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SUMMARY

An autoinhibitory network of hydrogen bonds located at the kinase hinge (referred to as the 

‘molecular brake’) regulates the activity of several receptor tyrosine kinases. The mechanism 

whereby mutational disengagement of the brake allosterically activates the kinase in human 

disease is incompletely understood. We used a combination of NMR, bioinformatics, and 

molecular dynamics simulation to show that mutational disruption of the molecular brake triggers 

localized conformational perturbations that propagate to the active site. This entails changes in 

interactions of an isoleucine, one of three hydrophobic residues that lock the phenylalanine of the 

DFG motif in an inactive conformation. Structural analysis of tyrosine kinases provides evidence 

that this allosteric control mechanism is shared across the tyrosine kinase family. We also show 

that highly activating mutations at the brake diminish the enzyme’s thermostability, thereby 

explaining why these mutations cause milder skeletal syndromes compared to less activating 

mutations in the activation loop.
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eTOC BLURP

Marsiglia et al. reveal that the kinase molecular brake is coupled to the DFG-motif through an 

allosteric pathway involving an isoleucine residue which locks the phenylalanine of the DFG-

motif activation loop in an inactive conformation. Pathogenic mutations that target the molecular 

brake activate the enzyme by perturbing this allosteric network.
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INTRODUCTION

Allostery plays a fundamental role in enzyme regulation and in the mediation of protein-

protein, protein-ligand, and protein-nucleic acid interactions. Receptor tyrosine kinases 

(RTKs) constitute an essential class of allosteric enzymes involved in cell signaling 

pathways. Ligand binding on the extracellular domain of the RTK results in receptor 

dimerization, which enables intracellular transphosphorylation of activation-loop (A-loop) 

tyrosines within the kinase domain. These reactions activate the kinase and trigger the 

propagation of intracellular signals.

Naturally occurring human gain-of-function mutations within RTKs are common, and cause 

a multitude of diseases by enhancing the intrinsic kinase activity and thereby bypassing the 
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need for A-loop tyrosine transphosphorylation (i.e., by uncoupling activation from 

extracellular ligand binding) (Katoh, 2019; Sharma et al., 2007). These mutations act by 

hijacking allosteric mechanisms that underlie physiological kinase activation (Chen et al., 

2007; Chen et al., 2017). In doing so, these pathogenic mutations shift the kinase 

equilibrium toward the activated state (Chen et al., 2013; Chen et al., 2017). To map the 

allosteric pathway that controls kinase activation, we exploited a series of pathogenic 

mutations occurring at a triad of residues comprised of asparagine, glutamic acid, and lysine. 

The side chains of these three residues form a network of hydrogen bonds termed the 

‘molecular brake’ (Chen et al., 2007), which is located distally to the nucleotide and 

substrate binding pockets. The molecular brake is conserved in FGFR, VEGFR, PDGFR, c-

KIT, TIE, TEK, CSF1R, and FLT3 (Chen et al., 2007). Mutations at any of the three 

molecular brake residues within these RTKs lead to human growth disorders and cancers 

(Table S1) (Byron et al., 2013). Here we show that these mutations alter the composition of a 

regulatory hydrogen bonding network at the molecular brake. This in turn leads to changes 

in the side chain orientation of a phenylalanine residue in the highly conserved DFG motif 

known to be a critical determinant of kinase activation (Chen et al., 2017; Kornev et al., 

2006). These coupled conformational events provide a mechanistic understanding of an 

allosteric shift toward the catalytically competent active state (Ahuja et al., 2017; Chen et al., 

2013; Saleh et al., 2017; Srivastava et al., 2014).

RESULTS AND DISCUSSION

Pathogenic Mutants at the Molecular Brake Destabilize the Kinase Fold

Previous work from our group used tyrosine kinases from the fibroblast growth factor 

receptor (FGFR) family of RTKs to identify four regions that form a long-range allosteric 

network which relays conformational changes between the A-loop to the kinase hinge 

located between the N- and C-lobes of the enzyme. These regions are: 1) the A-loop plug, 2) 

the αC tether, 3) the DFG latch, and 4) the molecular brake (Chen et al., 2017). Disruption 

of hydrogen bonds among N549, E565, and K641 at the molecular brake of FGFR2 kinase 

(FGFR2K) causes a conformational shift from an autoinhibited to an activated state (Fig. 1a) 

(Chen et al., 2007). To understand the mechanism driving this population shift (Chen et al., 

2013; Chen et al., 2007; Chen et al., 2017; Huang et al., 2013; Nussinov et al., 2014), we 

used differential scanning calorimetry to assess the thermal stability of FGFR2K mutants 

harboring pathogenic mutations at each of the three molecular brake residues (i.e., N549K, 

E565A, K641R). Unphosphorylated and A-loop phosphorylated wild-type FGFR2K and the 

FGFR2K K659E mutant were used as controls. The latter mutation, which maps onto the 

kinase A-loop, introduces intramolecular hydrogen bonds that stabilize the kinase active 

state, thereby mimicking the action of A-loop tyrosine phosphorylation (Chen et al., 2013). 

Thermogram data showed that N549K, E565A, K641R mutants all had diminished melting 

temperatures, implying a mutation-induced destabilizing effect (Fig. 1b). Similar to N549K 

of FGFR2K, we also observed a reduction in the melting temperature for the analogous 

mutation (N535K) of FGFR4K (Fig. S1), which supports the conclusion that mutations at 

the molecular brake for other FGFRK isoforms induce a similar effect. In contrast to the 

reduced thermal stability for molecular brake mutants, the pathogenic K659E mutant and the 

A-loop phosphorylated FGFR2K displayed melting temperatures similar to that of the 
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unphosphorylated kinase (Fig. S1). We conclude that in contrast to the K659E mutation, 

N549K, E565A, and K641R elevate the lowest energy conformation within the kinase free 

energy landscape, thereby facilitating the shift in equilibrium toward the active conformation 

(Fig. 1c). Importantly, the diminished thermal stability of the E565A enzyme explains why 

this mutation, in spite of imparting greater kinase activation compared to A-loop mutants, 

leads to a clinically milder form of skeletal disorder (Chen et al., 2017).

Molecular Brake Mutation Increases Conformational Disorder Near the DFG Phenylalanine

To delve deeper into the mechanism whereby molecular brake mutations destabilize the 

inhibited conformation, we used NMR spectroscopy, a technique capable of detecting site-

specific protein dynamics under native conditions (Boehr et al., 2006; Kay, 2016; Kumar et 

al., 2018; Manley and Loria, 2012). Specifically, we carried out 1H-1H dipolar cross-

correlated relaxation rate (η) experiments in order to calculate generalized order parameters 

(S2) for regions spanning throughout the kinase structure (Sun et al., 2011). The S2 value 

ranges from zero to one and reflects fully disordered or ordered regions, respectively. To 

perform these measurements, we isotopically enriched wild-type FGFR2K and the most 

enzymatically active molecular brake mutant (i.e., E565A) with 13C at isoleucine, leucine, 

and valine in their methyl groups (ILV labeling (Rosen et al., 1996)). The S2 and η values 

for both samples are presented in Fig. 2a and Table S2. Analysis of these values shows that 

these measurements could distinguish flexible loops from the rigid core of the kinase (Fig. 

S2). For example, the majority of N- and C-lobe residues involved in core hydrophobic 

packing such as V562 (in the β5 sheet), I696 (in the αF helix), and I760 (in the αI helix) 

displayed S2 values above 0.6, indicative of order on a nanosecond timescale (Fig. 2a). On 

the other hand, loop residues such as I503 (in the β2-β3 loop), I541 (in the αC-β4 loop), and 

I651 and I654 (both in the A-loop) showed reduced order (i.e., S2 values < 0.4), thus 

validating the suitability of our NMR approach for gauging differences in conformational 

dynamics induced upon mutation at the molecular brake.

To visualize changes in intrinsic dynamics between wild-type FGFR2K and the E565A 

mutant, differences in S2 values (ΔS2) were mapped onto the inhibited FGFR1K crystal 

structure (PDB ID: 3KY2) (Fig. 2b, c). This plot revealed that the majority of residues in the 

C-lobe showed no significant differences, implying that the C-lobe is unaffected by the 

molecular brake mutation. However, the S2 values for several sites within the N-lobe were 

significantly reduced in E565A relative to the wild-type enzyme. Specifically, we observed 

that residues in close vicinity to the E565A mutation had ΔS2 values that were significantly 

reduced (e.g., V512, L551, V564), suggesting an increase in local dynamics on the 

nanosecond timescale. In addition, we also observed that two constituents surrounding the 

phenylalanine from the hydrophobic DFG latch, namely I541 and L617, incurred significant 

reductions in S2 values (Fig. 2c). These residues, together with I547, are involved in locking 

the phenylalanine within the DFG motif in an inactive conformation (Chen et al., 2017). We 

conclude that the loss of hydrogen bonding seen in the E565A crystal structure leads to 

increased conformational flexibility around the DFG motif phenylalanine residue as well as 

a reduction in thermal stability observed using DSC (Fig. 1b).
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To map the allosteric trajectory, we further investigated high-resolution crystal structures of 

active and inhibited FGFRKs (PDB IDs: 3KY2-inhibited and 2PVF-active). Our analysis 

revealed that I547 undergoes two major changes in its interaction patterns. First, hydrogen 

bonding distances between the carbonyl oxygen of I547 with both the side chains of N549 

and K641 increase upon transition to the active conformation: N549 to I547 is 3.0 Å in the 

inhibited conformation and 6.9 Å in the active conformation, while K641 to I547 is 3.3 Å in 

the inhibited conformation and 4.6 Å in the active conformation (Fig. 3a). Second, the chi1 

angle of the I547 side chain switches from a positive gauche conformation (59°) in the 

inhibited state to a negative gauche conformation (−68°) in the active form. These changes 

are accompanied by a difference in the F645 chi1 dihedral angle from 56° in the inhibited 

state to −69° in the activated state. Based on these coupled changes between molecular brake 

residues and I547 and the changes in I547 and F645 chi1 angles, we infer that I547 acts as a 

key intermediary of allosteric communication between the molecular brake and the DFG 

latch.

Allosteric Coupling Involves a Hydrogen Bond Interaction Pathway

To gain further insight into the coupling mechanism between the molecular brake and the 

DFG latch, we utilized all-atom molecular dynamics simulations starting from an inhibited 

FGFR1K crystal structure bound to ATP and Mg2+ (PDB ID: 3KY2). Simulations were also 

carried out for E565A (Chen et al., 2017). We selected the FGFR1 isoform structure because 

we previously found that the A-loop conformation in the inhibited FGFR2K crystal structure 

was influenced by crystal packing, and thus did not represent an authentically inhibited 

kinase(Chen et al., 2017). Molecular dynamics were simulated for 200 nsec using three 

separate replicates, giving a total sampling time of 600 nsec for wild-type and the E565A 

mutant. The root mean squared deviation (RMSD) for heavy atoms (CA, C’, N, O) within 

structured regions of the kinase indicated stable trajectories for all replica runs (Fig. S3a). To 

correlate simulation data with the X-ray crystallographic and NMR data, we evaluated 

conformational fluctuations around the DFG latch by calculating the chi1 angle of the DFG 

phenylalanine throughout each trajectory (Fig. 3b and 3c). These plots show that E565A had 

a greater number of chi1 rotamer switches compared to the wild-type kinase. Specifically, 

E565A underwent dihedral angle changes between approximately 60° and −60°, in line with 

our analysis of crystal structures corresponding to inhibited and active states of positive 

gauche and negative gauche, respectively. These findings are consistent with our NMR 

spectroscopic data showing a decrease in order parameters around the DFG latch, thus 

reinforcing the existence of allosteric coupling between the molecular brake and DFG latch.

To further characterize the coupling mechanism between the molecular brake and the DFG 

latch regions, we quantified the number of hydrogen bonds formed by K641 and N549 with 

the carbonyl backbone of I547 and analyzed the chi1 angles of I547 in addition to those 

detailed above for F645. The simulation results for the wild-type enzyme revealed that the 

chi1 angles of F645 and I547 predominantly sampled the inhibited rotamer conformation 

(78.7%), whereas the active rotamers constituted only a minor population (3.7%). The 

remaining population (intermediates 1 and 2) showed mixed characteristics in which either 

the F645 rotamer resembled that of the inhibited state and I547 resembled that of the active 

state (15.3%), or F645 in the active state and I547 in the inhibited state (2.3%) (Fig. 3b). The 

Marsiglia et al. Page 5

Structure. Author manuscript; available in PMC 2020 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



extent of hydrogen-bonding indicated that the molecular brake was primarily intact, as 

evidenced by the high probability of two hydrogen bonds between the carbonyl oxygen of 

I547 and the side chains of N549 and K641 (Fig. 3b).

In stark contrast to the case of the wild-type enzyme, the corresponding populations of the 

E565A mutant for the inhibited and active forms were reversed: 7.8% populated the 

inhibited conformation and 49.8% populated the active state (Fig. 3c). Intermediate states 

were also present in which active F645 and inhibited I547 chi1 angles comprised 16.3%, 

while the opposite conformational states had a population of 26.1%. The higher percentage 

of intermediate rotamer states implies greater flexibility of the E565A mutant at the 

molecular brake region relative to the wild-type kinase. The E565A mutation also imparted 

larger perturbations on the hydrogen bond network of the molecular brake, as anticipated 

from loss of the salt-bridge involving this glutamic acid in the wild-type kinase (Fig. 3c). We 

conclude that E565A weakens hydrogen bonding interactions at the molecular brake, 

thereby lowering the free energy barrier for chi1 rotameric changes of I547 and F645 (Fig. 

1c).

It is noteworthy that the overall RMSD of structured and unstructured regions in both wild-

type and E565A simulations remained relatively small over the total simulation time of 600 

nsec (Fig. S3a). While we observed local conformational fluctuations around the DFG latch 

and at the molecular brake (Fig. S3b), we found no evidence for transitioning of the A-loop 

to an active configuration (Fig. S3c). It has been reported that simulations on the millisecond 

timescale are required to observe A-loop conformational changes in EGFR kinase (Shan et 

al., 2013). For this reason, conformational changes of I547 and F645 were considered to be 

active-like transitions and may not represent a global transition to the active state. This is 

consistent with our previously reported activity data showing subtle cooperativity between 

the DFG-latch with the A-loop or the molecular brake with the A-loop (Chen et al., 2017). 

Namely, double mutations at the DFG-latch and A-loop or at the molecular brake and A-

loop produced an additive effect of individual mutations (Chen et al., 2017). In contrast, 

combined mutations at the DFG-latch and molecular brake produce no greater activity than 

each mutation alone. Taken together, these observations support conformational coupling via 

a defined allosteric pathway involving hydrogen bonding of I547 to the molecular brake, 

which directly influences the orientation of the phenylalanine from the DFG latch.

Conservation of Allosteric Pathway in Other Tyrosine Kinases

To determine whether our allosteric coupling pathway between activated and inhibited 

kinase conformations in the FGFR family is applicable to other kinases, we analyzed crystal 

structures for tyrosine kinases containing isoleucine and phenylalanine residues at the 

analogous positions to I547 and F645 within FGFR2K. Because of the known influence of 

ATP-competitive inhibitors on the DFG conformation (DFGin or DFGout) (Muller et al., 

2015), we focused on drug-free kinase structures. In addition, we included only those 

tyrosine kinases with glutamic acid and lysine residues corresponding to E565 and K641 of 

FGFR2K; note that these account for >85% of all tyrosine kinases (Fig. S4a). The calculated 

chi1 angle plots for phenylalanine and isoleucine residues showed clustering of structures 

with inhibited and activated side chain dihedral angles similar to those in the FGFRK family 
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(Fig. 4). Specifically, out of 101 structures analyzed, 14 had chi1 angles that clustered in the 

inhibited conformation, while 80 were found within the active conformation. The remaining 

seven kinase structures had mixed characteristics in which the chi1 angle for the 

phenylalanine of the DFG motif was observed in an active conformation and the isoleucine 

was in an inhibited conformation. Notably, in these latter structures, the phenylalanine 

conformation may be biased because of the tightly bound sulfate ion by A-loop residues.

We also measured bond distances between the carbonyl oxygen of the analogous I547 

residue and the side chain nitrogen at the analogous K641 position to further explore 

correspondence of the DFG latch orientation with hydrogen bonding at the molecular brake: 

longer bond distances would imply disrupted hydrogen bonding at the molecular brake, 

while shorter distances would be indicative of intact hydrogen bonding. Remarkably, we 

found that 12 of 14 inhibited structures had bond distances less than 3.5 Å, while 73 of 80 

structures had bond distances greater than 3.5 Å. This dichotomy suggests a general 

activation mechanism that connects hydrogen bonding at the molecular brake to the rotamer 

orientation of the phenylalanine within the DFG motif. We note that some of the tyrosine 

kinases in this analysis do not share the asparagine position of the molecular brake 

conserved in FGFR, VEGFR, PDGFR, c-KIT, TIE, TEK, CSF1R, and FLT3. However, these 

kinases do have a hydrogen bonding pattern that resembles those interactions identified as 

part of the molecular brake (Chen et al., 2007). In particular, their structures show a 

conserved hydrogen bond from the backbone nitrogen of the analogous N549 position to the 

side chain carboxylate of E565 (Fig. S4b, c). This observation coupled with the high degree 

of conservation at the analogous E565 and K641 positions, implies that the molecular brake 

is a generalized regulatory element within the tyrosine kinase subfamily (Molina-Vila et al., 

2014).

Our experimental and computational data lead us to conclude that mutations at the molecular 

brake impart local disorder, which is transmitted to the DFG latch via a change in the 

backbone hydrogen bonding distance to I547. The loss of hydrogen bonding alters the I547 

side chain orientation which in turn directly influences the side chain conformation of the 

phenylalanine from the DFG motif. Thus, mutations at the molecular brake operate via an 

allosteric propagation mechanism in which there is a cooperative conformational transition 

from the site of mutation to the DFG latch. The timescale of A-loop motion is too slow to be 

captured using nanosecond MD simulations described in this work. Nevertheless, NMR 

chemical shift perturbations on A-loop residues I651 and I654 (Fig. S5) suggest that 

molecular brake mutants can sample the active state of the DFG latch component of the 

allosteric network implying that they can indeed populate the active state. This is evidenced 

by the remarkable consistency of active and inhibited A-loop conformations with the 

corresponding F645 and I547 chi1 angles observed in crystal structures where the A-loop 

has ample time to sample different conformations during the crystallization process.

STAR METHODS

Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by Nathaniel J. Traaseth (traaseth@nyu.edu)
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Preparation of FGFR Kinase Samples

cDNA fragments encoding residues P458 to E768 of human FGFR2c (Accession code: 

P21802-1) and residues L445 to E753 of human FGFR4 (Accession code: P22455-1) were 

amplified by PCR and sub-cloned into a pET bacterial expression vector with an N-terminal 

6x-His-tag. Note that wild-type FGFR2 kinase was mutated at C491 to an alanine; this 

functional mutant was used for all subsequent site-directed mutants. All pathogenic 

mutations at the molecular brake were introduced using the QuikChange site-directed 

mutagenesis kit (Stratagene). The E. coli strain BL21(DE3) cells were transformed with the 

expression constructs, and kinase expression was induced with 0.1 mM (FGFR2K) or 1.0 

mM (FGFR4K) isopropyl-L-thio-B-D-galactopyranoside overnight at 20 °C. The cells were 

lysed, and the soluble kinase proteins were purified using nickel affinity chromatography as 

previously described (Chen et al., 2007; Chen et al., 2017). Trace amounts of 

phosphorylation from the bacterial expression were removed by treating the kinases with 

FastAP™ Thermosensitive Alkaline Phosphatase (Thermo Scientific) and subsequently 

purified by anion exchange chromatography (Source 15Q, GE Healthcare Life Sciences) and 

gel filtration chromatography (Superdex 200 Increase 10/300GL, GE Healthcare Life 

Sciences).

Measurement of Order Parameters using NMR Spectroscopy
1H-1H dipolar cross-correlated relaxation rates (η) were calculated from the intensities of 

the triple (forbidden) and single (allowed) quantum transition experiments as previously 

described (Sun et al., 2011). The relaxation delays (T) used for the triple and single quantum 

measurements were 1.25, 2.5, 5, 7.5, 10, 12, 15, and 18 msec. The forbidden experiment was 

acquired using 24 scans, while the allowed experiment was acquired using 16 scans. To 

correct for differences in peak heights due to unequal scans between the two experiments, 

the peak heights obtained from the forbidden experiment were multiplied by a factor of 

(16/24). Intensity ratios for each relaxation delay (Iforbidden/Iallowed) were fit to determine the 
1H-1H dipolar cross-correlated relaxation rate using equation (3):

I forbid
Iallow

= C ηtanh( η + δ2T)
η + δ2 − δtanh( η + δ2T

(3)

C is 0.75 and δ compensates for relaxation effects arising from external protons; the latter 

was a floatable parameter in the fit. The acquisition parameters for 2D experiments utilized 

direct (1H) and indirect (13C) spectral widths of 10000 and 3018 Hz and acquisition times of 

60.0 msec and 19.6 msec, respectively. All measurements were performed in duplicate for 

FGFR2 kinase and E565A, which were 0.5 mM in concentration and prepared uniformly 
15N labeled with –CH3 groups labeled with 13C at Ile (Cδ1), Leu (Cδ1/δ2), and Val (Cγ1/γ2) 

in a perdeuterated background (referred to as ILV labeling). All experiments were carried 

out at 10 °C. Data were processed in NMRPipe (Delaglio et al., 1995) and analyzed in 

Sparky (Goddard and Kneller)

To calculate order parameters (S2) from the fitted η values in equation (3), we measured 

correlation times for wild-type and E565A kinases using the TRACT method (Lee et al., 
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2006). Datasets measuring the relaxation rates of the TROSY and anti-TROSY components 

were acquired in an interleaved fashion with relaxation delays from 0 to 200 msec in in 4 

msec intervals. Relaxation curves were fit to an exponential decay to extract the relaxation 

rate of each TROSY component and the correlation time was determined as previously 

described (Lee et al., 2006). The correlation time (τC) was determined to be 27 nsec for both 

wild-type and mutant FGFR2Ks.

Order parameters (S2) were calculated using the following equation (Sun et al., 2011):

η =
R2, H

F − R2, H
S

2 ≈ 9
10

μ0
4π

2
[P2(cosθaxis, HH)]2Saxis

2 γH
4 ħ2τC

rHH
6 (4)

where ℏ is the reduced Plank’s constant, rHH is the distance between methyl group protons 

(1.813 Å), and P2(cosθaxis,HH) was set to −0.5 (Tugarinov et al., 2007). Errors in Figure 2 

reflect non-linear least square fitting errors from datasets acquired in duplicate.

Differential Scanning Calorimetry

All measurements were performed on a NanoDSC (TA Instruments) at a scanning rate of 

60 °C/hr from 10 °C to 70 °C. Kinase concentrations were 20 or 80 μM in 25 mM HEPES, 

150 mM NaCl, pH 7.5. For AMP-PNP measurements, the concentrations of protein, 

AMPPNP, and magnesium chloride were 80 μM, 5 mM, and 10 mM, respectively. For 

phosphorylated samples, 1 mM EDTA was included in the DSC buffer to chelate Mg2+. 

Melting temperatures (Tm) were fit using the NanoAnalyze software (TA instruments).

Computational Details

Molecular dynamics simulations were performed using the AMBER 16.06 package with the 

ff14SB force field for the protein and TIP3P water model. Force fields developed for 

ATP(Meagher et al., 2003) and Mg2+ (Allner et al., 2012) were used in the nucleotide bound 

simulations. The initial structure for molecular dynamics simulations of wild-type enzyme 

was modeled based on the inhibited FGFR1 kinase structure 3KY2, with missing loops 

repaired using Modeller (Webb and Sali, 2017). The initial structure for the molecular brake 

mutant was obtained by mutating E565 into alanine. Wild-type and E565A mutant systems 

were neutralized using three and two Na+ ions, respectively, and were solvated using a cubic 

TIP3P water box with a 15 A buffer region between protein and boundary.

Each prepared simulation system was equilibrated using repeated steps of minimization and 

restrained dynamics. The solvated complex was initially minimized using a conjugate 

gradient minimization for 2000 steps followed by a 200 psec constant volume simulation at 

300K with a 500 kcal/mol restraint on the crystal waters, cofactors, and the heavy atoms of 

the protein. Another round of conjugate gradient minimization for 2000 steps were 

performed using the same restraints followed by another round of minimization but with 

reduced restraints of 50 kcal/mol. A series of 200 psec constant volume simulations were 

performed with decreasing restraints from 50, 10, and 2 kcal/mol at 300 K. Lastly, two 

constant pressure simulations were run for 200 psec each at 300K with decreasing restraints 
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of 2 and 0.5 kcal/mol. Finally, unrestrained production runs were initiated from the density 

equilibrated simulations with snapshots being collected every 10 psec. For all simulations, 

time steps were set at 2 fsec, with SHAKE constraints, particle mesh-Ewald (Salomon-

Ferrer et al., 2013) for electrostatics and a 12 Å cut-off for non-bonded interactions.

Quantification of Statistical Detail

All experimental DSC and NMR order parameter measurements were performed in 

duplicate. All listed and plotted points represent the average of two experiments; error in the 

DSC measurements reflect the standard deviation while errors associated with η and S2 

values represent the errors of the fit. The fits to equation (3) for the NMR order parameter 

measurements were performed in Prism 7 (Graphpad).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• There is an allosteric pathway between the DFG-motif and the molecular 

brake

• An isoleucine near the DFG-motif serves as a conduit of allostery

• Pathological mutations at the molecular brake perturb the allosteric network

• Molecular brake mutants decrease kinase thermal stability
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Figure 1. Gain-of-function mutations at the molecular brake destabilize the inhibited 
conformation.
(a) Left: structural view depicting engaged molecular brake as observed in the inhibited 

FGFR1 kinase (PDB: 3KY2); note that numbering follows that of FGFR2K. Right: 

disengaged molecular brake as seen in the A-loop tyrosine phosphorylated activated 

FGFR2K (PDB: 2PVF). Kinase molecule is shown as gray cartoon; αC-β4 loop, kinase 

hinge, and β8 strand contributing residues to the molecular brake are highlighted in red, blue 

and green, respectively. The triad of residues (i.e., N549, E565 and K641) comprising the 

molecular brake are shown as green sticks. Oxygen and nitrogen atoms are colored red and 

blue, respectively; hydrogen bonds are denoted by dashed yellow lines. (b) Differential 

scanning calorimetry thermogram data comparing thermal stabilities of wild-type FGFR2K 

and molecular brake mutants (i.e., N549K, E565A, and K641R). Note that molecular brake 

mutants have reduced melting temperatures relative to the wild-type FGFR2 kinase. A 

complete list of melting temperatures is shown in Table 1. (c) Schematic of free energy 

landscape in wild-type (black) and molecular brake mutants (dashed red). The red arrow 
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highlights that molecular brake mutations elevate the basal free energy of the kinase; i.e., 

they destabilize the inhibited state.
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Figure 2. The E565A mutation increases localized conformational dynamics and induces 
allosteric changes to residues surrounding the phenylalanine within the DFG motif.
(a) Comparison of generalized order parameters (S2; left axis) and 1H-1H cross-correlated 

relaxation rates (η; right axis) for wild-type (blue circles) and E565A (red squares). Error 

bars denote the error of fitted η values used to calculate S2. (b) Difference plot of S2 values 

(ΔS2) from panel (a) calculated by subtracting E565A values from those of wild-type 

FGFR2K. Note that compared to the C-lobe, several N-lobe residues display ΔS2 values 

significantly greater than zero. (c) ΔS2 values are mapped on corresponding methyl carbon 

atoms as spheres onto the inhibited structure of FGFRK (PDB ID:3KY2) represented in gray 

cartoon. The inset shows a zoomed-in view of the DFG latch. The range of ΔS2 is denoted 

by a colored boxed bar. Note the decrease in order for the methyl groups of I541 and L617 

in E565E which are directly surrounding the phenylalanine from the DFG latch motif.
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Figure 3. Molecular dynamics simulations support the existence of allostery between the 
molecular brake and the DFG latch mediated by I547.
(a) Cartoon representation of crystal structures of FGFRKs in the inhibited (left; PDB ID: 

3KY2) and activated forms (right; PDB ID: 2PVF) showing that hydrogen bonding (dotted 

lines) between side chains of N549 and K641 with the carbonyl oxygen of I547 in the 

inhibited form becomes disrupted upon activation. These structural views also display the 

change in the DFG phenylalanine (F645) side chain orientation between the inhibited and 

active forms of the enzyme that correlates with the hydrogen bonding at the molecular brake. 

(b, c) Analysis of chi1 dihedral angles and hydrogen bonds from molecular dynamics 
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simulations carried out on wild-type FGFR1K (b) and E565A (c). The left panels in (b) and 

(c) display chi1 dihedral angles for F645 as a function of time for each of the three replica 

simulations. Dotted lines correspond to dihedral angles for the inhibited (~60°) and active 

forms (~−60°) of the enzyme and match those of the structural views in panel (a). The upper 

right panel within (b) and (c) shows calculated chi1 dihedral angles for F645 and I547 

throughout the molecular dynamics simulations for wild-type FGFR1K and E565A. Darker 

regions of the plot indicate a greater population of configurations present within the 

simulations. In panel (c), the green circles correspond to the dihedral angles of the inhibited 

(PDB ID: 3KY2) and active form of FGFRK (PDB ID: 2PVF). The bottom right panel of (b) 

and (c) shows the number of hydrogen bonds formed by the side chains of K641 and N549 

with the backbone carbonyl of I547 for structural snapshots of the molecular dynamics 

simulation that correspond to the inhibited, active, or either of the intermediate forms. 

Colors of red, green, and blue correspond to zero, one, and two hydrogen bonds, where a 

hydrogen bond is defined at a distance of ≤ 3.5 Å.
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Figure 4. A conserved allosteric mechanism connecting the molecular brake and DFG latch.
Plot of chi1 angles calculated for apo or nucleotide bound tyrosine kinase coordinates (total 

of 101) taken from the PDB. These kinases share the analogous I547 and F645 positions 

present in FGFR2K. Green circles indicate that the analogous K641 sidechain-I547 carbonyl 

bond distance is less than 3.5 Å. Red circles indicate that the analogous K641 sidechain-

I547 carbonyl bond distance is less than 3.5 Å. Large circles highlight clustering of 

structures in inhibited (total = 14) and active (total = 80) conformations. A tabulated list of 

kinases and corresponding PDB IDs is given in Table S3.
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Table 1.

Summary of melting temperatures measured using differential scanning calorimetry in the presence and 

absence of the ATP mimic AMPPNP. The standard deviations from duplicate measurements are less than or 

equal to 0.4 °C.

FGFR Isoform Form/Mutation AMPPNP Tm (°C)

FGFR2

WT + 53.4

N549K + 50.0

K641R + 45.5

E565A + 43.9

K659E + 54.2

WT − 51.8

Y656/Y657
a − 52.1

pY656/pY657
a − 51.1

N549K − 45.7

K641R − 41.9

E565A − 40.1

K659E − 51.8

FGFR4
WT − 47.7

N535K
b − 41.7

a
Y656/Y657 and pY656/pY657 constructs correspond to unphosphorylated and phosphorylated versions of an FGFR2K domain, respectively. 

These kinases have only two phosphorylatable tyrosines which are located in the A-loop (i.e. a triple mutant of Y466F, Y586L, and Y588S).

b
The N535K mutation in FGFR4K is homologous to the N549K mutation in FGFR2K.
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