.

A disease biomarker requires sensitive and specific discrimination to an out-of-sample 

participant (Atkinson et al., 2001), which can be assessed through pattern classification 

techniques. Figure 3c shows a proof-of-principle plot of the discrimination of patients from 

controls using frontal theta features. These findings are presented as only a preliminary 

example of this broader idea, since two major methodological issues need to be resolved 

before the discriminability and generalizability of these measures can be assessed. First, 

each data set included only a small number of discriminating features (each detailed in the 

relevant publication), which limits discriminability but enhances generalizability. The 

opposite approach can also be tried—a very large amount of data followed by iterative 

reduction to identify maximally discriminating features (see Cavanagh et al., 2018). 

Classification success will ultimately depend on identification of the ideal balance between 

number and type of neural feature. Second, each of these studies shown in Figure 3c 

included modest numbers of participants. Unfortunately, the scale of data required for robust 

and reliable identification of a clinical biomarker transcends the ability of any single 

laboratory. To surmount these logistical hurdles hindering this clinical goal, we have created 

the open-source Patient Repository for EEG Data + Computational Tools (PRED+CT: 

www.predictsite.com; Cavanagh, Napolitano, Wu, & Mueen, 2017). This site is a fully open 

resource where researchers can test novel approaches to feature selection and pattern 

classification on real patient data. It is hoped that this online data repository will encourage 

data sharing for the purpose of large-scale testing of candidate biomarkers. There are good 

reasons to think that these advancements in EEG techniques can directly improve clinical 

practice and clinical trial outcome, as described below.

4 | CLINICAL PRACTICE

EEG has been used as a biomedical diagnostic tool for nearly a century. Clinical applications 

followed shortly after the widespread communication of scalp EEG in humans in 1929, 

largely due to the utility for directly observing epileptiform activity. Current practice of 

clinical EEG has changed very little since then.

Clinical EEG assessment includes regular outpatient procedures (<2 hr) where a patient is 

assessed by a 21-channel array of scalp electrodes and undergoes rest and evocation 

procedures like photic stimulation and hyperventilation (Sinha et al., 2016); see Figure 4. In 

other words, patients complete tasks while their EEG is recorded in order to inform their 

treatment. The clinical bedside is closer to the lab bench than many researchers realize.

Outpatient procedures are used for seizure detection and medication management, but also 

as a first-line assessment of patients experiencing a change in mental status (sleep problems, 

headaches, syncope, confusion, etc.). Although this procedure is largely completed in order 

to rule out seizures, the breadth of patients who may receive a task-based clinical EEG is 

wide and includes incidental assessment of many disorders such as stroke, attention-deficit 

hyperactivity disorder, or dementia. It doesn’t take a lot of imagination to consider that a 

task added to this short battery could help rule in criteria for these or other diseases. The 
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base rate for any specific neurological or psychiatric disease is low enough to dismiss the 

plausibility of a new EEG-based diagnostic test with global sensitivity and specificity. Yet, if 

a patient is already being treated for a disease, as is common in current clinical practice, then 

this obviates some base rate problems.

4.1 | Mechanisms to biomarkers

The best chance for success may depend on the ability to identify the right task to probe the 

aberrant mechanism underlying a specific disorder, particularly with a task that is clinically 

translatable. While a biomarker does not need to be based on a mechanism, this basis helps 

to reduce the uncertainty of the role a biomarker plays in mediating a treatment effect on a 

clinical end point (Atkinson et al., 2001; Fleming & DeMets, 1996). Both biomarker and 

mechanism differ from an endophenotype, which describes an intermediate expression of 

genetic risk, usually in psychiatric populations (Iacono, 2014; Insel & Cuthbert, 2009). 

Fortuitously, frontal midline theta and related ERP features appear to be viable neural 

mechanisms (Section 3.1), endophenotypes (Kang et al., 2012; Zlojutro et al., 2011), 

diagnostic tools (Figure 3c), and predictors of treatment response (Burkhouse et al., 2016; 

Gorka et al., 2018) for patient groups defined by frontal dysfunction. These signatures can 

be up- and downregulated with pharmacology (Jocham & Ullsperger, 2009) and 

transcranical electric current (Reinhart & Woodman, 2014; Reinhart, Zhu, Park, & 

Woodman, 2015), demonstrating causal control over this signal and downstream effects on 

network instantiation and behavior in humans.

Frontal midline theta can be elicited in simple tasks that are viable within a clinical 

environment. Aberrant auditory orienting responses have already been advanced as 

candidate biomarkers, like diminished mismatch negativity (MMN) in schizophrenia (Javitt, 

Lee, Kantrowitz, & Martinez, 2018; Light et al., 2015) or diminished novelty habituation in 

Parkinson’s disease (Cavanagh et al., 2018). The MMN is a theta-dominant response with 

separable frontal and temporal processes (Fuentemilla, Marco-Pallarés, Münte, & Grau, 

2008; Ko et al., 2012) that may interact with theta-band phase synchrony (Choi et al., 2013). 

The neural systems underlying auditory novelty detection are well detailed in rodent models 

(Escera & Malmierca, 2014; Featherstone, Melnychenko, & Siegel, 2018; Lee et al., 2018), 

facilitating further cross-species translation. Auditory evoked responses are already routinely 

used in brainstem auditory testing for hearing acuity in newborns, again demonstrating that 

clinical infrastructure and expertise exists for applying relevant tasks to patient groups when 

using EEG as a diagnostic tool.

I submit that if there is even one disease state not in the current repertoire of clinical EEG 

that may be sensitively and specifically identified with a novel EEG signal, then it is worth 

tremendous effort to weed through a multitude of candidates in order to advance a single 

success. Advancement to clinical practice is a worthwhile but lofty goal. In the nearer term, 

a candidate EEG-based biomarker may be initially used as a surrogate end point in Phase I 

and Phase II clinical trials, where it could be rapidly applied and efficiently used to screen 

the impact of novel treatments (Fleming & DeMets, 1996; Strimbu & Tavel, 2010).
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4.2 | Conclusion

The identity thesis suggests that, if the brain underlies the mind, then for every 

psychological feature there must be a corresponding neural feature (Cacioppo & Tassinary, 

1990). Cognitive neuroscience relies on the tacit assumption that some of these relationships 

are quantifiable and that they are reliable and valid. Electrophysiology is a uniquely sensitive 

quantification of neural mechanisms and computations, thus it is a uniquely powerful way of 

addressing the identity thesis. We can gain significant traction on these questions by using 

electrophysiology as a theoretical and methodological hub for inference, combining 

strengths across other imaging, computational, and translational fields.

I hope to see the use of electrophysiology as a lingua franca to translate from animal models 

through large-scale human validation studies. This approach may begin with parallel testing 

of human and animal models of cognitive processes using electrophysiology as the outcome 

marker. Computational models will be used for interpretation of the information content of 

these outcome markers. The animal model will facilitate causal testing of the mechanism 

reflected by this signal. Multisite studies in human patients would follow to define the 

sensitivity and specificity of these markers, particularly in comparison or conjunction with 

other imaging markers. Algorithmic performance and generalizability will be boosted by 

having community input on openly available data sets. Successful biomarkers would then be 

directly implemented into clinical trials and clinical practice through existing hospitals and 

neurology clinics, capitalizing on existing infrastructure for a rapid and low-cost 

advancement in the diagnosis, prognosis, and treatment of mental health.
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FIGURE 1. 
Example ERPs and constituent frequency motifs. These ERPs were taken from the FCz 

electrode following punishing feedback in a reinforcement learning task. Data were filtered 

in different frequency bands (arbitrarily scaled) to demonstrate the compound superposition 

of multiple temporally evolving motifs underlying the ERP. While alpha and theta troughs 

combine at the N1, the P2 and N2 are largely theta-specific with global modulation by low-

frequency activity. The P3 is a culmination of both delta and theta peaks. Surprise was 

quantified as the absolute value of the negative reward prediction error (PE). Higher 

information content (high PE) is associated with theta band power increase and a steeper 

delta band slope culminating in a higher peak. Only phase-locked responses are detailed 
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here, providing a partial snapshot of EEG activities to this event. Data and scripts to recreate 

this figure can be downloaded from www.predictsite.com Accession #d006
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FIGURE 2. 
Electrophysiology as a theoretical and methodological hub. Electrophysiological responses 

are particularly amenable to interpretation with computational perspectives (Section 3.1). 

Since they can be recorded in both animals and humans, it offers strong translational 

potential (Section 3.2). The current infrastructure of clinical neurophysiology in hospitals 

suggests that viable biomarkers could be directly applied to clinical practice (Section 3.3)
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FIGURE 3. 
Frontal theta, a candidate mechanism for cognitive control, is not uniformly affected by 

disease states. (a) Frontal midline theta power is enhanced during the need for control, 

whereas mediolateral theta phase synchrony is proposed to reflect the communication of this 

need to lateral frontal areas (Cavanagh & Frank, 2014). (b) Different psychiatric and 

neurological diseases characterized by frontal dysfunction have different patterns of theta 

band dynamics; 1Cavanagh, Meyer, et al. (2017); 2Singh, Pirio Richardson, Narayanan, and 

Cavanagh (2018); 3Ryman et al. (2018). (c) Using features identified in the studies in (b), 

receiver operating characteristic (isosensitivity) plots can be created to determine the 

classification success against a control group. This proof-of-principle plot motivates two 

caveats: First, discriminability can scale with the number of unique predictors. Whereas the 
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paper on Parkinson’s disease identified five unique predictors, generalized anxiety disorder 

had only three, and schizophrenia had one. Second, sample sizes in the dozens are not 

adequate for generalizable discrimination; only through collective action and data sharing 

are we likely to integrate the best set of predictors in large enough data sets to ensure reliable 

biomarkers. Data and scripts to recreate panel (c) can be downloaded from 

www.predictsite.com Accession #t003. AUC = area under the curve
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FIGURE 4. 
Current practice of clinical EEG for outpatient procedures. EEG is routinely assessed in 

clinical inpatient, outpatient, and ambulatory procedures. While it is largely utilized for 

epilepsy and seizure diagnosis, many different patient groups are assessed (largely to rule 

out epilepsy). Outpatient procedures utilize an array of 21 scalp electrodes, and the EEG 

technologist assesses resting activity, photic stimulation, hyperventilation, and light sleep in 

less than 2 hr. The photic stimulation arm is shown here. Video recording is commonly 

embedded with the signal (white sphere with black circle at top). These features demonstrate 

that the infrastructure already exists to capitalize upon any novel task based assessment of an 

EEG feature that contributes to diagnosis or prognosis for neurological or psychiatric disease
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