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Abstract

Purpose of review: Hyperoxaluria can cause kidney disease through multiple mechanisms, 

including tubular obstruction from calcium oxalate crystals, sterile inflammation, and tubular 

epithelial cell injury. Hyperoxaluria is also observed in individuals with diabetes mellitus and 

obesity, which are in turn risk factors for chronic kidney disease. Whether hyperoxaluria is a 

potential mediator of increased risk of chronic kidney disease in diabetes mellitus and obesity is 

unknown.

Recent Findings: Individuals with diabetes have increased levels of plasma glyoxal (a protein 

glycation product) and glyoxylate, both of which are precursors for oxalate. Increased gut 

absorption of oxalate in obesity may be due to obesity-associated inflammation. A recent study in 

individuals with chronic kidney disease found that higher 24h urinary oxalate excretion was 

independently associated with increased risk of kidney disease progression, especially in 

individuals with diabetes and obesity.

Summary: Both diabetes mellitus and obesity are associated with higher urinary oxalate 

excretion through distinct mechanisms. Hyperoxaluria could be a mechanism by which kidney 

disease develops in individuals with diabetes mellitus or obesity and could also contribute to 

progressive loss of renal function. Future research on pharmacologic or dietary measures to limit 

oxalate absorption or generation are required to test whether lowering urinary oxalate excretion is 

beneficial in preventing kidney disease development and progression in diabetes mellitus and 

obesity.
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Introduction

Diabetes mellitus and obesity are massive public health burdens in the United States and 

increasingly around the world. Both conditions lead to premature mortality and accelerated 

Corresponding Author: Sushrut S. Waikar, MD, MPH, Brigham and Women’s Hospital, MRB-4, 75 Francis Street, Boston MA 
02115, 617-732-8473, swaikar@partners.org. 

Conflicts of interest: Dr. Waikar has served as an advisor for Allena Pharmaceuticals.

HHS Public Access
Author manuscript
Curr Opin Nephrol Hypertens. Author manuscript; available in PMC 2020 July 01.

Published in final edited form as:
Curr Opin Nephrol Hypertens. 2019 July ; 28(4): 316–320. doi:10.1097/MNH.0000000000000515.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



morbidities, including kidney disease. Diabetes is the most common cause of chronic kidney 

disease (CKD) and end stage renal disease in the world, and obesity is likely a contributor to 

CKD development and progression.1 Both diabetes and obesity share another kidney-

specific manifestation: nephrolithiasis. The most common constituent of kidney stones is 

calcium oxalate. Interestingly, both diabetes and obesity are independent risk factors for 

higher urinary oxalate excretion, which may account for the increased risk of nephrolithiasis 

observed in the two conditions.2,3 Recently, evidence from animal studies and a prospective 

cohort study have linked oxalate to the development of chronic kidney disease.4,5 In this 

review, we describe the evidence that could implicate hyperoxaluria as a novel mediator of 

CKD pathogenesis and progression in diabetes and obesity (Figure 1).

Overview of oxalate metabolism

Oxalate (C2O4
2−, a dicarboxylic acid) is a terminal metabolite in humans. Oxalate in the 

blood and urine is derived endogenously through metabolism and also exogenously from the 

diet6–8 Endogenous synthesis occurs primarily in the liver, where the most common 

metabolic pathways converge on oxalate’s immediate precursor, glyoxylate, which has 

recently been identified as a potential metabolite marker of type 2 diabetes mellitus.9 

Glyoxylate production in vivo occurs from the metabolism of amino acids (hydroxyproline, 

serine, glycine, tryptophan), glucose, fructose, ascorbic acid, and glycolate.10–13 Another 

precursor of oxalate is glyoxal, which can be a product of cellular peroxidation and protein 

glycation; glyoxal can be directly or indirectly converted into glyoxylate, which is then 

metabolized into oxalate.11,14

Many foods contain oxalate, which is absorbed primarily in the small intestine but also in 

the stomach and large intestine.15 Foods containing high amounts of oxalate include 

spinach, almonds, potatoes, and cocoa. Average daily oxalate intake and absorption varies 

across individuals due to inter-individual differences in absorption and regional differences 

in oxalate content of foods. A major determinant of oxalate absorption is the availability of 

free calcium in the gut: calcium readily and rapidly precipitates with oxalate as CaOx 

complexes, which are absorbed much less than free oxalate.16 Intestinal oxalate absorption 

occurs passively and transcellularly, with variable amounts of absorption vs. secretion 

occurring along the gastrointestinal tract.15,17,18 SLC26 anion exchangers mediate 

transcellular transport and are expressed on both apical and basolateral membranes of the 

human small intestine and colon. Evidence suggests that inflammation-induced changes in 

intestinal oxalate transport could account for obesity-induced hyperoxaluria due to 

suppression of active intestinal oxalate secretion or increased absorption, as described below.
19

Oxalate degradation in the colon can occur through oxalate-metabolizing gut flora including 

Oxalobacter formigenes and other bacterial species20,21. Fecal excretion accounts for <10% 

of oxalate excretion.18

Circulating oxalate is freely filtered at the glomerulus, reabsorbed, and secreted by the 

proximal tubule.22,23 The 24h urinary excretion of oxalate is a reflection of dietary oxalate 

intake, net intestinal absorption (accounting for fecal excretion and colonic degradation), 
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and endogenous oxalate synthesis from the liver. Hyperoxaluria therefore can occur from 

multiple causes. In human studies that have examined predictors of 24h urinary oxalate 

excretion in stone formers, clinical variables that have been linked to higher urinary oxalate 

excretion include age, higher BMI, diabetes, and higher fructose and oxalate intake.2,24 In a 

study involving individuals with CKD, factors independently associated with higher urinary 

oxalate excretion included diabetes, white vs. black race, thiazide diuretic use, and lower 

urinary calcium excretion and lower serum calcium.4 Hyperoxaluria is also observed in the 

primary hyperoxalurias, autosomal recessive disorders due to mutations in enzymes involved 

in oxalate metabolism, and as a secondary condition in enteric hyperoxaluria, due to 

increased intestinal absorption of oxalate.

Diabetes Mellitus and Urinary Oxalate Excretion

24h urine excretion of oxalate has been found to be higher in individuals with vs. without 

diabetes mellitus in multiple studies. Diabetes mellitus is associated with an increased risk 

for kidney stone formation, and calcium oxalate stones are the most common type of kidney 

stones.25–27 In a study of 3,123 individuals with established CKD, diabetes mellitus was 

independently associated with higher urinary oxalate excretion: after adjustment for a 

number of variables including medications, body mass index, age, race, sex, and laboratory 

tests, individuals with diabetes mellitus had 11% higher 24h urinary oxalate excretion than 

those without diabetes.4

Glyoxylate, the immediate precursor of oxalate, has been identified through metabolomic 

profiling of human plasma to be a potential metabolite marker of diabetes mellitus.9,28,29 A 

retrospective analysis of long-term blood donors found that elevated serum glyoxylate levels 

pre-dated the diagnosis of diabetes mellitus by up to 3 years, in analyses performed with 

matching for age, gender, and BMI.9 In a mouse model of diabetes (C57BLKS/J-Lepr−/−), 

glyoxylate levels were 6-fold higher in diabetic mice than control mice.9

Another potential precursor of oxalate is glyoxal, an alpha-oxoaldehyde which can be 

generated from the glycation of proteins or from lipid peroxidation from hyperglycemia in 

diabetes.28,30 Glyoxal has been hypothesized to be an important source of endogenous 

oxalate synthesis in humans and a source of oxidative stress.11,31. In a small study, glyoxal 

was found in a HPLC-UV screen of alpha-dicarbonyl compounds to be elevated in the 

plasma of individuals with diabetes compared with healthy subjects, and to correlate with 

HBA1C, fasting glucose, and microalbuminuria.31 Another related alpha-oxoaldehyde, 

methylglyoxal, was also found to be associated with incident cardiovascular disease and 

mortality in prospective studies of 1,003 type 2 and 159 type 1 diabetic patients.32,33 

Baseline and six-year longitudinal methylglyoxal levels were inversely correlated eGFR in 

1481 screen-detected type 2 diabetic patients.34 In a prospective three-year observational 

study of 150 individuals with CKD stages 3–5, higher methylgloxal levels (tertiles 2 and 3 

compared with tertile 1) were associated with a >2-fold and > 6-fold increased risk for 

progression to ESRD, respectively.35
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Obesity and Urinary Oxalate Excretion

Higher BMI was independently linked to higher urinary oxalate excretion in the Health 

Professionals Follow-Up Study, Nurses’ Health Study, and Nurses’ Health Study II.3 In the 

Chronic Renal Insufficiency Cohort (CRIC) study, higher BMI was associated with higher 

urinary oxalate excretion in unadjusted analyses, but not after multivariable adjustment.4 

Obesity is known risk factor for nephrolithiasis,36 which is most commonly due to calcium 

oxalate containing stones.

Two recent studies identified mechanisms of hyperoxaluria in obesity, highlighting the role 

of inflammation.37,38 Amin et al. found evidence using the obese ob/ob mouse model to 

support reduced active intestinal oxalate secretion from local and systemic inflammation as a 

cause for a reduction in fecal excretion of oxalate.38 Bashir et al. from the same laboratory 

also found evidence for increased paracellular absorption of oxalate all along the 

gastrointestinal tract.37 They also found that proinflammatory cytokines and oxidative stress, 

which are elevated in obesity, significantly enhanced paracellular intestinal absorption of 

oxalate in vitro and ex vivo. These studies highlight an important role for increased gut 

absorption and decreased gut secretion – both of which are enhanced by inflammation – as a 

cause of obesity-associated hyperoxaluria.

Evidence on the association between urinary oxalate excretion and CKD

In 3,123 CRIC participants,4 higher levels of urinary oxalate excretion (≥ 40th percentile 

compared with < 40th percentile) were found to be associated with a 32% higher risk of 

kidney disease progression and 37% higher risk of ESRD in multivariable-adjusted analyses. 

Cross-sectionally, higher urinary oxalate excretion was observed in those with lower eGFR 

and greater albuminuria. In prospective analyses of kidney function decline, the strongest 

signals were observed in those with higher BMI (45% higher risk of ESRD) and those with 

diabetes mellitus (44% higher risk of ESRD). A review of renal biopsy cases described the 

association of oxalate nephropathy as a cause of progressive CKD and ESRD.39 The 

mechanisms by which oxalate can cause kidney injury have also been explored in several 

animal studies5,40,41. Sterile inflammation from the intracellular nucleotide-binding domain, 

leucine-rich repeat–containing receptor, pyrin domain–containing-3 (NLRP3) 

inflammasome activation has been reviewed as a key mechanism underlying the observation.
5,41 CKD models from oxalate feeding have also been introduced as a reproducible model of 

chronic kidney disease that recapitulates the clinical manifestations of CKD in humans.5,42 

Recently, Saenz et al. found that metabolic syndrome contributes to hyperoxaluria-induced 

renal injury in a murine model of nephrolithiasis, consistent with the observation in CRIC of 

a stronger signal of the oxalate association with kidney dysfunction in those with higher 

BMI.43

Potential for future therapeutics

If the association between hyperoxaluria and CKD in the setting of diabetes and/or obesity is 

indeed causal, then therapeutic strategies aimed at lowering urinary oxalate excretion may 

prove fruitful to prevent CKD or slow its progression. Reducing oxalate absorption from the 
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gastrointestinal tract may be accomplished by dietary modifications (e.g., avoiding high 

oxalate-containing foods; supplemental calcium), medications to bind oxalate in the gut 

(e.g., calcium or non-calcium-containing phosphorous binders44), or medications to 

enzymatically degrade in the gastrointestinal tract.45 Reducing oxalate generation by the 

liver is being explored for the treatment of primary hyperoxaluria using gene-targeting 

technologies to inhibit enzymes involved in oxalate metabolism.46,47 Recently, Le Dudal et 

al. showed promising results with stiripentol, an antiepileptic drug that inhibits lactate 

dehydrogenase 5 isoenzyme (the last step of hepatic oxalate production).48 Stiripentol 

reduced oxalate generation in vitro and in rat models protected kidneys from oxalate-

induced injury from ethylene glycol intoxication and chronic calcium oxalate nephropathy. 

The authors also found lower oxalate excretion in a small number of patients treated with 

stiripentol and used the drug to reduce urinary oxalate excretion in a young girl with severe 

type 1 hyperoxaluria.

Conclusion

Both diabetes and obesity are associated with increased absorption or generation of oxalate, 

which in turn may increase the risk of kidney injury. Whether targeting oxalate generation or 

absorption could be protective in diabetes or obesity will require additional investigation.
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Key points:

• Diabetes mellitus and obesity are both associated with higher urinary oxalate 

excretion and increased risk of kidney stones.

• Diabetes mellitus and obesity are also risk factors for chronic kidney disease

• Oxalate can cause kidney injury through multiple mechanisms, including 

obstruction and sterile inflammation

• The association of diabetes mellitus and obesity with chronic kidney disease 

raises the question whether oxalate may be a mediator

• Further study is required to evaluate whether targeting oxalate absorption or 

generation could be protective in diabetes mellitus or obesity
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Figure 1. 
A schematic depicting how higher levels of oxalate absorption or generation in diabetes or 

obesity could contribute to the development or progression of chronic kidney disease.
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