
Comprehensive integration of single-cell data

Tim Stuart1,*, Andrew Butler1,2,*, Paul Hoffman1, Christoph Hafemeister1, Efthymia 
Papalexi1,2, William M. Mauck III1,2, Yuhan Hao1,2, Marlon Stoeckius3, Peter Smibert3, Rahul 
Satija1,2,**

1New York Genome Center, New York City, NY, USA

2Center for Genomics and Systems Biology, New York University, New York City, NY, USA

3Technology Innovation Lab, New York Genome Center, New York City, NY, USA

Abstract

Single cell transcriptomics has transformed our ability to characterize cell states, but deep 

biological understanding requires more than a taxonomic listing of clusters. As new methods arise 

to measure distinct cellular modalities, a key analytical challenge is to integrate these datasets to 

better understand cellular identity and function. Here, we develop a strategy to “anchor” diverse 

datasets together, enabling us to integrate single cell measurements not only across scRNA-seq 

technologies, but different modalities as well. After demonstrating improvement over existing 

methods for integrating scRNA-seq data, we anchor scRNA-seq experiments with scATAC-seq to 

explore chromatin differences in closely related interneuron subsets, and project protein 

expression measurements onto a bone marrow atlas to characterize lymphocyte populations. 

Lastly, we harmonize in-situ gene expression and scRNA-seq datasets, allowing transcriptome-

wide imputation of spatial gene expression patterns.Our work presents a strategy for the assembly 

of harmonized references, and transfer of information across datasets.
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Introduction

Recent advances in molecular biology, microfluidics, and computation have transformed the 

growing field of single-cell sequencing beyond routine transcriptomic profiling with single-

cell RNA-seq (scRNA-seq)[Svensson et al., 2018, Tanay and Regev, 2017, Stuart and Satija, 

2019]. Indeed, new approaches now encompass diverse characterization of a single cell’s 

immunophenotype [Stoeckius et al., 2017, Peterson et al., 2017], genome sequence [Navin et 

al., 2011, Vitak et al., 2017], lineage origins [Raj et al., 2018, Spanjaard et al., 2018, 

Alemany et al., 2018], DNA methylation landscape [Luo et al., 2018, Gavin et al., 2017], 

chromatin accessibility[Cao et al., 2018, Lake et al., 2018, Preissl et al., 2018], and even 

spatial positioning [Moffitt et al., 2018, Wang et al., 2018, Codeluppi et al., 2018]. However, 

each technology has unique strengths and weaknesses, and measures only particular aspects 

of cellular identity, motivating the need to leverage information in one dataset to improve the 

interpretation of another.

The importance of data integration is particularly relevant for approaches that aim to 

measure distinct modalities within single cells. For example, single-cell ATAC-seq 

(scATAC-seq) can uniquely reveal enhancer regions and regulatory logic, but currently may 

not achieve the same power for unsupervised cell type discovery as transcriptomics 

[Cusanovich et al., 2018, Lake et al., 2018]. Similarly, methods for multiplexed spatial RNA 

profiling using in-situ hybridization can capture the intricate architecture of tissue 
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organization, but are unable to profile the whole transcriptome [Moffitt et al., 2018]. For 

example, the recently introduced STARmap method enables the measurement of more than 

1,000 genes in spatially intact tissue, but forecast this number of genes as an upper limit for 

such approaches without super-resolution microscopy or the physical expansion of 

hydrogels [Wang et al., 2018]. The integration of different single-cell technologies with 

scRNA-seq, such as spatial profiling methods or scATAC-seq, could therefore harmonize 

these data with transcriptome-wide measurements, allowing not just for the taxonomic 

listing of cell types, but a deeper understanding of their regulatory logic and spatial 

organization.

The challenges presented by single-cell data integration can be broadly subdivided into two 

tasks. First, how can disparate single-cell datasets, produced across individuals, 

technologies, and modalities be harmonized into a single reference? Second, once a 

reference has been constructed, how can its data and meta-data improve the analysis of new 

experiments? These questions are well-suited to established fields in statistical learning. In 

particular, domain adaptation aims to identify correspondences across domains to combine 

datasets into a shared space [Blitzer et al., 2006, Wang and Mahadevan, 2010], while 

transfer learning enables a model trained on a reference dataset to project information onto a 

query experiment [Raina et al., 2007, Stein-O’Brien et al., 2018]. More broadly, these 

problems are conceptually similar to reference assembly [Li et al., 2012] and mapping 

[Langmead et al., 2009] for genomic DNA sequences, and the development of effective tools 

for single-cell datasets could enable similarly transformative advances in our ability to 

analyze and interpret single-cell data.

Recent approaches have established the first steps towards effective data integration. In 

particular, we recently introduced the use of canonical correlation analysis (CCA) [Butler et 

al., 2018], alongside independent pioneering work leveraging the identification of mutual 

nearest neighbors (MNNs) [Haghverdi et al., 2018], to identify shared subpopulations across 

datasets. While these approaches can be highly effective, they can also struggle in cases 

where only a subset of cell types are shared across datasets, or significant technical variation 

masks shared biological signal. New probabilistic approaches for scRNA-seq data 

normalization and analysis using neural networks have also been recently introduced, with 

the advantage that they scale to very large datasets and explicitly model batch effects [Lopez 

et al., 2018]. However, these methods focus on scRNA-seq and are not designed to integrate 

information across different modalities, nor do they enable the transfer of information from 

one dataset to another.

Here, we present a unified strategy for reference assembly and transfer learning for 

transcriptomic, epigenomic, proteomic, and spatially-resolved single-cell data. Through the 

identification of cell pairwise correspondences between single cells across datasets, termed 

“anchors”, we can transform datasets into a shared space, even in the presence of extensive 

technical and/or biological differences. This enables the construction of harmonized atlases 

at the tissue or organismal scale, as well as effective transfer of discrete or continuous data 

from a reference onto a query dataset. Our results, implemented in an updated version 3 of 

our open-source R toolkit Seurat, present a framework for the comprehensive integration of 

single-cell data.
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Results

Diverse single-cell technologies each measure distinct elements of cellular identity, and are 

characterized by unique sources of bias, sensitivity, and accuracy [Svensson et al., 2017]. As 

a result, measurements across datasets may not be directly comparable. For example, 

expression measurements for scRNA-seq are marred by false negatives (“drop-outs”) due to 

transcript abundance and protocol-specific biases [Svensson et al., 2017, van Dijk et al., 

2018], while expression derived from fluorescence in-situ hybridization (FISH) exhibits 

probe-specific noise due to sequence specificity and background binding [Torre et al., 2018]. 

To address this, we developed an unsupervised strategy to “anchor” datasets together to 

facilitate integration and comparison. Below we briefly summarize the steps in our 

approach, alongside a complete description in the Methods, and describe its application to 

diverse published and newly produced single-cell datasets.

Identifying “anchor” correspondences across single-cell datasets

Our motivation for integrating diverse datasets lies in the potential for the information 

present in one experiment to inform the interpretation of another. In order to relate different 

experiments to each other, we assume that there are correspondences between datasets, and 

that at least a subset of cells represent a shared biological state. Inspired by the concept of 

mutual nearest neighbors (MNNs), we represent these correspondences as two cells (one 

from each dataset) that we expect to be defined by a common set of molecular features 

[Haghverdi et al., 2018]. While MNNs have previously been identified using L2-normalized 

gene expression, significant differences across batches can obscure the accurate 

identification of MNNs, particularly when the batch effect is on a similar scale to the 

biological differences between cell states. To overcome this, we first jointly reduce the 

dimensionality of both datasets using diagonalized canonical correlation analysis (CCA), 

then apply L2-normalization to the canonical correlation vectors (Figure 1A,B). We next 

search for MNNs in this shared low-dimensional representation. We refer to the resulting 

cell pairs as “anchors”, as they encode the cellular relationships across datasets that will 

form the basis for all subsequent integration analyses (Figure 1C). Our anchors can 

successfully recover matching cell states even in the presence of significant dataset 

differences, as CCA can effectively identify shared biological markers and conserved gene 

correlation patterns [Butler et al., 2018]. However, cells in non-overlapping populations 

should not participate in anchors, representing an important distinction that extends our 

previous work.

Obtaining an accurate set of anchors is paramount to successful integration. Aberrant 

anchors that form between different biological cell states across datasets are analogous to 

noisy edges that occur in K-nearest neighbor (KNN) graphs [Bendall et al., 2014], and can 

confound downstream analyses. This has motivated the use of shared nearest neighbor 

(SNN) graphs [Levine et al., 2015, Shekhar et al., 2016], where the similarity between two 

cells is assessed by the overlap in their local neighborhoods. As this measure effectively 

pools neighbor information across many cells, the result is robust to aberrant connections in 

the neighbor graph. We introduced an analogous procedure for the scoring of anchors, where 

each anchor pair was assigned a score based on the shared overlap of mutual neighborhoods 
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for the two cells in a pair (Figure 1D; STAR Methods). High-scoring correspondences 

therefore represent cases where many similar cells in one dataset are predicted to correspond 

to the same group of similar cells in a second dataset, reflecting increased robustness in the 

association between the anchor cells. While we initially identify anchors in low-dimensional 

space, we also filter out anchors whose correspondence is not supported based on the 

original untransformed data (STAR Methods). The identification, filtering, and scoring of 

anchors is the first step for all integration analyses in this manuscript, including reference 

assembly, classification, and transfer learning.

Constructing integrated atlases at the scale of organs and organisms

To assemble a reference of single-cell datasets in Seurat v3, we aim to identify a non-linear 

transformation of the underlying data, so that they can be jointly analyzed, in a process 

conceptually similar to batch correction. We first identify and score anchors between pairs of 

datasets (referred to as “reference” and “query” datasets) as described above (Figure 1A-D). 

As introduced by [Haghverdi et al., 2018], the difference in expression profiles between the 

two cells in each anchor represents a batch vector. Therefore, for each cell in the query 

dataset, we aim to apply a transformation (correction vector) that represents a weighted 

average across multiple batch vectors. These weights are determined by two components: a 

cell similarity score, computed individually for each cell in the dataset, and the anchor score, 

computed once for each anchor. The cell similarity score is defined by the distance between 

each query cell and its k nearest anchors in principal component space (STAR Methods), 

prioritizing anchors representing a similar biological state. Consequently, cells in the same 

local neighborhood will share similar correction vectors. The anchor score prioritizes robust 

anchor correspondences, as described above. By subtracting these weighted correction 

vectors from the query gene expression matrix, we compute a corrected query expression 

matrix that can then be combined with the original reference dataset, and used as input for 

all integrated downstream analyses including dimensionality reduction and clustering. To 

extend this procedure to multiple datasets, we drew inspiration from methods for multiple 

sequence alignment [Feng and Doolittle, 1987]. Here, we first construct a guide tree based 

on the similarity between all pairs of datasets and proceed with recursive pairwise correction 

up the tree. The similarity score used to construct the hierarchy is computed as the total 

number of anchors between a pair of datasets, normalized to the total number of cells in the 

smaller dataset of the pair. This extension for multiple dataset integration was independently 

conceived but conceptually similar to the Scanorama method [Hie et al., 2018].

We hypothesized that our anchoring method could be used to create a reference atlas of 

complex human tissue, by combining diverse datasets across patients, technologies, and 

laboratories. We examined a collection of eight previously published datasets using tissue 

from human pancreatic islets, spanning 27 donors, five technologies, and four laboratories 

[Baron et al., 2016, Lawlor et al., 2017, Grün et al., 2016, Muraro et al., 2016, Segerstolpe et 

al., 2016]. Before correcting for technical differences, the cells separated by a combination 

of dataset of origin and cell type, hindering downstream analysis (Figure S1A). After 

applying our integration procedure, technical distinctions between datasets were effectively 

removed (Figure S1B), while major and minor cell populations could be identified through 

unsupervised graph-based clustering (Figure S1C,D). In addition to reliably detecting all 
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major cell classes present in all datasets (alpha, beta, delta, gamma, acinar, and stellate), we 

also detected a set of extremely rare cell populations in a subset of the datasets that could not 

be robustly identified through individual unsupervised clustering analyses (epsilon, 

schwann, mast and macrophage; Figure S1C).

To examine the robustness of our method to non-overlapping populations, we removed all 

instances of one cell type from each dataset (e.g. we removed all alpha cells from the celseq 

dataset, all beta cells from the SMART-seq2 dataset, etc.; Table S1A). We then repeated the 

same integration analysis, and obtained highly concordant results after applying this 

perturbation (Figure 2A). Our robustness originates in part from the anchor scoring 

approach, as we observed that erroneous anchors in which the query and reference cells 

belong to different clusters were assigned lower scores compared to consistent anchors and 

therefore were given less weight in the resulting transformation (Figure 2I). Furthermore, we 

observed far fewer “incorrect” anchors compared to correct anchors, reflecting the accuracy 

of our anchor finding method (Figure 2J).

Using these perturbed datasets, we next benchmarked the performance of our Seurat v3 

integration procedure against existing methods (Figure 2A-H). For each tool, we aimed to 

quantify how well mixed the datasets were after integration, and how well they preserved the 

structure present in the original datasets (STAR Methods). Methods that perform well in 

both metrics effectively match populations across datasets without blending distinct 

populations together. We also calculated silhouette coefficients based on our predefined 

labels, a measure of how similar a cell is to its own cluster compared to other clusters. This 

gives a score in the range of −1 to +1, where a higher score indicates higher performance. 

The silhouette coefficient captures elements of both sample mixing and local structure. 

Seurat v3 exhibited the highest silhouette scores and performed well on all other metrics 

(Figure 2K,L). We obtained equally positive results and benchmarks when examining six 

batches of murine bipolar cells, which have previously been demonstrated to exhibit batch 

effects[Shekhar et al., 2016] (Figure 2J,K; Figure S1E,F). We conclude that our anchoring 

procedure can effectively integrate diverse scRNA-seq datasets and outperforms existing 

strategies for data integration.

We also considered the potential for our procedure to construct atlases not only at the level 

of individual tissues, but across entire organisms. To test this, we considered recently 

published datasets from Tabula Muris [Schaum et al., 2018], which aimed to profile a 

diverse set of murine tissues using plate (SMART-seq2) and droplet (10x Genomics) based 

assays. These data represent an enormously valuable community resource, but the utility of a 

single atlas requires that the datasets be harmonized. We identified anchors across 97,029 

single cells, representing 18 tissues (12 tissues were represented in both datasets, 6 were 

only profiled using SMART-seq2), and applied these to integrate the datasets. Integrated 

visualization revealed extensive mixing of shared cell populations across the two 

technologies (Figure S2A,B), but cells from the six non-overlapping tissues were not mixed 

and retained their structure from the original dataset (Figure S2C,D). In particular, we note 

that this harmonized resource provides exceptional power to detect rare populations, such as 

tissue-resident plasmacytoid dendritic cells (0.07% cells, detected in 9 tissues), and 

mesothelial cells (0.05% cells, detected in 5 tissues), that could not be robustly identified in 
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individual dataset analysis (Figure S2C,E,F). These results suggest an analytical path 

forward when similar atlas-scale datasets are generated across human tissues with diverse 

technologies [Regev et al., 2017].

Leveraging anchor correspondences to classify cell states

We next extended our method to transfer information from a reference to a query dataset. We 

reasoned that anchors could be used to transfer discrete and continuous data onto query 

datasets, without modification of the reference. We first considered the problem of cell state 

classification, where discrete cell labels are learned from reference-derived models, rather 

than being discovered de novo by unsupervised analysis.

As with dataset integration, we approached the classification problem by first identifying 

anchors between the reference and query datasets. We use the same procedure to identify 

anchors, with the option to define our search space by projecting a previously computed 

reference PCA structure onto the query data as opposed to using CCA (STAR Methods). 

Projecting a query dataset onto an existing PCA structure is more efficient in cases where 

the query and reference datasets do not exhibit substantial batch differences, when working 

with a large reference dataset, or when classifying a homogeneous query population. Once 

we identified anchors, the annotation of each cell in the query set is achieved using a 

weighted vote classifier based on the reference cell identities, where the weights are 

determined by the same criteria used in computing the correction vectors for integration 

(Figure 3A). Since multiple anchors will contribute to the classification of each query cell, 

these predictions are informed by a cell’s local neighborhood, increasing the overall 

robustness of the classification call. Additionally, this approach provides a quantitative score 

for each cell’s predicted label. Cells that are classified with high confidence will receive 

consistent votes across anchors whereas cells with low confidence, including cells that are 

not represented in the reference, should receive inconsistent votes and therefore lower 

scores.

We tested our classification in Seurat v3 alongside recently proposed solutions leveraging 

correlation and nearest-neighbor based classifiers: scMap-cluster and scMap-cell [Kiselev et 

al., 2018]. Using the pancreatic islet and retinal bipolar datasets previously described (Figure 

2), we constructed 166 evaluation cases by splitting data into reference and query sets. In 

each case, we also removed instances of a single cell population (withheld class; e.g.alpha 

cells) from the reference, and then proceeded with classification (STAR Methods). We 

evaluated classification accuracy by considering the percentage of query cells assigned the 

correct label, but also examined whether query cells in the withheld class received the lowest 

classification scores (and were therefore classified as “unassigned”). Seurat v3 consistently 

received the highest classification accuracy (Figure 3B,C), and correctly assigned low 

classification scores to query cells that were not represented in the reference (Figure 3B). We 

note that our increased accuracy stems in part from our ability to use the local neighborhood 

of a cell to increase the robustness of classification, while scMap classifies each cell 

individually. Additionally, we found that our incorrect predictions were associated with 

substantially lower classification scores, allowing for the prioritization of high-confidence 

calls (Figure 3D).
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Projecting cellular states across modalities

We next examined the possibility of applying our classification strategy to transfer cell 

labels across modalities. For example, we explored whether we could classify individual 

nuclei from a scATAC-seq dataset based on a reference of transcriptomic states. The 

potential utility of this approach is underscored by recent studies which have found that 

scATAC-seq does not currently match the power of scRNA-seq for unsupervised discovery 

of cell states, including a recently generated scATAC-seq landmark resource of >100,000 

nuclei from 13 mouse tissues [Cusanovich et al., 2018]. For example, 3,482 cells from the 

prefrontal cortex revealed a cluster of inhibitory interneurons, representing an exciting 

resource for studying the chromatin accessibility landscape of inhibitory vs. excitatory 

neurons, but could not identify well-characterized interneuron subdivisions. Importantly, the 

authors derive a “gene activity matrix” from the scATAC-seq profiles, utilizing observed 

reads at gene promoters and enhancers as a prediction of gene activity [Pliner et al., 2018], 

representing a synthetic scRNA-seq dataset to leverage for integration.

We reasoned that if we could successfully transfer scRNA-seq derived class labels onto 

scATAC-seq profiles, we may be able to reveal finer distinctions among the cell types. We 

therefore considered a deeply sequenced SMART-seq2 scRNA-seq reference dataset (14,249 

cells) of the mouse visual cortex from the Allen Brain Atlas [Tasic et al., 2016, 2018], and 

identified anchors between the scRNA-seq and scATAC-seq using the gene activity matrix 

derived from scATAC-seq profiles. Joint visualization of the two datasets (STAR Methods) 

suggested that similar levels of diversity could be identified through integration (Figure 3E). 

Indeed, by transferring the previously published scRNA-seq celltype labels, we were able to 

confidently classify 2,420 scATAC-seq cells (projection score > 0.5), into 17 clusters, 

including eight excitatory and four inhibitory populations (Table S1D). Our classifications 

were consistent with the published labels derived from unsupervised analysis, but revealed 

substantially increased diversity. For example, 87% of the previously annotated inhibitory 

neurons were classified as inhibitory in our analysis, but were split into four groups, 

representing both medial ganglionic eminence (MGE)-derived (SST and PV subsets), and 

caudal ganglionic eminence (CGE)-derived (Vip and Lamp5) subsets. We also observed a 

cluster of scATAC-seq cells (highlighted in Figure S3A) that express gene activity markers 

of multiple neuronal lineages (Figure S3B) and did not have a strong correspondence to an 

scRNA-seq cluster, likely representing nuclear multiplets. Pooling nuclei within each 

projected class together, we obtained pseudo-bulk ATAC-seq profiles. This revealed cell-

type specific regulatory loci whose accessibility profiles were consistent with expected 

patterns for all inhibitory cells (Gad2), MGE-derived populations (LHX6), and subset-

specific markers (Pvalb, Sst, Vip, Id2; Figure 3F)[Mayer et al., 2018]. We focused on the PV 

and SST classes, representing to our knowledge the first efforts to derive and compare 

genome-wide accessibility landscapes for these closely related interneuron subgroups.

We next performed de-novo motif analysis in an attempt to discover cis-regulatory DNA 

sequences that differentially regulate PV and SST interneurons. While few validated 

regulators that drive specific interneuron fate decisions are known, we have previously 

shown that the transcription factor Mef2c is upregulated in embryonic precursors of PV 

interneurons, and is specifically required for their development [Mayer et al., 2018]. 
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Strikingly, our scATAC-seq analysis revealed a strong enrichment for Mef-family motifs 

(including Mef2c) in peaks with increased PV-accessibility, representing the highest-scoring 

motif (Figure 3G). We observed other motifs for putative regulators, including the putative 

regulator Rora [Sato et al., 2004] (Figure 3G). Intriguingly, as with Mef2c, Rora also 

exhibits RNA upregulation in PV compared to SST interneurons (Figure 3H), and may also 

play roles in fate specification. Taken together, these results highlight the role of Mef2c and 

other transcription factors in establishing or maintaining the chromatin landscape necessary 

to express the functional receptors and transporters that establish the specific identity of PV 

cells.

We performed a similar analysis in human peripheral blood mononuclear cells (PBMCs), 

integrating scRNA-seq and scATAC-seq datasets produced with the 10x Genomics 

Chromium system [Zheng et al., 2017]. We classified scATAC-profiles into 13 

transcriptional states derived from scRNA-seq clustering (Figure S3C), and co-embed the 

datasets in a unified visualization (Figure S3D,E). As bulk ATAC-seq data is available for 

FACS-sorted populations of human immune cell subsets [Corces et al., 2016], we 

experimentally validated our predictions by comparing FACS-sorted ATAC-seq profiles with 

pseudo-bulk profiles obtained from our classified scATAC-seq cells. We observed high 

concordance between bulk and pseudo-bulk accessibility profiles for each of the cell types, 

both around key marker genes (Figure S3F) and on a genome-wide scale (Figure S3G). 

However, we also identified rare cases where we were unable to identify correspondences 

across datasets due to biological, technical, and computational factors. While platelet cells 

were observed in the scRNA-seq dataset, due to the presence of residual RNA from their 

mother megakaryocyte cell, these cells are not nucleated and we correctly failed to identify 

any platelet cells in the scATAC-seq dataset. However, we also observed two populations 

present in the scATAC-seq data that appeared to have no match in the scRNA-seq dataset. 

One population displayed a high proportion of reads mapping to genomic blacklist regions 

(Figure S3H), and so likely represent dead or dying cells, ambient DNA, or a technical 

artifact specific to scATAC-seq. Another population was predicted to represent CD14+ 

Monocytes, but were not fully mixed by co-embedding visualization with the CD14+ 

Monocytes from the scRNA-seq dataset (Figure S3I). However, we did not identify any 

differences in gene activities between these groups (Figure S3I), and these differences may 

be an artifact of the integration procedure. In this case the artifact is subtle, and did not 

prohibit the correct discrete classification of these cells. However, this demonstrates how 

exploring the underlying molecular data in each dataset independently is an important step 

in interpreting the results of an integrated analysis.

Our results demonstrate the potential for transferring scRNA-seq derived annotations onto 

chromatin accessibility data. We emphasize that this strategy requires an initial step where 

scATAC-seq data is converted to a predicted gene expression matrix [Pliner et al., 2018]. 

Existing strategies for this task likely assume that chromatin accessibility is positively 

correlated with gene expression. While this assumption has generally held true and enabled 

the prior interpretation of scATAC-seq data in the developed brain [Cusanovich et al., 2018, 

Lake et al., 2018], there may be cases where accessibility is a poor proxy for transcriptional 

output, particularly in developing systems where chromatin changes may precede gene 

expression [Lara-Astiaso et al., 2014]. In these cases, we expect that we would not be able to 
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form consistent anchors across datasets. However, effective integration can occur even if 

only a subset of features exhibit coordinated behavior across RNA and chromatin modalities, 

similar to how cross-species scRNA-seq datasets can be effectively integrated even when 

only a subset of gene expression markers are conserved [Butler et al., 2018].

Transferring continuous and multimodal data across experiments

Though we previously demonstrated how anchors could be utilized to transfer discrete 

classifications across datasets, we reasoned that the same methods could be used to transfer 

continuous data as well. This is of particular interest for the growing suite of multimodal 

single-cell technologies that measure multiple aspects of cellular identity. Transfer learning 

could therefore be used to fill in missing modalites in key datasets. For example, the Human 

Cell Atlas recently released a freely available resource of 274,932 healthy bone marrow cells 

from 8 donors [Li et al., 2018]. This represents an extraordinary community resource to 

study the human immune system, but does not contain cell surface protein measurements, 

which could substantially improve the ability to interpret and annotate this resource. We 

hypothesized that by generating a human bone marrow dataset with our recently developed 

CITE-seq technology [Stoeckius et al., 2017], where immunophenotypes are measured in 

parallel with transcriptomes, we could effectively transfer protein expression data to the 

HCA dataset. Additionally, we highlight that this method can be successful even in the 

absence of correlation between RNA and protein for individual genes (e.g. between Cd4 
transcript and CD4 protein), though it does require that a combination of genes exhibit 

expression patterns that are correlated with cellular immunophenotype (e.g, modules of 

markers for CD4+ T cells).

Predicting protein expression in human bone marrow cells

We performed a CITE-seq experiment on human bone marrow cells [Stoeckius et al., 2017], 

capturing 33,454 cells for which we measured cellular transcriptomes alongside 25 cell-

surface proteins representing well-characterized markers (median 4,575 RNA unique 

molecular identifiers [UMIs] and 2,312 antibody-derived tag [ADT] UMIs per cell; Table 

S1C, S1D; Supplementary File 1). We first performed cross-validation within the CITE-seq 

data by randomly assigning cells to a reference or query dataset, and identified anchors 

between them. As with our discrete classifications, we predicted protein levels in the query 

dataset using a weighted average of CITE-seq counts from the reference anchor cells, which 

we then compared with the original measurements (Figure 4A).

For most proteins (23/25), we observed strong correlation between the measured and 

imputed expression levels (Figure 4A,B; median R=0.826), with the remaining residual 

encompassing background CITE-seq binding (perhaps driven by differences in cell size), 

stochastic variation in protein expression, or technical noise. In the two cases where we 

observed poor correlations, either poor antibody specificity or a lack of transcriptomic 

markers that correlate with immunophenotype could explain these results. Indeed, 

examination of the patterns of expression for these two proteins (CD25 and CD197-CCR7) 

show sporadic ADT binding across all cells, indicating a possible non-specific binding of the 

antibody confounding the biological signal (Supplementary File 1). By downsampling RNA 

features used to identify anchors and repeating the cross-validations, we found that 
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prediction accuracy began to saturate at approximately 250–500 features (Figure 4B), 

suggesting that only a subset of shared genes need to be measured across experiments in 

order to transfer additional modalities across datasets.

Having demonstrated our ability to accurately impute immunophenotypes, we next 

transferred protein expression data from our CITE-seq experiment to the Human Cell Atlas 

bone marrow resource of 274,932 cells across eight human donors [Li et al., 2018], after first 

integrating the eight donor datasets using Seurat v3 to mitigate batch effects (Figure 4C; 

Figure S2G). Encouragingly, our imputed immunophenotypes were consistent with the well-

studied expression patterns of key markers in the hematopoietic system (Supplementary File 

1), including high predicted CD34 expression in early hematopoietic progenitors, mutual 

exclusivity between CD8a and CD4 expression, and canonical marker expression in 

monocytes (CD14), NK (CD16 / CD56), and B cell (CD19) populations. Intriguingly, we 

identified a sub-population of CD8+ memory cells marked by sharply elevated predicted 

expression of CD69 (Figure 4C). While CD69 has been proposed as an early activation 

marker of T cells[R Testi and Lanier, 1989], the molecular phenotype and significance of 

CD8+ CD69+ cells in the bone marrow is not well understood. Recent evidence in particular 

suggests that CD8+ cells upregulate this marker without accompanying changes in the 

transcriptome, and that the transcriptome of these cells is in a resting state [Okhrimenko et 

al., 2014]. We therefore sought to identify genes whose measured expression in the HCA 

data was associated with predicted CD69 expression.

We observed a clear module of genes associated with increased CD69 expression across all 

eight human donors (Figure 4D), including cytokines, chemokines, and granzyme 

molecules, with ontology analysis revealing striking enrichment for genes involved in IFN-γ 
responses (P < 10−11; Figure S2H). We validated this finding by sorting CD8+/CD69+ and 

CD8+/CD69-T cells, performing bulk RNA-seq (four replicates each), and observing 

differential expression of our top markers (Figure 4E). Importantly, while we observed 

similar CD69+ heterogeneity in an independent analysis of the original CITE-seq dataset 

(Supplementary File 1), this dataset contained an order-of-magnitude fewer cells, and as a 

result exhibited substantially lower power to detect genes associated with CD69 expression. 

To quantify this, we ordered cells in the CITE-seq and HCA datasets along an axis of CD69 

expression, and computed Moran’s I statistic, a measure of spatial autocorrelation, for each 

gene. We consistently observed substantially higher Moran’s I values in the HCA dataset, 

and could not identify key inflammatory genes (including IFNG) as outliers from the CITE-

seq data alone (Figure 4F). Further experiments are needed to reveal the functional 

importance of this population, but notably, secretion of inflammatory cytokines like IFN-γ 
can alter the bone marrow microenvironment and hematopoietic output [de Bruin et al., 

2014]. Taken together, these results demonstrate how transfer learning can be used to 

facilitate biological discovery across datasets, and to impute missing modalities in key 

resources.

Spatial mapping of single-cell sequencing data in the mouse cortex

As a final demonstration of transfer learning using our Seurat v3 method, we explored the 

integration of multiplexed in-situ single-cell gene expression measurements (FISH) with 

Stuart et al. Page 11

Cell. Author manuscript; available in PMC 2020 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



scRNA-seq of dissociated tissue. While we and others [Satija et al., 2015, Achim et al., 

2015, Karaiskos et al., 2017, Halpern et al., 2017] have previously demonstrated analytical 

strategies to map single cells to their original spatial position, these strategies require the 

tissue to have a stereotypical structure, and rely heavily on transcriptional gradients to 

facilitate the spatial mapping of cells. In principle, the harmonization of multiplexed FISH 

or in-situ RNA sequencing with scRNA-seq would enable similar goals to be achieved for 

any biological system, a challenge that is of paramount importance to understand the spatial 

organization and regulation of cells and tissues. While imaging datasets have an upper limit 

on the number of dimensions that can be simultaneously profiled per cell, our previous 

results indicated that only a subset of transcriptomic features were necessary to facilitate 

integration (Figure 4B). We therefore considered two complementary datasets of the mouse 

visual cortex, the deeply sequenced SMART-seq2 (v4 kit) dataset from the Allen Brain 

Institute [Tasic et al., 2018] (as in Figure 3E; 14,249 cells, 34,617 transcripts), and the 

recently published STARmap in-situ gene expression datasets of the same tissue (1,539 and 

890 cells, 1,020 genes) [Wang et al., 2018].

After identifying anchors between the datasets, we imputed spatial expression patterns 

across the transcriptome by transferring the expression of all measured scRNA-seq 

transcripts onto the STARmap datasets (Figure 5A). For genes with well-established spatial 

patterns of expression (e.g. the layer-specific marker genes Lamp5 and Cux2), our imputed 

patterns were concordant with the measured STARmap data (Figure 5B; Supplementary File 

2). Similarly, genes that were cell-type specific but not spatially restricted (e.g the 

interneuron subtype marker Sst) also exhibited identical patterns in the imputed and 

measured data. However, we also observed cases where the original STARmap data 

exhibited a weak signal that was strengthened in the imputed data (for example, Rorb and 

Syt6). These cases could reflect stochastic cellular expression, technical noise in the 

STARmap data, or imputation errors - although our predictions here were further supported 

by an independently derived, highly sensitive cyclic single molecule FISH (osm-FISH) 

experiment [Codeluppi et al., 2018] (Figure 5C). By transferring the remaining scRNA-seq 

genes onto spatially-resolved cells, we were further able to predict spatial patterns for genes 

that were not originally profiled profiled by STARmap. We identified four representative 

cases (Figure 5D), each of which contains strong external support in the published literature 

[Syken and Shatz, 2003, Venkatadri and Lee, 2014], or the Allen Brain Atlas [Tasic et al., 

2016, 2018] (Figure S4B). Moreover, when repeating the imputation procedure on a second 

independent STARmap replicate (890 cells), we found that our gene-level predictions for 

spatial association were highly reproducible, with the exception of a small group of genes 

with different Moran’s I values in both replicates (Figure 5E). Further analysis of the genes 

with higher Moran’s I values in replicate 1 revealed that they largely represented markers of 

endothelial cells and perivascular macrophages, while genes with a higher Moran’s I in 

replicate 2 were predominantly markers for VLMC cells. As replicate 1 contained a strip of 

endothelial cells, and replicate 2 contained a longer spatially restricted section of VLMC 

cells (Figure S4A), the differences in Moran’s I values between replicates for these genes 

reflects real biological differences in the spatial structures of the two tissue sections.

We performed the same leave-one-out cross validation imputation procedure using Drop-seq 

data from the mouse prefrontal cortex, and identified strikingly similar imputed spatial 
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patterns across both scRNA-seq technologies (Supplementary File 2), as well as strong 

agreement at single-cell resolution when imputing using either dataset (Figure S5A,D). 

These results indicate that the increased cell number from Drop-seq can compensate for the 

reduced per-cell sequencing depth, consistent with previous power analyses for cell type 

discovery [Shekhar et al., 2016]. However, we observed a subset of genes that were too 

lowly expressed to be accurately quantified by Drop-seq (Figure S5B), resulting in 

inconsistent spatial imputation results. Moreover, we also observed rare cases where highly 

expressed genes exhibited subtle differences in their scRNA-seq expression patterns across 

technologies (i.e. Cux2, Figure S5C), which also drove subtle changes in spatial imputation 

(Supplementary File 2).

The STARmap dataset measured the expression of 1,020 genes but extensive correlation 

structure in transcriptomic data suggests that we can achieve similar prediction accuracy 

using a reduced subset of these genes. We randomly downsampled the STARmap gene set 

from 50 to 1,000 genes and evaluated the imputation accuracy using the downsampled gene 

sets (Figure S5E). These results suggested that imputation accuracy starts to saturate 

between 200–300 features for many genes, particularly those with high expression 

“redundancy” in the dataset (Figure S5F). Furthermore, when applying a downsampling 

strategy guided by cluster markers instead of random downsampling, we observed additional 

improvements when using a reduced feature set (STAR Methods; Figure S5G). Together, 

these analyses demonstrate that integration can be successful even when using more sparse 

sequencing approaches, alongside spatial technologies that measure hundreds of markers in-
situ [Moffit et al., 2018].

As we previously demonstrated using scATAC-seq data, our anchoring procedure allows us 

to classify cells across modalities based on scRNA-seq annotations. We therefore transferred 

cell type labels from the SMART-seq2 dataset to the STARmap cells, classifying 1,915 

(79%) of cells with prediction score > 0.5, but conservatively chose to consider the 1,210 

(50%) cells with the highest prediction scores for downstream analysis (Figure 5F; STAR 

Methods). These classifications revealed subdivisions that could not be identified even 

through iterative clustering of the original dataset (Figure S4C-F). For inhibitory cells, we 

identified cells from the four major classes (Sst, Pvalb, Lamp5/Id2, Vip), each expressing 

canonical markers in the original STARmap dataset (Figure 5G). In excitatory cells, we 

annotated cells from 8 different clusters, representing not only layer-specific populations, 

but also separating intratelencephalic (IT), pyramidal tract (PT), corticothalamic (CT), and 

L6b sublayer populations within individual layers (Figure 5F,G).

Lastly, we examined the spatial distribution of our annotated cell-types, searching for non-

random patterns. As previously reported, MGE-derived interneurons were enriched in 

Layers 4/5, CGE-derived interneurons were enriched in Layers 1–3, and excitatory 

populations were strongly associated with individual layers (Figure 5F) [Tasic et al., 2018]. 

However, after closely examining the mapping patterns, we observed differences in the 

laminar distributions for neurons even within the same layer, including IT and PT neurons 

(Layer 5), and IT and CT neurons (Layer 6), suggesting a complex interplay between 

excitatory specification and within-layer spatial positioning. These results were reproduced 

in the second STARmap replicate dataset (Figure S4A, Supplementary File 2), but the 
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functional consequences remain to be explored. We conclude that anchoring imaging and 

sequencing datasets enables the transcriptome-wide prediction of spatial expression patterns, 

and the harmonization of scRNA-seq derived cell type labels with in-situ gene expression 

datasets. As multiplexed image-based single-cell methods and datasets continue to grow and 

develop, the integration of sequencing and imaging datasets therefore represents a powerful 

and exciting opportunity to construct high-resolution spatial maps of any biological system.

Discussion

We have developed a strategy for the comprehensive integration of single-cell data, and 

apply this to derive biological insights jointly from transcriptomic, epigenomic, proteomic, 

and spatially-resolved single-cell data. Our strategy tackles several technical challenges, 

starting with the unsupervised identification of cell pairs across datasets, deemed “anchors”, 

that represent a similar biological state. This enables us to either assemble multiple datasets 

into an integrated reference, or to transfer data and metadata from one experiment to another. 

We anticipate that as single-cell RNA-seq experiments have only recently become routine, 

the challenge of reference assembly will be of particular importance to both small labs and 

large consortia, as new experiments will continually uncover increasingly rare and subtle 

biological states. However, as these references begin to stabilize, projecting both discrete 

labels and continuous data onto new datasets will be of transformative value to the 

interpretation of new datasets, analogous to how short-read mapping enabled the rise of 

multiple genomics technologies [Langmead et al., 2009, Trapnell et al., 2009]. Throughout 

multiple examples in this manuscript, we demonstrate how integrated analysis can reveal 

biological insights that require the cluster identification and annotation inherent to scRNA-

seq analysis, but could not be identified by any single experiment. In particular, we derive 

in-silico bulk ATAC-seq profiles for finely resolved interneuron subsets whose identities can 

be classified with the assistance of transcriptomic data, as well as identifying cell surface 

proteins that can successfully enrich for transcriptomically-defined T cell subsets in human 

bone marrow. Lastly, we demonstrate how scRNA-seq and in-situ gene expression data can 

be integrated to robustly predict spatial expression patterns transcriptome-wide, and even to 

identify high-resolution spatial relationships between closely related neuronal subtypes.

Our integration strategy builds upon previous work in the application of CCA to identify 

shared sources of variation across experiments [Butler et al., 2018], and the concept of 

mutual nearest neighbors to identify biologically matched cells in a pair of datasets 

[Haghverdi et al., 2018]. Furthermore, we leverage ideas from the construction of shared 

nearest neighbor graphs to score, identify, and downweight the contribution of inaccurate 

anchors to substantially increase integration robustness. Each of these steps is integral to the 

improved performance of our method, and in particular, the ability to perform integration 

across modalities and diverse technologies.

We expect our strategy to be broadly applicable to integrate and transfer a broad spectrum of 

single-cell data and phenotypes across experiments. These include additional epigenomic 

[Luo et al., 2018, Gavin et al., 2017, Cao et al., 2018, Lake et al., 2018, Preissl et al., 2018], 

chromosome conformation [Ramani et al., 2017, Nagano et al., 2013], and RNA 

modification [Safra et al., 2017] measurements that are increasingly being profiled at the 
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single-cell level, and even computationally derived phenotypes such as RNA velocity [La 

Manno et al., 2018]. We believe that the integration of sequencing and imaging datasets 

represents a particularly promising application in the near future. Recent work based on the 

spatial analysis of protein panels [Goltsev et al., 2018, Keren et al., 2018] has poignantly 

demonstrated how changes in tissue organization can dramatically shift across disease states. 

By integrating single-cell transcriptomics with spatial datasets, these analyses can consider 

not only broadly defined cell types, but subtle alterations in cell state, even for genes that are 

not directly measured in an imaging probe set. Future extensions could utilize these 

molecular data to assist in the image alignment of multiple datasets, or even integrate with 

perturbation screens to help infer causal relationships [Dixit et al., 2016].

These opportunities will ensure the continued development of complementary tools and 

strategies for single-cell data integration. For example, Welch et al. (2018) [Welch et al., 

2018] have recently introduced LIGER, which leverages integrative non-negative matrix 

factorization (NMF) to identify shared and specific sources of variation across datasets. Both 

Seurat v3 and LIGER enable batch-effect correction and cross-modality integration, and 

while the methods have conceptually similar aims, they return complementary outputs. NMF 

returns factors that characterize biological sources of variation and can be highly 

interpretable [Welch et al., 2018]. In contrast, Seurat v3 has the ability to return a corrected 

expression matrix, or to impute query features from a reference dataset - both of which can 

be used as input to additional methods such as pseudotime or network reconstruction [Qiu et 

al., 2017, Langfelder and Horvath, 2008]. We anticipate that users, with diverse biological 

questions and analytical challenges, will find broad utility for both approaches.

Lastly, our results suggest that single-cell RNA-seq can serve as a general mediator for 

single-cell data integration. Not only is its application commercialized and routinely 

available, but transcriptome-wide gene expression data encodes multiple aspects of cellular 

identity and “metadata”, even if they are lost during the experimental process. Moreover, its 

intermediate position in the central dogma allows for proximity to multiple molecular 

processes, including both transcriptional, posttranscriptional, and translational regulation. 

We therefore suggest that scRNA-seq may serve as a “universal adapter plug” for single-cell 

analysis, facilitating integration across multiple technologies and modalities, and enable a 

deeper understanding of cellular state, interactions, and behavior.

STAR Methods

Contact for reagent and resource sharing

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Rahul Satija (rsatija@nygenome.org).

Method details

Seurat integration method—The Seurat v3 anchoring procedure is designed to integrate 

diverse single-cell datasets across technologies and modalities. To facilitate the assembly of 

datasets into an integrated reference, Seurat returns a corrected data matrix for all datasets, 

enabling them to be analyzed jointly in a single workflow. To transfer information from a 
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reference to query dataset, Seurat does not modify the underlying expression data, but 

instead projects either discrete labels or continuous data across experiments. While the use-

cases for each approach will depend on the user and particular experiment, the underlying 

methods are conserved across approaches. When possible in the methods, we specify the 

function in Seurat where the method is implemented, to facilitate users exploring the source 

code, which is freely available at https://satijalab.org/seurat.

Our approach consists of four broad steps, as explained in detail below: (1) data 

preprocessing and feature selection, (2) dimension reduction and identification of “anchor” 

correspondences between datasets, (3) filtering, scoring, and weighting of anchor 

correspondences, (4) data matrix correction, or data transfer across experiments.

Parameters for Seurat v3 integration—To exemplify the general utility of our 

approaches, we aimed to minimize the free parameters that can be tuned for each analysis 

and to utilize default parameters in all cases. All parameters are described throughout the 

methods, even when their default values are fixed for all analyses in this manuscript.

One parameter we expect to fluctuate across across datasets represents the estimated 

“dimensionality” of the data. This affects, for example, the number of principal components 

or canonical correlation vectors that are calculated during dimensional reduction. Larger 

datasets will typically have increased dimensionality, particularly if they represent 

increasingly heterogeneous populations. While we have previously suggested using 

saturation or statistical-resampling based approaches to estimate dataset dimensionality 

[Butler et al., 2018], a robust fully unsupervised procedure to identify this value remains a 

fundamental challenge in the analysis of high-dimensional data. Here, we neglect to finely 

tune this parameter for each dataset, but still observe robust performance over diverse use 

cases. For all neuronal, bipolar, and pancreatic analyses we choose a dimensionality of 30. 

For scATAC-seq analyses in the mouse cortex, we chose a dimensionality of 20. For 

analyses of human bone marrow and the integration of mouse cell atlases, we choose a 

dimensionality of 50 and 100 respectively, representing the significant increase in dataset 

size and heterogeneity for these cases.

We also allow for the use of approximate nearest neighbor methods, using the RANN 

package in R [Arya et al., 2018, Mount, 2010]. While not enabled by default, the user can 

set the error bound parameter (eps) to increase the speed of nearest neighbor identification. 

This parameter is set to 0 by default, but for analyses where more than 50,000 cells are 

analyzed in total (Figure 4, Figure S2), we set this value to 1. Unless otherwise specified, all 

other quantitative parameters are fixed to default values.

Data preprocessing

Normalization: For all analyses, we employed standard pre-processing for all single-cell 

RNA-seq datasets. Unless otherwise specified, we first performed log-normalization of all 

datasets, using a size factor of 10,000 molecules for each cell. We next standardized 

expression values for each gene across all cells (z-score transformation), as is standard prior 

to running dimensional reduction tools such as principal component analysis. These steps 

are implemented in the NormalizeData and ScaleData functions in Seurat.
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Feature selection for individual datasets: In each dataset, we next aimed to identify a 

subset of features (i.e. genes) exhibiting high variability across cells, and therefore represent 

heterogeneous features to prioritize for downstream analysis. Choosing genes solely based 

on their log-normalized single-cell variance fails to account for the mean-variance 

relationship that is inherent to single-cell RNA-seq. Therefore, we first applied a variance-

stabilizing transformation to correct for this, as first outlined by Mayer, Hafemeister & 

Bandler et al. [Mayer et al., 2018, Hafemeister and Satija, 2019].

To learn the mean-variance relationship from the data, we computed the mean and variance 

of each gene using the unnormalized data (i.e. UMI or counts matrix), and applied log10-

transformation to both. We then fit a curve to predict the variance of each gene as a function 

of its mean, by calculating a local fitting of polynomials of degree 2 (R function loess, span 

= 0.3). This global fit provided us with a regularized estimator of variance given the mean of 

a feature. As such, we could use it to standardize feature counts without removing higher-

than-expected variation.

Given the expected variances, we performed the transformation

zi j =
xi j − xi

σi
,

where zij is the standardized value of feature i in cell j, xij is the raw value of feature i in cell 

j, xi is the mean raw value for feature i, and σi is the expected standard deviation of feature i 

derived from the global mean-variance fit. To reduce the impact of technical outliers, we 

clipped the standardized values to a maximum value of N, where N is the total number of 

cells. For each gene, we then computed the variance of standardized values across all cells. 

This variance represents a measure of single-cell dispersion after controlling for mean 

expression, and we use it directly to rank the features. Unless otherwise noted, we selected 

the 2,000 genes with the highest standardized variance as “highly variable”. This procedure 

is implemented in the FindVariableFeatures function in Seurat v3 (selection.method=“vst”).

Feature selection for integrated analysis of multiple datasets: When performing 

integration across datasets, we aimed to give priority to features that were identified as 

highly variable in multiple experiments. Therefore, we first performed feature selection on 

each dataset individually, using the procedure described above. We next prioritized features 

across multiple experiments by examining the number of datasets in which they were 

independently identified as highly variable. From this ranked list of features, we took the top 

2,000 to use as input for downstream analyses. We broke ties by examining the ranks of the 

tied features in each original dataset and taking those with the highest median rank. These 

steps are implemented in the SelectIntegrationFeatures function in Seurat v3.

Identification of anchor correspondences between two datasets: A key step for all 

integration analyses in this manuscript is the unsupervised identification of anchors between 

pairs of datasets. These anchors represent two cells (with one cell from each dataset), that 

we predict to originate from a common biological state. Anchors for reference assembly or 
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transfer learning are calculated using the FindIntegrationAnchors and FindTransferAnchors 

functions, respectively, in Seurat v3.

We initiate this process through dimension reduction, aiming to place datasets in a shared 

low-dimensional space. For reference assembly, we utilize canonical correlation analysis 

(CCA) as an initial dimension reduction. As we have previously demonstrated [Butler et al., 

2018], the canonical correlation vectors described by CCA effectively capture correlated 

gene modules that are present in both datasets, representing genes that define a shared 

biological state. In contrast, principle component analysis (PCA) will identify sources of 

variation even if they are only present in an individual experiment, particularly if there are 

significant technical effects across experiments. We therefore utilize CCA when integrating 

scRNA-seq datasets into a common reference, or when identifying anchors from single-cell 

data spanning modalities.

Canonical correlation vectors are calculated as described previously [Butler et al., 2018]. 

Briefly, let Xf,c be a single-cell dataset of features f1, f2, …, fn by cells c1, c2, …, cm and 

Yf,d be a single-cell dataset of the same features f1, f2, …, fn by cells d1, d2, …, dp. Because 

the total number of cells that are measured in these experiments is generally much larger 

than the total number of features shared between the datasets, we opt for a diagonalized 

CCA implementation that has shown promising performance in related highdimensional 

applications [Witten et al., 2009, Dudoit et al., 2002, Tibshirani et al., 2003]. The goal is to 

find projection vectors u and v such that the correlation between the two indices Xu and Yv 
is maximized.

max
u, v

uTXTYv subject to ‖u‖2
2 ≤ 1, ‖v‖2

2 ≤ 1

To find the canonical correlation vectors, we first standardize X and Y to have a mean of 0 

and variance of 1. We use a standard singular value decomposition (SVD) to solve for the 

canonical correlation vectors u and v as follows:

Let

K = XTY

Decompose K via SVD:

K = ΓΛΔT

Where

Γ = γ1, …, γk

Stuart et al. Page 18

Cell. Author manuscript; available in PMC 2020 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Δ = δ1, …, δk

Λ = (λ1
1/2, …, λk

1/2)

The canonical correlation vectors can then be obtained as the left and right singular values 

from the SVD for i = 1, …, k.

ui = γi

vi = δi

For computational efficiency, we approximate the SVD using the augmented implicitly 

restarted Lanczos bidiagonalization algorithm implemented in the irlba R package [Baglama 

et al., 2018]. This allows us to obtain a user-defined number (k) of singular vectors that 

approximate the canonical correlation vectors (CCV). As described above, in this manuscript 

we set k to represent the “dimensionality” of the dataset.

Canonical correlation vectors (CCV) project the two datasets into a correlated low-

dimensional space, but global differences in scale (for example, differences in normalization 

between datasets) can still preclude comparing CCV across datasets. To address this, we 

perform L2-normalization of the cell embeddings, where N is a vector of cell embeddings 

across the k CCV.

N = N
|N | , | N | = ∑

i = 1

k
ni
2

Following dimensional reduction, we identified the K-nearest neighbors (KNNs) for each 

cell within its paired dataset, based on the L2-normalized CCV. Finally, we identify mutual 

nearest neighbors (MNN; pairs of cells, with one from each dataset, that are contained 

within each other’s neighborhoods). We refer to these pairwise correspondences as 

“anchors”, and wish to again highlight the foundational work of Haghverdi et al. [Haghverdi 

et al., 2018] for inspiring this concept. The size of this neighborhood (k.anchor parameter in 

FindTransferAnchors and FindIntegrationAnchors) was set to 5 for all analyses in this 

manuscript.

Anchor scoring: The robust identification of anchor correspondences is key for effective 

downstream integration. Incorrect anchor pairs representing cells from distinct biological 

states can lead to incorrect downstream conclusions. In particular, cells that represent a 

biological state unique to one dataset should theoretically not participate in anchor pairs, yet 
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in practice, they will do so with low frequency (Figure 1). Incorrectly identified anchors are 

similar to aberrant edges that can arise in KNN graphs (deemed ‘short-circuits’ by Bendall 

et al. [Bendall et al., 2014]) We therefore implement two steps (filtering and scoring 

anchors) to mitigate the effects of any incorrectly identified anchors.

First, we ensure that the anchors we identify in low-dimensional space also are supported by 

the underlying high-dimensional measurements. To do this, we return to the original data 

and examine the nearest neighbors of each anchor query cell in the reference dataset. We 

perform the search using the max.features (200) genes with the strongest association with 

previously identified CCV, using the TopDimFeatures function in Seurat, and search in L2-

normalized expression space. If the anchor reference cell is found within the first k.filter 

(200) neighbors, then we retain this anchor. Otherwise, we remove this anchor from further 

analyses. We do not include a mutual neighborhood requirement for this step, as it is 

primarily intended as a check to ensure that we do not identify correspondences between 

reference and query cells with very divergent expression profiles. This procedure is 

uniformly applied with default parameters (max.features=200, k.filter=200), for all analyses 

in this manuscript.

Additionally, to further minimize the influence of incorrectly identified anchors, we 

implemented a method for scoring anchors that is similar to the use of shared nearest 

neighbor (SNN) graphs in graph-based clustering algorithms. By examining the consistency 

of edges between cells in the same local neighborhood, SNN metrics add an additional level 

of robustness to edge identification [Levine et al., 2015]. For each reference anchor cell, we 

determine its k.score (30) nearest within-dataset neighbors and its k.score nearest neighbors 

in the query dataset. This gives us four neighbor matrices that we combine to form an overall 

neighborhood graph. For each anchor correspondence, we compute the shared neighbor 

overlap between the anchor and query cells, and assign this value as the anchor score. To 

dampen the potential effect of outlier scores, we use the 0.01 and 0.90 quantiles to rescale 

anchor scores to a range of 0 to 1.

We find that when ground truth data is available for evaluating anchors, anchors representing 

reference and cell pairs have significantly higher scores than incorrect anchors (Figure 2I). 

Therefore, in downstream calculations (see below), anchors with lower scores are 

downweighted in favor of anchors with higher scores. The k.score parameter is fixed to 30 

for all analyses in this manuscript. This procedure is implemented in the ScoreAnchors 

internal Seurat function, which is called by FindIntegrationAnchors or FindTransfer-

Anchors in Seurat.

Anchor weighting: We construct a weight matrix W that defines the strength of association 

between each query cell c, and each anchor i. These weights are based on two components: 

the distance between the query cell and the anchor, and the previously computed anchor 

score. In this way, query cells in distinct biological states (for example alpha cells and 

gamma cells) will be influenced by distinct sets of anchors, enabling context-specific batch 

correction. Additionally, robust anchors (with high scores) will gain influence across the 

query dataset, while inconsistent anchors will be downweighted. For each cell c in the query 

dataset, we identify the nearest k.weight anchors cells in the query dataset in PCA space. 
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Nearest anchors are then weighted based on their distance to the cell c over the distance to 

the k.weight-th anchor cell and multiplied by the anchor score (Si). For each cell c and 

anchor i, we first compute the weighted distances as:

Dc, i = 1 −
dist c, ai

dist c, ak . weight
Sai

We then apply a Gaussian kernel:

Dc, i = 1 − e

−Dc, i

(2/sd)2

where sd is the Gaussian kernel bandwidth, set to 1 by default. Finally, we normalize across 

all k.weight anchors:

Wc, i =
Dc, i

∑1
j = k . weight Dc, j

For identifying anchors for integration, we set k.weight = 100. For identifying transfer 

anchors, we set k.weight = 50. We reasoned that the batch vector information may be similar 

for closely related cell types, and so opt to take into account batch information for more 

anchors in integration analyses. In contrast, label information for different but closely related 

cell types would not improve the accuracy of cell type predictions, and so we consider a 

smaller number of anchors surrounding each cell. This procedure is implemented in the 

FindWeights internal Seurat function, which is called by IntegrateData or TransferData.

Data integration for reference assembly: Once we have identified anchors and constructed 

the weights matrix, we follow the strategy outlined by Haghverdi et al. [Haghverdi et al., 

2018] for batch correction. We first calculate the matrix B, where each column represents 

the difference between the two expression vectors for every pair of anchor cells, a:

B = Y , a − X , a

We then calculate a transformation matrix, C, using the previously computed weights matrix 

and the integration matrix as:

C = BWT

We then subtract the transformation matrix, C, from the original expression matrix, Y, to 

produce the integrated expression matrix Y:

Y = Y − C
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This step is implemented in the IntegrateData function in Seurat. The corrected expression 

matrix can be treated as a single normalized scRNA-seq matrix, and can be processed 

downstream using any single-cell analytical toolkit. Notably, in Seurat, we continue to store 

the original uncorrected expression data, to facilitate downstream comparisons across 

datasets.

Multiple Dataset Integration: Our approach to multiple dataset integration draws 

inspiration from methods for multiple sequence alignment. Many multiple sequence 

alignment algorithms begin with the construction of all pairwise alignments and proceed to 

merge these pairwise alignments to progressively form the final multiple sequence alignment 

[Feng and Doolittle, 1987]. Here, we use a similar approach where we first identify and 

score anchors between all pairs of datasets and then progressively build the final integrated 

dataset.

To integrate multiple datasets, we first determine the order in which to merge the datasets 

after pairwise anchor identification. To do this we first define a distance between any two 

datasets as the total number of cells in the smaller dataset divided by the total number of 

anchors between the two datasets. We compute all pairwise distances between datasets and 

then perform hierarchical clustering on this distance matrix using the hclust function from 

the stats R package. This returns a guide tree which we use to iteratively merge the datasets 

using the integration procedure described above to form the final integrated dataset. This 

procedure is implemented in the IntegrateData function in Seurat.

Label Transfer: For cell metadata transfer, we create a binary classification matrix L 
containing the classification information for each anchor cell in the reference dataset. 

Specifically, each row in L corresponds to a possible class and each column corresponds to a 

reference anchor. If the reference cell in the anchor belongs to the corresponding class, that 

entry in the matrix is filled with a 1, otherwise the entry is assigned a 0. We then compute 

label predictions, Pl, by multiplying the anchor classification matrix L with the transpose of 

the weights matrix W:

Pl = LWT

This returns a prediction score for each class for every cell in the query dataset that ranges 

from 0 to 1, and sums to 1.

Feature Imputation: Our procedure for transferring continuous data is closely related to 

discrete label transfer. We compute new feature expression predictions, Pf, by multiplying a 

matrix of anchor features to be transferred, F, with the transpose of the weights matrix W:

P f = FWT
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This returns a predicted expression matrix for each feature (row) in F for each cell in the 

query dataset. Feature imputation and label transfer are both implemented in the 

TransferData function in Seurat.

Quantification and statistical analysis

Processing of single-cell datasets

Data Acquisition and QC: The data used for the majority of the analyses in this paper 

come from publicly available repositories and data portals, and we are grateful to all the 

groups and organizations for making their data readily accessible. We obtained the human 

pancreatic islet datasets from the following accession numbers: GSE81076 (CelSeq), 

GSE85241 (CelSeq2), GSE86469 (Fluidigm C1), E-MTAB-5061 (SMART-seq2), and 

GSE84133 (inDrops). We filtered out cells for which fewer than 1,750 unique genes/cell 

(Celseq) or 2,500 genes/cell (CelSeq2/Fluidigm C1/SMART-seq2) were detected. For the 

inDrops data sets, we kept all cells with previously annotated cluster information. We 

obtained the UMI count matrix for the mouse retinal bipolar cell dataset under the accession 

number GSE81904, keeping only those cells with previously annotated cluster information. 

The Tabula Muris datasets were obtained from FigShare for the Version 1 release 

[Consortium, 2018, 2017]. The human bone marrow dataset was obtained from the Human 

Cell Atlas Data Portal preview site [Li et al., 2018]. We filtered out any cells for which fewer 

than 500 genes were detected and any genes that were expressed in fewer than 100 cells. The 

osmFISH data was obtained from the Linnarsson Lab website [Linnarsson, 2018]. The 

mouse visual cortex SMART-seq2 data was obtained from the Allen Brain Data Portal 

[Institute, 2018, Tasic et al., 2018]. Any cells that were annotated as either “Low Quality” or 

“No Class” were removed. The mouse prefrontal cortex scATAC-seq gene activity scores 

and ATAC peak matrices were obtained from the Seattle Organismal Molecular Atlases 

(SOMA) Data Portal [SOMA, 2018]. The STARmap 1,020-gene datasets from the mouse 

visual cortex were downloaded from the original paper’s companion website [Wang, 2018, 

Wang et al., 2018]. We kept all cortical cells, based on the provided class labels, and did not 

perform additional filtration based on total RNA counts observed per cell.

Bone marrow mononuclear cells CITE-seq experiment: Bone marrow mononuclear cells 

from a single human donor were purchased from AllCells (cat #: ABM007F, lot #:3008803). 

The day of the experiment, cells were thawed according to manufacturer’s protocol. Briefly, 

cell vials were sprayed with ethanol and placed in a 37°C water bath for 2 minutes to thaw. 

RPMI 10% media was used to wash and resuspend cells. Cell numbers and viability were 

estimated using trypan blue. Cells were resuspended in CITE-seq [Stoeckius et al., 2017] 

staining buffer (2%BSA/0.01%Tween in PBS) and incubated with FcX blocking reagent for 

10 minutes (BioLegend, cat #: 422302) to block nonspecific antibody binding. Following 

FcX blocking, cells were incubated with a pool of 25 antibodies (1μg/antibody) for 30 

minutes at 4°C. To ensure we can accurately identify cell doublets and distinguish empty 

droplets from cells with low gene counts, cells were split into 10 tubes each containing a 

unique hashing antibody from BioLegend [Stoeckius et al., 2018] and were incubated at 4°C 

for an additional 20 minutes. After incubation, cells were washed three times with 1 mL of 

staining buffer to remove any unbound antibodies. At the end of the final wash, cells were 

passed through a 40 μm filter to remove cell clumps (VWR, cat #: 10032–802) and 

Stuart et al. Page 23

Cell. Author manuscript; available in PMC 2020 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



resuspended in 1xPBS at the appropriate cell concentration for 10x Genomics 3’ scRNA-seq 

[Zheng et al., 2017].

Antibody List: The following human Totalseq BioLegend antibodies were included in the 

pool: CD3 (cat #: 300475), CD56 (cat #: 362557), CD19 (cat #: 302259), CD11c (cat #: 

371519), CD38(cat #: 102733), CD45RA, (cat #: 304157) CD123(cat #: 306037), CD127 

(cat #: 351352), CD4 (cat #: 300563), CD8a (cat #: 301067), CD14( cat #: 301855), 

CD16( cat #: 302061), CD25 (cat #: 302643), CD45RO (cat #: 304255), CD69 (cat #: 

310947), CD197 (cat #: 353247), CD161 (cat #: 339945), CD28 (custom made, clone: 

CD28.2), CD27 (cat #: 302847), HLA-DR (cat #: 307659), CD57 (custom made, clone: 

QA17A04), CD79b (cat #: 341415), CD11a (cat #: 350615), CD34 (cat #: 343537). For 

cellular hashing the following TotalSeq hashtag antibodies were purchased from BioLegend: 

Hashtag 1 (cat #: 394601), Hashtag 2 ( cat #: 394603), Hashtag3 (cat #: 394605), Hashtag 4 

(cat #: 394607), Hashtag 5 (cat #: 394609), Hashtag 6 (cat #: 394611), Hashtag 7 (cat #: 

394613), Hashtag 8 (cat #: 394615), Hashtag 9 (cat #: 394617), Hashtag 10 ( cat #: 394619). 

For the complete list of antibody barcode sequences see Tables S1E and S1F.

CITE-seq data preprocessing: CITE-seq RNA reads were mapped to the human genome 

(GRCh38) and transcripts quantified using CellRanger v2.1.0 [Zheng et al., 2017, Dobin et 

al., 2012]. Antibody counts for CITE-seq [Stoeckius et al., 2017] and cell hashing 

[Stoeckius et al., 2018] were counted using CITE-seq-count (https://github.com/Hoohm/

CITE-seq-Count). Antibody-derived tags (ADTs) and hashtag oligos (HTOs) for each cell 

were normalized using a centered log ratio (CLR) transformation across cells, implemented 

in the function NormalizeData with normalization.method=“CLR”, margin=2 in Seurat v3. 

Cells were demultiplexed using the HTOdemux function in Seurat, and cell doublets and 

background empty droplets subsequently removed. RNA counts for each cell were then 

preprocessed as described above (Data preprocessing).

CITE-seq cross-validation: We separated the 33,454-cell CITE-seq dataset into two equal 

groups at random to produce a query and reference dataset for cross-validation of protein 

expression transfer accuracy between experiments. Within the query dataset, we removed 

and stored the measured protein expression data for each cell. We then ran our transfer 

workflow on the query and reference dataset with default parameters, transferring the protein 

expression values from the reference dataset onto the query. We then computed, for each 

protein in each query cell, the Pearson correlation between the predicted protein expression 

and the measured expression level.

To assess the relationship between the number of RNA features (genes) used to identify 

anchors between the datasets and the resulting accuracy, we first ranked each gene in the 

CITE-seq dataset by it’s contribution to the overall variance in the dataset by multiplying the 

gene’s PCA loading with the variation explained by the component. We then took increasing 

subsets for these genes starting with the highest-ranked genes, ranging from 10 to 1,000 

genes in steps of 10, and repeated the cross-validation.

Protein expression transfer to the HCA: To transfer cell surface protein expression data to 

the Human Cell Atlas dataset, we first computationally removed doublets from each scRNA-
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seq batch using Scrublet [Wolock et al., 2019], then integrated the eight human bone marrow 

datasets (eight different donors) using the Seurat v3 integration method 

(FindIntegrationAnchors and IntegrateData functions in Seurat v3) with default parameters, 

a dimensionality of 50, and an eps=1 as described above. We then transferred protein 

expression from the 33,454-cell CITE-seq dataset to the 274,932-cell HCA dataset using the 

FindTransferAnchors and TransferData functions in Seurat v3.

Analysis of CD69+ bone marrow population: We identified a population of predicted 

CD69+/CD8+ cells in the HCA bone marrow dataset. To identify a gene expression 

signature associated with this group of cells, we first performed an initial clustering of the 

data using Louvain clustering based on a shared nearest neighbor graph, as implemented in 

the FindClusters function in Seurat with default parameters. We then isolated the cluster that 

contained a mixture of CD69+ and CD69− CD8+ cells. We further subdivided this cluster 

into CD69-high and CD69-low cells by fitting a three-component mixture model using the 

predicted CD69 expression data, using the normalmixEM function in the mixtools R 

package [Benaglia et al., 2009]. After grouping the cells into high- and low-expressing 

CD69 populations, we searched for differentially expressed genes between the two 

populations using the original (uncorrected) HCA scRNA-seq data. We used the logistic 

regression differential expression test [Ntranos et al., 2019] implemented in the FindMarkers 

function in Seurat, with the donor as a latent variable (latent.vars=“orig.ident”, 

test.use=“LR”). We retained the top 25 differentially expressed genes based on highest fold-

change expression. We performed gene ontology enrichment analysis on this set of genes for 

both molecular function and biological process, using the R package GOstats with a p-value 

cutoff of 0.001 [Falcon and Gentleman, 2007].

Validation of CD69+ T cell population: To validate the CD69+/CD8+ T-cell population 

identified through our integration method, we performed bulk RNA-seq experiments on 

FACS-sorted cell populations from the same bone marrow cell sample. Bone marrow 

mononuclear cells were thawed as described above. Cells were resuspended in MACS buffer 

(2%BSA/2mM EDTA in PBS) and incubated with FcX blocking reagent for 10 minutes 

(BioLegend, cat #: 422302) to block nonspecific antibody binding. Cells were stained with 

the following FACS antibodies: FITC-CD3 (clone HIT3a, 300306), APC-CD4 (clone RPA-

T4, cat #: 300514), APCCy7-CD8 (clone RPA-T8, cat #: 301015) and PE-CD69 (clone 

FN50, cat #: 310905). DAPI was used to exclude dead cells (Thermo Fisher Scientific, cat #: 

D1306). CD4−/CD8+/CD3+/CD69+ and CD4− /CD8+/CD3+/CD69− cells were sorted into 

tubes (4 replicates per population, 300–3000 cells per replicate) containing RLT lysis buffer 

(Giagen, cat #: 79216) using the SONY SH800 sorter. To remove cellular debris, AmPure 

bead cleanup was performed on all sample lysates. Reverse transcription, cDNA 

amplification and RNA-seq libraries were prepared as described previously [Bracken, 2018]. 

To identify differentially-expressed genes between the CD69+ and CD69− sorted 

populations, we used DESeq2 [Love et al., 2014] and filtered for significant genes with a 

log2-fold change in expression greater than 1.5 and a q-value of less than 0.01 [Storey and 

Tibshirani, 2003].
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Calculation of Moran’s I: To calculate Moran’s I statistic, a measure of spatial 

autocorrelation, we compute:

I = N
W

∑i ∑ jwi j xi − x x j − x

∑i xi − x 2

Where N is the number of spatial units (i and j for 2-dimensional space), x is the gene of 

interest, x is the mean expression of gene x, wij is a spatial weight matrix with zeros on the 

diagonal, and W is the sum of all wij. We computed the spatial weight matrix using the 

function dist in the R package stats, and applied a Gaussian kernel to the distance matrix to 

produce a smooth distribution. We used the implementation of Moran’s I available in the R 

package ape [Paradis et al., 2004], and acknowledge the Trapnell Lab Monocle 3 tutorials 

for suggesting the use of Moran’s I to estimate spatial autocorrelation in single-cell data. We 

applied Moran’s I in two analyses: examining spatial (2D) patterns of gene expression in the 

mouse brain, and examining the dependence of gene expression on a 1D axis defined by 

CD69 expression in human bone marrow cells. In each case, we binned gene expression 

values for cells in small spatial regions before calculating spatial weights and Moran’s I.

Assignment of cell type labels for pancreatic islet cells: To assign a set of consistent cell 

type labels to the pancreatic islet cell datasets, we based our classifications on the labels 

provided in the inDrops dataset. We first computed a PCA on the scaled integrated data 

matrix and used the first 30 PCs to build an SNN graph using the FindNeighbors function in 

Seurat with k.param set to 20. We then clustered the data using FindClusters in Seurat with 

the resolution parameter set to 1.5. For each resulting cluster, we assigned a label based on 

the most frequently occurring cell type in that cluster from the inDrops dataset (Table S1B).

Identification of rare subtypes in the Tabula Muris dataset: We integrated the two Tabula 
Muris datasets using the Seurat v3 integration method (FindAnchors and IntegrateData) with 

a chosen dimensionality of 100. We then normalized, scaled, and performed PCA on the 

integrated data as described in the Data preprocessing section above. The first 100 PCs were 

then used to construct an SNN matrix using the FindNeighbors function in Seurat v3 with 

k.param set to 20. We then identified clusters using the FindClusters command with the 

resolution parameter set to 4, identifying 132 total clusters. We annotated cluster 121 as 

mesothelial cells and cluster 114 as plasmacytoid dendritic cells based on the expression of 

known cell type markers (Figure S2C,E,F).

Integration with simulated cell type holdouts: For both the pancreas and bipolar datasets, 

we performed a simulated holdout experiment where one cell type was completely removed 

from each dataset being integrated. These combinations are detailed in Table S1A. After the 

cell type removal, highly variable genes were recalculated and integration features were 

selected. These features were then used as input to the integration procedure with the same 

default parameter settings as used in the full dataset integration.

We also tested the following existing integration methods on the same holdout datasets: 

Seurat v2 [Butler et al., 2018], mnnCorrect [Haghverdi et al., 2018], and scanorama [Hie et 
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al., 2018]. For Seurat v2, we used the same feature set as determined for Seurat v3 to run a 

multi-CCA analysis followed by alignment (RunMultiCCA and AlignSubspace in Seurat 

v2). We used the first 30 aligned CCs to define the integrated subspace for clustering, 

visualization, and computing the integration metrics.

For mnnCorrect, we used the mnnCorrect function from the scran [Lun et al., 2016] R 

package with the log-normalized data matrices as input, subset to include the same variable 

integration features we used for Seurat v3, and setting the pc.approx parameter to TRUE. 

This returned a corrected gene expression matrix on which we performed principle 

component analysis and kept the first 30 PCs as input for clustering, visualization, and 

computing the integration metrics.

For scanorama, we used the “correct” function with default parameter settings to batch 

correct the data and return an integrated expression matrix. The downstream processing here 

was kept the same as for mnnCorrect.

Integration Metrics: To compare the results of the holdout integration experiments, we 

computed three measures of integration quality: the silhouette coefficient [Rousseeuw, 

1987], a mixing metric, and a local structure metric.

Silhouette coefficient: We computed the silhouette coefficient using the cluster package in 

R. Here, distances were computed in PCA space defined by the first 30 components for all 

methods except for Seurat v2, where we used the first 30 aligned CCs to define cluster 

distances. Clusters were defined using the previously assigned cell-type labels (Assignment 

of cell type labels for pancreatic islet cells). The silhouette coefficient gives a score for each 

cell that assesses the separation of cell types, with a high score suggesting that cells of the 

same cell type are close together and far from other cells of a different type. The silhouette 

score s(i) is defined for each cell i as follows. Let a(i) be the average distance of cell i to all 

other cells within i’s cluster and b(i) be the average distance of i to all cells in the nearest 

cluster to which i does not belong. s(i) can then be computed as:

s(i) =

1 − a(i)
b(i) if a(i) < b(i)

0 if a(i) = b(i)
b(i)
a(i) − 1 if a(i) > b(i)

Mixing metric: We designed a “mixing metric” to evaluate how well mixed the input 

datasets were after integration. We first considered using a metric based on dataset entropy 

within an individual cell’s local neighborhood [Büttner et al., 2017]. However, the 

assumptions of these methods are violated in cases where the distribution of cell type 

frequencies differs significantly across datasets, as is the case in many of our experiments. 

As an alternative, we reasoned that if the local neighborhood for a cell is well mixed, its 

closest neighbors should contain at least a small number (k = 5) of cells from each dataset. If 

the cell is poorly mixed, then its closest neighbors will likely stem only from a small subset 

of datasets (perhaps only its own). For each cell, we therefore examine the (k.max = 300) 

ranked nearest neighbors across all datasets. We also compute the k=5 closest neighbors for 
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each dataset individually. We then ask which rank in the overall neighborhood list 

corresponds to the 5th neighbor in each dataset (with a max of 300), and took a median over 

all these values. This corresponds to a mixing metric per cell, and we averaged across all 

cells to obtain an overall mixing metric for each method. We found that this metric 

accurately reflected the the mixing of shared biological states across datasets, even when 

cluster frequencies differed. This metric is implemented in the MixingMetric function in 

Seurat v3.

Local structure metric: We computed a metric designed to determine how well the original 

structure of each dataset was preserved after integration. Here, we split the data back into its 

original datasets, re-compute an principal component analysis on the uncorrected data, and 

identify the k=100 closest nearest neighbors. We also computed the 100 nearest neighbors 

based on a principal component analysis of the integrated dataset. For every cell, we then 

looked at the intersection of these two neighborhoods and computed the fraction of overlap. 

For an overall score, we took the mean overlap fraction for all cells. This metric is 

implemented in the LocalStruct function in Seurat v3.

Transferring cell type labels onto scRNA-seq data: In order to benchmark the projection 

of new data onto an existing reference, we performed the following experiments with the 

pancreas and bipolar datasets:

1. We generated 166 evaluation datasets for benchmark comparison. For each case, 

we removed one dataset from the reference to use as a query. We also removed 

all instances of one celltype from the reference (‘withheld class’). We did this for 

all possible combinations of holdout datasets and cell types.

2. To ensure that a single cell type did not dominate in downstream evaluation, we 

downsampled the query dataset to contain a maximum of 100 cells per celltype. 

We then added or subtracted additional instances of cells in the “withheld” class, 

so that it composed 20% of the query.

3. We then integrated the reference using the same default workflow and parameter 

settings as for all previous integrations.

To classify cells using the Seurat v3 workflow, we first integrated the reference dataset using 

default parameters. We then classified query cells using the FindTransferAnchors and 

TransferData functions in Seurat with default parameters. We examined projection scores 

and assigned the cells with the lowest 20% of values to be “Unassigned”.

We also repeated the classification using two functions from the scMAP R package: 

scmapCluster and scmapCell [Kiselev et al., 2018]. For these tests, we selected features 

using the selectFeatures function in scMap with n_features specified as 500. For 

scmapCluster, we set the similarity threshold parameter to -Inf to force assignments where 

possible. We then took the cells with the lowest 20% of similarity values and called them 

“Unassigned”.
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scATAC-seq analysis

Preprocessing scATAC-seq data: We obtained scATAC-seq gene activity score and 

binarized peak count matrices for the mouse prefrontal cortex [Cusanovich et al., 2018]. For 

all integration with scRNA-seq data, we used the gene activity score matrix. For finding 

differentially accessible peaks between groups of cells, we used the binarized peak count 

matrix. The authors instruct that scATAC-seq gene activity score matrix must be 

preprocessed and filtered, so we applied log-CPM (counts-per-million) normalization, and 

removed cells with less than 5,000 total peaks detected in the binary peak matrix.

Latent semantic indexing: We reduced the dimensionality of the scATAC-seq data by 

performing latent semantic indexing (LSI) on the scATAC-seq peak matrix, as suggested by 

Cusanovich and Hill et at. [Cusanovich et al., 2018]. We first computed the term frequency-

inverse document frequency (TF-IDF) of the peak matrix by dividing the accessibility of 

each peak in each cell by the total accessibility in the cell (the “term frequency”), and 

multiplied this by the inverse accessibility of the peak in the cell population. This step 

‘upweights’ the contribution of highly variable peaks and downweights peaks that are 

accessible in all cells. We then computed to log of this TF-IDF matrix, adding a pseudocount 

of 1 to avoid computing the log of 0. We decomposed the TF-IDF matrix via SVD to return 

LSI components, and scaled LSI loadings for each cell to mean 0 and standard deviation 1. 

These steps are used for learning the weighting of anchors within the scATAC-seq dataset, 

and are implemented in the RunLSI function in Seurat.

Transferring cell type labels onto scATAC-seq cells: We found anchors between the pre-

processed scATAC-seq cells (gene activity matrix) for the mouse prefrontal cortex and 

scRNA-seq cells from the mouse visual cortex [Tasic et al., 2016, 2018]. We first found 

highly variable features in the scRNA-seq data using the FindVariableFeatures function in 

Seurat v3, as described above (Data preprocessing). We used the top 5,000 variable features 

that were also present in the scATAC-seq data as input to the integration, resulting in ~3,000 

variable features as recommended by the original authors for downstream analysis 

[Cusanovich et al., 2018]. We found anchors between the two datasets using the 

FindTransferAnchors function in Seurat v3, with the parameters dims=1:20 and 

reduction=“cca”. We transferred cell type labels from the scRNA-seq dataset to the scATAC-

seq cells using the TransferData function in Seurat v3, setting the parameter 

weight.reduction=atac[[“lsi”]] to specify the previously computed LSI dimensional 

reduction when calculating anchor weights.

To visualize the two datasets together, we transferred scRNA-seq data onto the scATAC-seq 

cells, using the same anchors as previously identified. We accomplished this by applying the 

same procedure used to impute transcriptome-wide expression in the STARmap dataset (see 

below). After imputation, we concatenated this matrix with the scRNA-seq dataset, 

performed a single PCA on both datasets, projected to two dimensions with UMAP, and 

colored the cells by their classification label. We emphasize that step is intended only for 

visual interpretation, and it is not necessary for us to jointly visualize the datasets, or transfer 

scRNA-seq data, in order to classify the scATAC-seq cells.
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Identification of differentially accessible peaks and overrepresented motifs: We 

identified differentially accessible peaks between groups of scATAC-seq cells simply by 

ordering peaks by their fold-change accessibility between the groups, and retaining the top 

1,000 peaks that displayed the greatest fold-change in accessibility. We searched for 

overrepresented DNA sequence motifs in accessible regions using the Homer package 

[Heinz et al., 2010], using the findMotifsGenome.pl program with default parameters, and 

the mm9 genome.

Psuedo-bulk ATAC-seq data collation: We split the scATAC-seq binary sequence/

alignment map (BAM) file for the prefrontal cortex into individual files for each predicted 

cell type to create pseudo-bulk ATAC seq datasets for each celltype. To extract scATAC-seq 

reads by their cell barcode, we used the filterbarcodes command in the Python package sinto 

(v0.1, https://github.com/timoast/sinto), which depends heavily on the pysam package [Li et 

al., 2009]. We created normalized read coverage tracks (bigwig format) for each BAM file 

using the program bamCoverage in the deepTools package [Ramírez et al., 2016] with the 

bin-Size parameter set to 1 and using the reads per kilobase per million mapped reads 

(RPKM) normalization option.

Pre-processing of 10X scRNA-seq and scATAC-seq data: We downloaded a human 

peripheral blood mononuclear cell (PBMC) scRNA-seq dataset generated with the 10× 

Genomics Chromium system (v3 chemistry, 10k dataset; https://support.10xgenomics.com/

single-cell-gene-expression/datasets/3.0.0/pbmc_10k_v3), and a human PBMC scATAC-seq 

dataset, also generated with the 10× Genomics Chromium system (v1 chemistry; 10k 

dataset; https://support.10xgenomics.com/single-cell-atac/datasets/1.0.1/

atac_v1_pbmc_10k).

We pre-processed the scRNA-seq dataset, retaining cells with over 2,000 and under 20,000 

genes detected, with fewer than 20% mitochondrial transcripts. We identified and removed 

doublets using Scrublet [Wolock et al., 2019], removing cells with a doublet score greater 

than 0.1. We clustered the scRNA-seq cells by first identifying the top 3,000 highly variable 

genes, scaling and centering the expression of these genes, computing PCA on the scaled 

expression values, and performing graph-based cluster detection using the top 30 principal 

components with the Louvain algorithm for community detection. We annotated clusters as 

cell types according to the expression of canonical marker genes.

We pre-processed the scATAC-seq data, retaining cells with over 5,000 peaks, and peaks 

detected in at least 100 cells. As proposed by [Cusanovich et al., 2018], we performed latent 

semantic indexing on the scATAC-seq dataset to reduce dimensionality. To link the scATAC-

seq accessibility peaks to genes, we simply summed peaks intersecting the gene body and 2 

kilobase upstream region to give a gene activity score for each gene in each cell. This 

procedure is implemented in the CreateGeneActivityMatrix in Seurat v3, though our 

procedure can also run on Cicero-derived gene activity matrices [Pliner et al., 2018].

Classification of scATAC-seq profiles based on scRNA-seq clusters: We transferred cell 

type annotations from the scRNA-seq dataset to the scATAC-seq dataset using the same 

procedure as described above for the integration of scRNA-seq and scATAC-seq data from 
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the mouse cortex, and using a dimensionality of 30. To visualize cells from each dataset in 

the same space, we also transferred gene expression data from the scRNA-seq cells to the 

scATAC-seq cells using the same set of anchors as was used to transfer cell type annotations, 

then performed PCA and UMAP on the combined RNA and ATAC object. We note that this 

is only necessary for the purposes of visualization.

Experimental validation using ATAC-seq from FACS-sorted populations: We 

downloaded bulk ATAC-seq peak accessibility data for all available cell types (NK cells, 

CD8+ T cells, CD4+ T cells, Monocytes) from the UCSC Genome Browser https://s3-us-

west-1.amazonaws.com/chang-public-data/2016_NatGen_ATAC-AML/hub.txt and GEO 

(GSE74912 [Corces et al., 2016]). Monocyte tracks were available from the UCSC genome 

browser, but peak-level quantifications were not available on GEO. To create pseudo-bulk 

ATAC-seq datasets for each PBMC cell type, we computationally grouped reads from the 

10x Genomics data according to their predicted cell type as described above for the mouse 

brain data. We compared accessibility patterns between the FACS-sorted bulk ATAC-seq and 

computationally-sorted scATAC-seq cells through visualization of coverage at canonical 

marker loci using the Gviz R package [Hahne and Ivanek, 2016]. To compare global patterns 

of chromatin accessibility, we identified variable peaks among the bulk ATAC-seq samples 

and computed the peak coverage of each pseudo-bulk scATAC-seq population using 

bedtools multicov [Quinlan and Hall, 2010]. We then computed the Pearson correlation 

between peak accessibility in each bulk ATAC-seq population and the different pseudo-bulk 

scATAC-seq populations.

Projecting gene expression and cell type labels onto spatially-resolved cells

Preprocessing STARmap data: We obtained STARmap gene count matrices and cell 

position information for two combinatorially-encoded 1,020-gene experiments from the 

STARmap companion website (https://www.starmapresources.com/data/ [Wang et al., 

2018]), and preprocessed the gene expression matrices as described above (Data 

preprocessing), with a normalization scaling factor equal to the median RNA counts per cell. 

To visualize spatial patterns of gene expression, we identified cell locations and 

morphologies using Python code provided by the original authors (https://github.com/

weallen/STARmap [Wang et al., 2018]). Before transferring transcriptome-wide gene 

expression data from the SMART-seq2 dataset [Tasic et al., 2016, 2018] to the STARmap 

cells, we first integrated the two STARmap replicates using the Seurat v3 integration 

method. First, we identified anchors between the STARmap datasets using the 

FindIntegrationAnchors function in Seurat v3, using all 1,020 genes as input to the CCA. 

We then integrated the datasets using the IntegrateData function.

Data transfer: We then transferred transcriptome-wide gene expression data from the 

SMART-seq2 dataset to the integrated STARmap datasets using the FindTransferAnchors 

(reduction=“cca”) and TransferData functions in Seurat v3. We ran TransferData twice, once 

to transfer transcriptome-wide gene expression measurements, and again to transfer cell type 

labels from the SMART-seq2 dataset, using the same set of anchors. For all genes shown in 

Figure 5B (Cux2, Lamp5, Rorb, Rab3c, Syt6, Sox2ot, Bsg and Sst), imputations represent 

leave-one-out cross-validation of the STARmap data transfer. Specifically, we performed 
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feature transfer independently for each gene, each time removing the gene of interest from 

the set of genes used to identify anchor cells between the STARmap and SMART-seq2 

datasets.

Analysis of integrated STARmap data: After predicting cell type labels in the STARmap 

cells by transferring labels from the SMART-seq2 dataset, we observed 1,915 cells with 

high-confidence cell type predictions (prediction score > 0.5). To be more conservative, we 

chose to filter the predicted celltype labels to retain only the highest 50% scoring cells for 

each transferred cell type, retaining a total of 1,210 classified cells. We then performed 

differential expressed to identify gene expression markers that were upregulated in each 

classified cell type. We used a logistic regression test for differential expression [Ntranos et 

al., 2019] on the uncorrected data with replicate as a latent variable, implemented in the 

FindMarkers function in Seurat (method=“LR”, latent.vars=“orig.ident”, assay=“RNA”).

To assess the robustness of our data transfer method, we first re-computed variable genes in 

each STARmap dataset, using the predicted gene expression data. Here, we selected the top 

3,000 highly variable genes based on mean-variance dispersion. We did not use the variance-

stabilizing transformation described above (Data preprocessing), as the predicted expression 

data are not discrete counts. For each gene identified as highly variable in either STARmap 

replicate, we calculated Moran’s I (see Calculation of Moran’s I, above), to estimate the 

relationship between predicted gene expression and spatial distribution for each gene. We 

then compared the Moran’s I value for each gene in the two replicates by calculating the 

Pearson correlation between Moran’s I values.

STARmap imputation with Drop-seq data: To investigate whether we could achieve 

accurate imputation results with a dataset generated using a droplet-based scRNA-seq 

technology, we repeated our STARmap imputation analysis using a recent Drop-seq scRNA-

seq dataset from the mouse brain [Saunders et al., 2018]. We downloaded Drop-seq data for 

the mouse prefrontal cortex from the Drop-viz website (https://storage.googleapis.com/

dropviz-downloads/static/regions/

F_GRCm38.81.P60Cortex_noRep5_FRONTALonly.raw.dge.txt.gz). We pre-processed the 

Drop-seq data using Seurat as described above, choosing a dimensionality of 50. We 

repeated the STARmap imputation analysis exactly as described above for the Smart-seq2 

dataset, using the Drop-seq data [Saunders et al., 2018].

STARmap feature downsampling and calculation of gene expression redundancy: To 

assess the number of features required for accurate gene expression prediction in the 

STARmap dataset, we first randomly chose subsets of STARmap genes ranging from 50–

1,000 genes retained, and repeated the transcriptional imputations described above with each 

downsampling set. We evaluated the performance of each downsampling by computing the 

Pearson correlation in gene expression between the downsampled prediction values and 

prediction values obtained using the entire STARmap dataset. For each gene, we calculated 

its correlation in the scRNA-seq data with each of the features in the measured feature set, 

and took the third highest value as an estimate of “expression redundancy”. To repeat our 

gene downsampling analysis in a way that would minimize redundancy among genes in the 

measured set, we chose an equal number of markers from Figure 5G per cluster, ranked by 
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highest average log-fold change. Once we had exhausted cluster markers, we picked 

remaining genes based on their stabilized variance values, computed with 

FindVariableFeatures in Seurat.

Data and software availability

Our integration methods are implemented in Seurat v3, available on CRAN (https://cran.r-

project.org/package=Seurat) and GitHub (https://github.com/satijalab/seurat). Raw CITE-

seq and bulk RNA-seq reads are available through SRA (SRP188993), and processed 

expression matrices through GEO (GSE128639).

Additional resources

Documentation, tutorials, and vignettes for Seurat v3 can be found on the Satija lab website 

(https://satijalab.org/seurat/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Seurat v3 identifies correspondences between cells in different experiments

• These ‘anchors’ can be used to harmonize datasets into a single reference

• Reference labels and data can be projected onto query datasets

• Extends beyond RNA-seq to single-cell protein, chromatin, and spatial data

A platform that integrates diverse modalities associated with single cell sequencing 

datasets can be used to better understand cellular identity and function.
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Figure 1. Schematic overview of reference “assembly” integration in Seurat v3
(A) Representation of two datasets, reference and query, each of which originates from a 

separate single-cell experiment. The two datasets share cells from similar biological states, 

but the query dataset contains a unique population (in black). (B) We perform canonical 

correlation analysis, followed by L2-normalization of the canonical correlation vectors, to 

project the datasets into a subspace defined by shared correlation structure across datasets. 

(C) In the shared space, we identify pairs of mutual nearest neighbors across reference and 

query cells. These should represent cells in a shared biological state across datasets (grey 

lines), and serve as “anchors” to guide dataset integration. In principle, cells in unique 

populations should not participate in anchors, but in practice we observe “incorrect” anchors 

at low frequency (red lines). (D) For each anchor pair, we assign a score based on the 

consistency of anchors across the neighborhood structure of each dataset. (E) We utilize 

anchors and their scores to compute “correction” vectors for each query cell, transforming 

its expression so it can be jointly analyzed as part of an integrated reference.
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Figure 2. Comparison of multi-dataset integration methods for scRNA-seq
(A-H) UMAP plots of eight pancreatic islet cell datasets colored by dataset (A-D) and by 

cell type (E-H) after integration with Seurat v3, Seurat v2, mnnCorrect, and Scanorama. To 

challenge the methods’ robustness to non-overlapping populations, a single cell type was 

withheld from each dataset prior to integration. (I-J) Distribution of anchor scores and 

counts, separated by incorrect (different cell types in the anchor pair) and correct (same cell 

type in the anchor pair) anchors. Anchors are from the analysis in Figure S1A. (K-L) 
Metrics for evaluating integration performance across the four methods on two main 

properties: cell “mixing” across datasets and the preservation of within-dataset local 

structure (STAR Methods).
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Figure 3. Transferring cell state classifications across datasets
(A) Schematic representation where identified anchors allow for the transfer of discrete 

labels between a reference and query dataset. (B) Confusion matrix for one cell type hold-

out evaluation where pancreatic alpha cells were removed from the reference. Cell types 

with fewer than two cells in the query not shown. Alpha cells in the query consistently 

receive the lowest classification score, and are labeled as “Unassigned”. (C) Classification 

benchmarking on 166 test/training datasets from human pancreatic islets and mouse retina. 

(D) Distribution of prediction scores for one cell type hold-out experiment (as in B). Mis-
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classification calls are associated with lower prediction scores. (E) Joint visualization of 

scRNA-seq data with classified scATAC-seq cells (left). We identified anchors between 

scRNA-seq data (reference) and a gene activity matrix derived from scATAC-seq (query) 

datasets from the mouse visual cortex, and transferred class annotations (right). (F) We 

created pseudo-bulk ATAC-seq profiles by pooling together cells with for each cell type. 

Each cell type showed enriched accessibility near canonical marker genes. Chromatin 

accessibility tracks are normalized to sequencing depth (RPKM normalization) in each 

pooled group. Y-axes for each track ranged from 0 to different maxima, due to inherent 

differences in the maximum read depth at different loci. For each locus, the y-axis maximum 

shown is: Neurod6 1,500; Gad2, Pvalb, Sst, Vip, Lamp5, and Id2 1,000; Lhx6 600. (G) We 

searched for overrepresented DNA motifs present in PV-specific accessibility peaks, and 

identified the Mef2c and Rora motifs as the most highly enriched motifs (p < 10−22 and p < 

10−9). (H) Both Mef2c and Rora also exhibit upregulated expression in PV interneurons 

from scRNA-seq.
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Figure 4. Imputing immunophenotypes in a transcriptomic atlas of the human bone marrow
(A) Cross-validations for immunophenotype imputation, performed using a CITE-seq 

dataset of 35,543 bone marrow cells and 25 surface proteins. (B) Prediction accuracy as a 

function of the number of transcriptomic features used to determine anchors. (C) We 

integrated 274,932 bone marrow cells produced by the Human Cell Atlas and annotated the 

cell types. Using the CITE-seq bone marrow cells, we predicted protein expression levels in 

the integrated HCA dataset, and observed expression patterns consistent with the known cell 

types. (D) Predicted CD8+ CD69+ cells up-regulate a module of inflammatory cytokines 

and chemokines across all eight donors. Shown are averaged RNA expression values for 
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each human donor. (E) We validated CD69+ marker genes identified in the scRNA-seq data 

by performing bulk RNA-seq on FACS-isolated CD8+ CD69+/− cells, which revealed a 

similar set of deferentially expressed genes. (F) We ordered CD8+ memory cells by their 

CD69 expression in the HCA and CITE-seq datasets, and computed the autocorrelation for 

each gene along this CD69 axis (Moran’s I). CD69+ marker genes consistently showed a 

higher Moran’s I value in the HCA dataset, reflecting the increased statistical power 

accompanying an order-of-magnitude greater cell number.
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Figure 5. Spatial patterns of gene expression in the mouse brain
(A) Schematic representation of data transfer between scRNA-seq and STARmap datasets. 

After identifying anchors using the subset of genes measured in both experiments, we 

subsequently transfer sequencing data to the STARmap cells, predicting new spatial 

expression patterns. (B) Leave-one-out cross validation for 8 genes, exhibiting predicted 

expression patterns, and original STARmap measurements. (C) Gene expression patterns for 

Rorb, Syt6, Lamp5 and Sox10, as measured by osmFISH, a highly sensitive single 

molecular assay [Codeluppi et al., 2018], in the mouse somatosensory cortex. (D) Predicted 

expression patterns for four genes not originally profiled by STARmap, with external 

validation in Supplementary File 2. (E) Correlation between Moran’s I value, a measure of 

spatial autocorrelation, for each predicted gene expression pattern in two STARmap 

replicates. Marker genes for VLMC cells, endothelial cells, and perivascular macrophages 

are highlighted, reflecting rare cell subsets that were spatially restricted in only one 
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replicate. (F) Horizontally-compressed STARmap cells with predicted cell type transferred 

from the SMART-seq2 dataset. (G) Expression of cell type marker genes in each predicted 

STARmap cell type (both replicates combined).
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