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Abstract

The diagnosis of bloodstream infections presents numerous challenges, in part, due to the low 

concentration of pathogens present in the peripheral bloodstream. As an alternative to existing 

time-consuming, culture-based diagnostic methods for organism identification, microfluidic 

devices have emerged as rapid, high-throughput and integrated platforms for bacterial and fungal 

enrichment, detection, and characterization. This focused review serves to highlight and compare 

the emerging microfluidic platforms designed for the isolation of sepsis-causing pathogens from 

blood and suggest important areas for future research.
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1.0 Introduction

Sepsis is a life-threatening condition that occurs when infectious organisms are present in 

the peripheral bloodstream resulting in a host shock response. Despite the severity and 

prevalence of sepsis, current diagnostic methods are extremely time-consuming. This is, in 

part, due to the extremely low concentration of infectious organisms in the bloodstream 115, 

making pathogen detection technically challenging.

Microfluidic platforms have emerged as a popular alternative to traditional macro-scale 

diagnostic methods 30, 34, 55, 74, 90. These micro-scale systems have demonstrated their 

ability to isolate and detect rare cells from simple fluids (e.g. water, liquid media) by 

harnessing a variety of physical and chemical separation methods 
12, 14, 17, 22, 32, 33, 47, 52, 58, 59, 70, 73, 85, 91, 92, 96, 103, 104, 108. More specifically, prior work 

has demonstrated the feasibility of employing microfluidic platforms for bacterial isolation 

and detection of waterborne 4, 8, 60–62, 101, 120 and foodborne 1, 9, 24,54, 57, 65, 75, 80, 87, 117, 121 

pathogens. Additionally, a smaller subset of studies has evaluated bacterial capture and 

detection in urine 83, 116 and joint synovial fluid 16. That said, most studies in this space 

circumvent a pressing technical challenge: the use of micro-scale systems for the isolation, 
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detection, and characterization of sepsis-causing organisms in complex biological mediums, 

such as blood. Blood contains a wide variety of biological material, including red blood 

cells, white blood cells, platelets, and other small molecules 38, making targeted isolation 

and characterization of sepsis-causing organisms a more challenging technical problem.

Our discussion begins by providing the necessary background on the epidemiology and 

etiology of bloodstream infections, as well as highlighting the existing diagnostic workflow. 

Next, we will summarize and review the primary literature that describes the use of 

microfluidic tools and approaches for the enrichment of bacteria and fungi from blood. In 

addition, some of these studies employ novel and integrated pathogen detection strategies, 

which will also be discussed. We will also briefly highlight some examples of emerging 

microfluidic platforms for pathogen identification and characterization, which could 

potentially be employed for downstream analysis. Finally, we will discuss key areas for 

future work that are needed to help address this important diagnostic need.

2.0 Epidemiology and Etiology of Bloodstream Infections

Sepsis ranks among the top seven causes of death in North America and Europe 35. In these 

regions, the average annual mortality rate averages 29 per 100,000 individuals, with a total 

case fatality rate ranging from 13% to 20% 35. Further, among all patients admitted to the 

intensive care unit (ICU), approximately 7.7% will develop a bloodstream infection (Figure 

1) 110. Decreasing time-to-diagnosis is uniquely critical for bloodstream infections. 

Specifically, it is estimated that mortality from sepsis increases by 7.6% for every hour that 

treatment is delayed 31. Therefore, decreasing time-to-diagnosis is critical to improving 

overall patient outcomes 66.

Sepsis can be caused by a wide-range of pathogens (Table 1) 79. As is listed in Table 1, 

gram-positive bacteria are identified in approximately 46.8% of infections, gram-negative 

bacteria are identified in approximately 62.2% of infections, and fungi are identified in 

approximately 19.4% of infections. Of note is the relatively high frequency of methicillin-

resistant Staphylococcus aureus (MRSA) observed in bloodstream infections. Additionally, 

in approximately 17% of cases, there is more than one pathogenic species causing an 

infection, resulting in a co-infection 79. As will be discussed in detail below, both rapid 

species identification and antibiotic susceptibility profiling of the sepsis-causing organism(s) 

are critical variables in informing the appropriate antibiotic treatment 23, 67, 69, 81.

3.0 Current Diagnostic Workflow for Bloodstream Infections

The diagnosis of sepsis involves three primary benchmarks: 1) pathogen presence, 2) species 

identification, and 3) antibiotic susceptibility profiling (Figure 2) 23, 67, 69, 81. First, a blood 

culture is conducted in order to confirm the presence of the pathogen. To do this, a primary 

patient blood specimen is cultured in a nutrient rich media. As the pathogen proliferates, 

carbon dioxide is emitted, and generally, detected via a carbon dioxide sensor that is 

integrated into the blood culture bottle. The time to blood culture positivity is usually greater 

than twelve hours, and can take upwards of five days, depending on the specific growth rate 

of the sepsis-causing organism 37, 86. After establishing the presence of a pathogen through a 
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blood culture, additional tests are then needed to identify the specific pathogen causing the 

infection, as well as characterize the antibiotic susceptibility of the pathogen 5, 29, 53, 88. 

Traditional culture-based characterization methods require at least 24 hours 67. Newer, 

molecular methods can perform rapid species-level identification and characterize antibiotic 

resistance profiles for select organisms in as little as 2 – 7.5 hours following blood culture 

positivity 5, 76, 99.

Given the strong correlation between shortened time-to-diagnosis and deceased mortality 

rates, more rapid diagnostic methods are needed to identify and characterize the sepsis-

causing organism(s)66. By pinpointing the etiology of the organism(s) at an earlier time-

point, therapy can more rapidly transition from a broad-spectrum to a targeted antibiotic. In 

effect, this reduces the likelihood of super infection, lowers healthcare costs, and minimizes 

contributions to antibiotic resistance 23. Bacterial enrichment and detection using 

microfluidics offers the potential to eliminate the current universal need for blood culture. 

Further, use of an integrated microfluidic platform to 1) diagnose sepsis and 2) characterize 

the sepsis-causing organism(s) directly from whole blood could serve to optimize and refine 

the current diagnostic workflow, and contribute dramatically to improved patient outcomes.

4.0 Field Overview: Microfluidic Platforms as a Diagnostic Tool for 

Bloodstream Infections

In recent years, microfluidic devices have emerged as promising platforms for the diagnosis 

of bacteremia (sepsis). Microfluidic systems enable extremely precise fluid control and 

manipulation. This becomes especially relevant when processing samples in complex sample 

mediums, such as whole blood. Additionally, these high-throughput systems can be readily 

multiplexed, enabling the simultaneous isolation and detection of multiple bacterial targets. 

Table 2 outlines the major blood components and some of the physical characteristics that 

are relevant to consider in the design of microfluidic platforms. As shown, many blood 

components have similar physical characteristics to bacteria (E. coli). Further, the 

concentration of sepsis-causing organisms in blood is significantly less than the 

concentration of other cellular blood components. In combination, these two factors make 

microfluidic isolation of pathogenic organisms from whole blood a much more challenging 

process than microfluidic isolation of pathogens from simple fluids.

Table 3 summarizes studies that have employed microfluidic approaches to isolate sepsis-

causing pathogens from whole blood. To the best of our knowledge, this matrix captures the 

current state of the field. As shown, a variety of microfluidic approaches have been 

employed for rapid pathogen isolation, and include acoustophoresis, dielectrophoresis, 

immunoaffinity-based methods, inertial fractionation, and adhesion-based separation 
2, 6, 10, 15, 18, 20, 21, 27, 28, 40, 42–44, 49, 50, 56, 63, 72, 82, 97, 111–114, 118, 119. Figure 3A highlights 

the observed frequency in the primary literature of various physical and chemical strategies 

for pathogen isolation. Notably, only a limited number of studies evaluate bacterial isolation 

at clinically relevant bacterial concentrations (<10 CFU/mL), with most studies assessing 

separation performance at bacterial loads greater than 1000 CFU/mL. Additionally, the 

majority of existing studies limit their analysis to only a single pathogen: Escherichia coli, 
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and only one study tackles the need for rapid antibiotic susceptibility profiling 40. Figure 3B 

summarizes the observed frequency of the various strategies for pathogen detection 

described in the primary literature. To date, most studies (>85%) fail to integrate on-chip 

detection. Alternatively, these studies rely on well-established off-chip detection and 

enumeration strategies, including flow cytometry, microscopy techniques, and molecular 

methods (Figure 3B) 2, 6, 10, 15, 18, 20, 21, 27, 28, 40, 42–44, 49, 50, 56, 63, 72, 82, 97, 111–114, 118, 119.

Below, we will discuss the primary literature in more detail. First, we provide an overview of 

notable strategies for on-chip pathogen isolation and enrichment. Next, we describe reported 

integrated methods for on-chip pathogen isolation and detection. Lastly, we highlight our 

conclusions and suggest areas for future research and development.

5.0 Microfluidic Methods for Pathogen Isolation and Enrichment

5.1 Acoustophoresis

Acoustophoresis is a separation method that employs high-intensity sound waves to enable 

contact-free migration of target cells towards low pressure nodes. Contact-free manipulation 

of cells limits cell stress and preserves cell viability making acoustophoresis an attractive 

option for whole-cell pathogen separation 109. To date, a few studies have used this 

separation tool for the purpose of separating bacteria from whole blood. Ai et al. separated 

E. coli from peripheral blood mononuclear cells with a resulting sample purity of 95.65%. 

Following on-chip separation using two identical surface acoustic waves (Figure 4A), the 

separation efficiency was characterized off-chip using flow cytometry 2. Although this study 

provides an initial proof-of-concept for the use of acoustic waves for the separation of 

bacteria from whole blood, the bacterial concentration used for this analysis was on the 

order of 106 cell/mL, which is significantly higher than the concentration of bacteria found 

in a primary human blood sample 2.

Ohlsson et al. conducted a very comprehensive study using acostophoretic separation. 

Experiments from this study included the separation of bacteria from plasma, the separation 

of bacteria from whole blood, and the separation and identification of bacteria from ex vivo 
clinical blood cultures 82. Specifically, for their work involving the separation of bacteria 

from whole blood, Ohlsson et al. reported the successful detection of 1000 bacteria/mL 

using their microchip coupled with an external thermocycler 82. First, Ohlsson et al. 

acoustically focused red blood cells in the center of the microchannel to be removed. 

Following this, bacteria (Pseudomonas putida) were trapped on 12 μm polystyrene seeding 

particles in a sequential capillary channel (Figure 4B) 82. These acoustically trapped 

bacteria-seeding particle complexes were then washed and released into a secondary 

polymer microchip contain dry PCR reagents. The solution was then transferred to a 

thermocycler to continue the molecular analysis 82. Although the detection limit of their 

first-generation system is not yet capable of detecting low-grade sepsis, the results presented 

in this study are extremely promising, and suggest the feasibility of eliminating the need for 

the time-consuming blood culture.

Most recently, Dow et al. coupled acoustic separation in a plastic micro-device to a 

bacteriophage-based luminescence assay (Figure 4C) 27. At a clinically relevant bacterial 
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input concentration of 120 cells/mL, their acoustic separation device achieved a 68% 

bacteria yield (P. aeruginosa). As a result of this enrichment step, they observed a 33-fold 

improvement on the limit of detection for their novel bacteriophage-based luminescence 

assay 27. Notably, the host-phage specificity required for the functionality of the 

luminescence assay allows for the potential incorporation of rapid pathogen species 

identification into the proposed workflow. Dow et al. also evaluated the separation efficiency 

of E. coli and S. aureus from whole blood to demonstrate the versatility of a non-specific 

separation platform in isolating both Gram-positive and Gram-negative organisms 27.

5.2 Dielectrophoresis

Dielectrophoresis is a technique that uses an electric field gradient to isolate target cells as a 

function of their dielectric characteristics 89. Kuczenski et al. presented the critical 

hydrodynamic and electrokinetic theories for effective sorting of spheroid cells. The team 

then applied this theory to the design of an electrophoretic microfluidic device 56. With an 

initial bacterial load (E. coli) of 106 cell/mL, their device had a capture efficiency of 30%. 

Further improving upon these results, Bisceglia et al. demonstrated a 97% capture rate of E. 
coli using dielectrophoresis with an initial bacterial load of 1 × 104 cells/mL 56. Bisceglia et 

al. also demonstrated the feasibility of this methodology in isolating Gram-positive (S. 
aureus) and fungal (C. albicans) pathogens 10. Additionally, this work assessed the relative 

effects of isotonic versus hypotonic buffer conditions on the conductivity and relative 

permeability of the sample components, in addition to the overall efficacy of the separation 
10.

More recently, D’Amico et al. reported on a microfluidic system that used dielectrophoresis 

to isolate E. coli and S. aureus from whole blood 21. At bacterial concentrations as low as 

1000 cells/mL, capture efficiencies were 79% and 78%, respectively 21. Specifically, they 

reported on an integrated microfluidic dialysis-dielectrophoresis isolation system (Figure 

5A) 21. This system involves two membraneless microdialysis devices (MMDs) arranged in 

series, followed by the active dielectrophoresis microchip. The MMD devices are necessary 

to help reduce the electrical conductivity of the blood sample via rapid diffusion prior to the 

sample entering the dielectrophoresis microchip. In the dielectrophoresis microchip, bacteria 

are drawn towards the electrodes, while other blood components are repelled and washed 

away (Figure 5B) 21. Following separation, the dielectric field is turned off, the captured 

sample washed out of the microchip, and 16S PCR is conducted for species identification 

and characterization (Figure 5C) 21. This study by D’Amico et al. demonstrates the potential 

feasibility of dielectrophoresis as a method for rapid bloodstream infection diagnosis.

5.3 Immunoaffinity-Based Methods

Immunoaffinity-based methods use recognition antibodies to specifically bind a target 

antigen on a cell surface. This method is desirable due to its unparalleled specificity. 

However, major drawbacks include high cost and the relative instability of antibodies. One 

example is described in a study by Wang et al., which reports the selective capture of E. coli 
using immobilized capture antibodies on the surface of the microchip 111. By employing a 

biotinylated anti-lipopolysaccharide binding protein (anti-LBP) and NeutrAvidin-based 

surface chemistry, Wang et al. reports a limit of detection of 50 cells/mL, with a mean 
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capture efficiency of 70.7% 111. Following capture and wash steps, detection was carried out 

on chip via fluorescent tagging and imaging of E. coli 111.

Immunomagnetic separation is one of the most commonly reported immunoaffinity-based 

separation methods used to isolate pathogens from whole blood. In this approach, magnetic 

particles are functionalized with antibodies to enable highly specific binding to a target 

antigen on the cell surface. The primary sample is incubated with these functionalized 

magnetic nanoparticles, and target cells (e.g. pathogens) are labeled and retained within the 

microfluidic chip (positive selection) by an external magnet. In one example, Cho et al. used 

immunomagnetic separation to isolate E. coli from whole blood, enabling on-chip DNA 

extraction using a centrifugal microfluidic device on a compact disc (CD) platform (Figure 

6) 18. Specifically, primary biotinylated anti-E. coli antibodies were bound to 1 μm 

streptavidin-coated magnetic beads for E. coli isolation. Of note, incubation of the sample 

and functionalized magnetic particles was performed on-chip. At a starting pathogen 

concentration of 1 × 105 cells/mL, capture efficiency was measured to be 93.4% 18. 

Following capture, the magnetic particles served a second function as micro-scale heaters. 

The enriched sample was exposed to an 808 nm laser. The conductive nature of the magnetic 

particle enabled rapid on-chip cell lysis, allowing for downstream (off-chip) molecular 

analysis 18. This entire sample enrichment and preparation process was reported to take less 

than 12 min 18.

A few studies have proposed the use of immunomagnetic separation of pathogens from 

blood as feasible strategy for sepsis therapy (i.e. blood cleansing). These studies are included 

because although the application is derivative from the current discussion, the same 

fundamental technical strategies of bacterial capture and isolation from a primary blood 

sample are explored. For example, Lee et al. designed a novel functional group that can non-

specifically bind both Gram-negative and Gram-positive bacteria 63. By modifying magnetic 

nanoparticles with a non-specific functional group, they demonstrated >95% clearance of E. 
coli at a starting concentration of 5 × 106 cells/mL, and a flow rate of 60 mL/h 63. 

Additionally, Xia et al. attempted the immunomagnetic enrichment of E. coli. In this case, 

the chosen capture antibody was specific to E. coli, and bound to 125 nm magnetic particles 
114. The group observed that increasing magnetic bead concentration relative to pathogen 

concentration improved the separation efficiency. At 25 μL/h and a starting cell 

concentration of 5 × 106 cells/mL, separation efficiency of E. coli from blood was 

approximately 78% 114. Yung et al. explored a similar approach, but with a different 

pathogenic target: C. albicans 118. Using 1 μm magnetic nanoparticles functionalized with 

antibodies specific to C. albicans, Yung et al. demonstrated 80% clearance of the pathogen 

from whole blood at a starting cell concentration of 106 cells/mL 118. Lastly, Kang et al. 

engineered a broad spectrum human opsonin (mannose-binding lectin) to enable the non-

specific capture of a Gram-positive bacteria, Gram-negative bacteria, and fungi. The in vitro 
results demonstrate >90% clearance of multiple pathogens (e.g. E. coli, S. aureus, C. 
albicans) 50.
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5.4 Inertial Focusing

Inertial focusing relies on three fundamental forces that exist in the microchannel 

environment: 1) channel wall interactions, 2) fluid drag, and 3) and lift 77. These forces, and 

how they relate to one another, can be tuned by a variety of experimental factors including 

microchannel design, flowrate, and the physical and chemical characteristics of the liquid 

medium. With appropriate tuning, bacterial cells can be separated from other blood 

components. For example, Faridi et al. reported the inertial separation of E. coli (1 × 106 

cells/mL) from blood with 76% separation efficiency 28, and Mach et al. demonstrated 

>80% margination of E. coli with a starting bacterial load of 1 × 108 cells/mL 72. More 

specifically, Wu et al. explored an alternative approach that combines an asymmetrical 

sheath flow with a specifically designed channel geometry 113. This approach resulted in the 

generation of a soft inertial force proportional to the fluid Reynolds number, and a particle 

deflection distance proportion to the particle Reynolds number. In other words, larger 

particles were deflected away from the sample streamline, while smaller particles were 

retained near the original flow line. Using this design, Wu et al. reported a 62% separation 

recovery of E. coli 113.

Of note, is a study conducted by Hou et al. In this work, use of a spiral microchannel creates 

a lateral drag force due to Dean Flow fractionation, resulting in the separation of bacteria 

(outer channel wall) from red blood cells and white blood cells (inner channel wall) (Figure 

7A)40. Hou et al. evaluated this platform on four different bacterial species (E. coli, S. 
aureus, P. aeruginosa, Enterococcus faecalis) in order to adequately represent the different 

shapes and surface characteristics of sepsis-causing organisms40. At bacterial concentrations 

as low as 10 cells/mL, bacteria were successfully recovered. Following bacterial isolation, 

the team reported on a detailed methodology for the downstream molecular profiling of the 

isolated pathogens, including antibiotic susceptibility testing (Figure 7B)40. This study is 

notable due to its success in isolating a variety of representative sepsis-causing pathogens at 

clinically relevant concentrations, as well as its holistic consideration of the entire diagnostic 

workflow.

5.5 Adhesion-Based Methods

One of the more unique approaches to bacterial enrichment from blood has been pioneered 

by Hwang et al. 43, 44. Their approach involved constructing an array of surface-modified 

silicon micropillars with surface conditions adapted to optimize bacterial adhesion. 

Specifically, silane compounds were coated on silicon micropillars. The silicon micropillar 

structure was employed in effort to maximize surface to volume ratio. The micropillars were 

25 μm2 with 12 μm pillar spacing, and the microchip had a total internal volume of a 5 μL 
44. When coupled with an optimized media pH, the capture efficiency of E. coli (1 × 107 

cells/mL) was about 40% in a 50% whole blood matrix 44. It was also observed that during 

the washing step, E. coli were retained in the microchip, while remaining RBCs were 

washed out. Additionally, Hwang et al. demonstrated in situ DNA extraction. Following the 

capture and wash steps, PCR reagents were injected into the microchip and the mixture was 

moved to an external thermocycler to continue the analysis 44. An overview of the 

experimental setup and an SEM image of the micropillar array is shown in Figure 8 44.
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Overall, the method proposed and tested by Hwang et al. is effective in decreasing the blood 

volume in a highly concentrated E. coli sample. Sample preparation prior to molecular 

analysis took less than 1 hour, and detection sensitivity was improved by more than 100-

fold. That said, given the high concentration of a bacteria in the initial sample, this platform 

has not yet demonstrated its utility in bacterial isolation and detection from a primary human 

blood sample. This technology could be a viable platform for rapid sample preparation for 

organism characterization following blood culture positivity, where concentrations of 

bacteria range from approximately 107 to 109 cells/mL 19.

6.0 Integrated On-Chip Pathogen Enrichment and Detection Platforms

To the best of our knowledge, there have been very few reports of integrated pathogen and 

enrichment and detection platforms. Many studies have come close, but still require some 

type of off-chip imaging and/or analysis. Below, we will highlight two studies that have 

successfully integrated on-chip pathogen enrichment and detection. (See Table 1 for 

additional integrated platforms). First, Cooper et al. designed a micro-device that employs an 

immunomagnetic isolation strategy, followed by an on-chip optical detection strategy 20. 

Because the number of magnetic beads required is over 1000-fold the pathogen 

concentration, it can be challenging to optically detect pathogens captured 

immunomagnetically, as dense piles of bead-pathogen complexes form in the microchannel. 

Cooper et al. optimized the magnetic capture field to promote the formation of a 

homogenous layer of captured cells within the microchannel, allowing for automated optical 

detection (Figure 9A) 20. Using a generic blood opsonin capture antibody, 98% percent of 

the fungal pathogens (C. albicans) were captured from initial starting sample concentrations 

ranging from 10 – 100 cells/mL. Further, by employing the optimized magnetic field 

concentrator, the optical detection rate increased from 43% to 67% 20.

Second, Cai et al. developed an integrated microfluidic device that coupled dielectrophoresis 

with on-chip multiplex array PCR 15. Using dielectrophoresis as the separation method, E. 
coli were subjected to a positive dielectrophoretic force and were retained in grooves along 

the base of the microchip (Figure 9B) 15. At a starting sample concentration of 1.6 × 107 

cells/mL, E. coli capture efficiency ranged from 70.9% (10-fold diluted blood) to 91.5% 

(100-fold diluted blood) 15. Following capture, the remaining blood components were 

flushed out of the channel. The device was “slipped” to mix retained pathogens with pre-

loaded PCR reagents. Following mixing, the device was returned to its original position to 

avoid unnecessary contamination. After in situ thermocycling, pathogen presence and 

identification was determined via a fluorescent readout 15. Although the isolation of other 

pathogens was not reported in the study, the on-chip multiplex array PCR system was also 

validated with Candida tropicalis, P. aeruginosa, S. aureus, and Streptococcus mutans 15. 

Although clinically relevant pathogen concentrations were not assessed in this work, Cai et 

al. creatively demonstrates the efficacy of integrated dielectrophoretic isolation and species-

level pathogen detection.
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7.0 Microfluidic platforms for downstream pathogen characterization

We would like to briefly highlight a few examples of microfluidic platforms that have 

demonstrated success in 1) pathogen identification, or 2) pathogen antibiotic susceptibility 

profiling. Following successful organism isolation from whole blood, these systems could 

have potential downstream utility in enabling comprehensive characterization of the disease-

causing organism(s). As discussed, both species-level information and antibiotic 

susceptibility information are critical data needed to inform a targeted antibiotic therapy 

regimen, and to improve patient outcomes.

First, to obtain species-level information, molecular methods are widely employed for rapid 

classification. For example, Jiang et al. designed a rapid, continuous-flow PCR and DNA 

hybridization microfluidic platform for bacterial identification. The platform demonstrated 

successful identification of clinically relevant pathogens, such as E. coli, S. aureus, and P. 
aeruginosa46. In another example, Sun et al. proposed a bacterial classification platform that 

circumvents the use of bacterial DNA. The group developed a microfluidic platform to 

differentiate bacteria as a function of cell wall structural differences. By employing a tapered 

channel design, cell stiffness could be determined as function of distance traveled in the 

microchannel (Figure 10A).

Second, the growing problem of antibiotic resistance has led to increased research efforts 

surrounding the development of rapid antibiotic susceptibility profiling platforms84. 

Boedicker et al. demonstrated on-chip antibiotic susceptibility testing by employing plug-

based microfluidics to form nanoliter droplets containing a single cell, an antibiotic-of-

interest, and a viability indicator11. This platform allowed for the rapid determination and 

quantification of antibiotic efficacy and minimum inhibitory concentration (MIC), 

respectively (Figure 10B)11. In another example, Kalashnikov et al. described a stress-based 

microfluidic platform for evaluating antibiotic susceptibility48. Further, it was observed that 

shear flow potentiated the efficacy of antibiotics. In this system, bacteria were covalently-

bound to the floor of the microchannel and exposed to the antibiotic-of-interest and shear 

flow. Bacterial viability was observed via automated fluorescent microscopy. This study 

reports comprehensive antibiotic susceptibility profiling of clinically-relevant Gram-negative 

bacteria within 2 h48.

8.0 Conclusions and Future Work

In this review, we discussed emerging micro-scale platforms for the isolation of sepsis-

causing pathogens from whole blood. The highlighted research represents a relatively new 

and emerging field, though the basic notion of employing microfluidic platforms for rare-

cell capture from whole blood is not entirely new 94. A large body of work exists describing 

rare-cell capture from whole blood for cancer screening, diagnosis, and monitoring. More 

specifically, the field of liquid biopsy describes numerous strategies for the capture and 

detection of circulating tumor cells (CTCs) and exosomes 
3, 7, 26, 36, 39, 41, 45, 51, 63, 64, 68, 71, 100, 102, 106. The existing and emerging technologies in this 

space should be considered for their potential translation to whole-cell capture of infectious 

organisms in whole blood samples.
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Upon thorough consideration of the reported work in the area of sepsis-causing organisms’ 

isolation from whole blood, we would like to offer the following recommendations for 

future studies conducted in this space. First, clinically relevant bacterial concentrations must 

be evaluated. Given that the primary technical hurdle to sepsis diagnosis is the relatively low 

concentration of bacteria in the blood (1 – 10 CFU/mL), micro-scale systems must 

demonstrate their ability to detect bacteria at these low levels. As at minimum, experimental 

studies should report a limit of detection. Second, the field needs to move beyond non-

specific organism isolation and detection, and towards a platform that can provide a 

comprehensive etiological characterization of the specific sepsis-causing organism(s). Both 

species-level information and antibiotic susceptibility information are critical data needed to 

inform a targeted antibiotic therapy regimen and improve patient outcomes. Creative 

methods that can provide more a more specific and multi-dimensional diagnostic output 

should also be explored. Finally, it is extremely important to design with downstream 

integration in mind. Although this paper focused on microfluidic capture strategies and 

platforms, some of the most attractive platforms successfully integrate organism capture and 

detection on a single chip. A holistic analysis of diagnostic workflow is critical for future 

clinical translation and commercial integration.
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Figure 1. 
Classification of ICU patients as a function of infection and infection type110.
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Figure 2. 
Overview schematic of current bloodstream infection diagnostic workflow. First, a 5 – 10 

mL patient blood sample is cultured in 25 mL of nutrient rich media to determine if a 

pathogen is present13(1). Next, either culture-based or molecular methods are used to 

identify the pathogen(s) causing the infection (2). Above, we show a rapid (~2 h), molecular 

testing system for pathogen identification, the BioFire® FilmArray® Blood Culture 

Identification Panel (BCID). Reprinted under permission of the Creative Commons 

Attribution License93. Lastly, the organism’s susceptibility to antibiotics is determined (3). 

Here, we highlight the minimum inhibitory concentration (MIC) plate, which is a widely 

employed culture-based methodology.
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Figure 3. 
Breakdown of strategies for pathogen isolation and detection, and their observed frequency 

in primary literature. A. Strategies for pathogen isolation from whole blood 
2, 6, 10, 15, 18, 20, 21, 27, 28, 40, 42–44, 49, 50, 56, 63, 72, 82, 97, 111–114, 118, 119. Each dot represents 

one study in the primary literature. “Other” category includes 1) isolation using nanodroplets 
49 and 2) selective lysis of red blood cells 119. B. Strategies for pathogen detection following 

isolation2, 6, 10, 15, 18, 20, 21, 27, 28, 40, 42–44, 49, 50, 56, 63, 72, 82, 97, 111–114, 118, 119. Primary 

detection method is indicated. Green ×’s indicates on-chip detection. In some cases, (n=2), 

two methods are specified. “Culture” is only listed as the detection method if no other 

method was employed. (In many cases, culture-base methods are used as a control and/or 

gold standard; these cases are not specified above if more rapid methods were employed).
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Figure 4. 
Acoustic separation platforms for the isolation of bacteria from blood. A. Overview of Ai et 

al. platform, which employed two parallel acoustic waves to focus bacteria in the center of 

the microchannel 2. Reprinted with permission from https://pubs.acs.org/doi/10.1021/

ac4017715. Copyright 2013 American Chemical Society. Further permissions related to the 

material excerpted should be directed to the ACS. B. Overview of Ohlsson et al. workflow. 

First, RBCs are focused in the center of the channel. Next, bacteria are acoustically trapped 

on a seeded particle and profiled using PCR 82. Reprinted with permission from https://

pubs.acs.org/doi/abs/10.1021%2Facs.analchem.6b00323. Copyright 2016 American 

Chemical Society. Further permissions related to the material excerpted should be directed 

to the ACS. C. Methodology proposed by Dow et al. First, the bacterial sample is enriched 

on a plastic microdevice. Enriched sample is exposed to bacteriophage luminescence assay 
27. Republished with permission of Royal Society of Chemistry from, Acoustic separation in 

plastic microfluidics for rapid detection of bacteria in blood using engineered bacteriophage, 

Dow et al., 18, 2018; permission conveyed through Copyright Clearance Center, Inc.
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Figure 5. 
Dielectrophoretic platform for isolation of bacteria from blood proposed by D’Amico et al 

21. A. Schematic of the integrated microfluidic dialysis-dielectrophoresis isolation system. 

Two MMDs are connected in series, followed by the active dielectrophoresis device. B. 

Sample flow through separation microchip. Bacteria (green) are attracted to electrodes, 

while other blood components are repelled and washed through the device. C. Overview of 

proposed workflow. Following separation, sample is eluted from device for molecular 

analysis. Republished with permission of Royal Society of Chemistry from, Isolation and 

concentration of bacteria from blood using microfluidic membraneless dialysis and 

dielectrophoresis, D’Amico et al., 17, 2017; permission conveyed through Copyright 

Clearance Center, Inc.
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Figure 6. 
Immunomagnetic platforms for the isolation of bacteria from blood proposed by Cho et al 
18. A. Image displays dual-functionality of bound magnetic particles (separation & micro-

heaters). B. Schematic of on-chip functionality. C. Overview of CD centrifugal platform. 

Republished with permission of Royal Society of Chemistry from, One-step pathogen 

specific DNA extraction from whole blood on a centrifugal microfluidic device, Cho et al., 

7, 2007; permission conveyed through Copyright Clearance Center, Inc.
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Figure 7. 
Inertial separation of spiral microchannel as described by Hou et al40. A. Spiral 

microchannel (left) and cross-sectional view of the sample at indicated points along the 

microchannel (right). B. Overview of proposed workflow for pathogen isolation, species 

identification, and antibiotic susceptibility profiling. Republished with permission of Royal 

Society of Chemistry from, Direct detection and drug-resistance profiling of bacteremias 

using inertial microfluidics, Hou et al., 15, 2015; permission conveyed through Copyright 

Clearance Center, Inc.
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Figure 8. 
Adhesion-based bacterial isolation from whole blood as described in by Hwang et al. 44. A. 
Experimental setup. B. SEM images of functionalized silicon microarray. Reprinted with 

permission from Hwang K.-Y. et al. Bacterial DNA Sample Preparation from Whole Blood 

Using Surface-Modified Si Pillar Arrays. Analytical Chemistry 80: 7786–7791, 2008. 

Copyright 2008 American Chemical Society.
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Figure 9. 
Integrated on-chip isolation and detection platform. A. Overview of Cooper et al. Image of 

microchannel without (top) and with (middle) magnetic field concentrator (MFC). First half 

of channel is shown (scale bar = 50μm). Fluorescent image displaying captured C. albicans 
following immunofluorescent staining (bottom) 20. Further, the magnetic field concentrator 

(MFC) minimizes magnetic bead clumping (middle), allowing for optical detection 

(bottom)20. Republished with permission of Royal Society of Chemistry from, A 

microdevice for rapid optical detection of magnetically captured rare blood pathogens, 

Cooper et al., 14, 2014; permission conveyed through Copyright Clearance Center, Inc. B. 
Overview of Cai et al. integrated methodology. a) Schematic of workflow. b) relative size of 

microdevice (left) with zoomed in image of microchannel and preloaded microwells. c-f) 

cross-sectional view of device operation. Pathogen is retained in grooves, while blood cells 

(BCG) are washed away. Device is “slipped” to expose liquid PCR reagents to pathogen. 

Device is returned to original position avoid contaminated surface. Device is thermocycled 

in situ and imaged 15. Republished with permission of Royal Society of Chemistry from, An 

integrated microfluidic device utilizing dielectrophoresis and multiplex array PCR for point-

of-care detection of pathogens, Cai et al., 14, 2014; permission conveyed through Copyright 

Clearance Center, Inc.
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Figure 10. 
Strategies for downstream pathogen identification and antibiotic susceptibility profiling. A. 
Basic bacterial differentiation principle proposed by Sun et al. The distance (d) traveled in 

the tapered microchannel is inversely proportional to cell stiffness. Force is drive by fluid 

pressure, p105. Republished with permission of Royal Society of Chemistry from, A 

microfluidic platform for profiling biomechanical properties of bacteria, Sun et al., 14, 2014; 

permission conveyed through Copyright Clearance Center, Inc. B. Plug-based microfluidic 

platform proposed by Boedicker et al11. Schematic of channel shows formation of nanoliter 

droplets containing bacteria, drug condition, and viability indicator. Republished with 

permission of Royal Society of Chemistry from, Detecting bacteria and determining their 

susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based 

microfluidics, Boedicker et al., 8, 2008; permission conveyed through Copyright Clearance 

Center, Inc.
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Table 1:

Observed frequency of sepsis-causing pathogens. Table adapted from Mayr et al. 79.

Frequency % Odds Ratio

Gram-positive 46.8 -

Staphylococcus aureus 20.5 0.8

Methicillin-resistant Staphylococcus aureus 10.2 1.3

Enterococcus 10.9 1.6

Staphylococcus epidermis 10.8 0.9

Streptococcus pneumoniae 4.1 0.8

Other 6.4 0.9

Gram-negative 62.2 -

Pseudomonas spp. 19.9 1.4

Escherichia coli 16.0 0.9

Acinetobacter spp. 8.8 1.0

Enterobacter 7.0 1.5

Other 17.0 1.2

Anaerobes 4.5 0.9

Other bacteria 1.5 1.1

Fungi 19.4 -

Parasites 0.7 -

Other organisms 3.9 -
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Table 2:

Physical characteristics of main blood components relative to example sepsis-causing pathogen (E. coli).

Component Size Concentration (cells/mL) Density (g/mL) References

Red blood cells (RBCs) 7.5 – 8.7 µm (diameter) 3.7 – 5.8 × 109 1.086 – 1.122 25, 38, 90

White blood cells (WBCs) 7 – 20 µm (diameter) 3.0 – 11.7 × 106 1.057 – 1.092 38, 90, 95

Platelets 1.5 – 3 µm (diameter) 2.0 – 4.0 × 108 1.072 – 1.077 38, 90, 107

Plasma - - 1.024 90

E. coli 1 – 3 µm (length) < 10 1.105 78, 98, 115
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