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Abstract

Although Alzheimer’s disease (AD) is highly heritable, genetic variants known to be associated 

with AD only explain a small proportion of its heritability. Genetic factors may only convey 

disease risk in individuals with certain environmental exposures, suggesting that a multi-omics 

approach could reveal underlying mechanisms contributing to complex traits, such as AD. We 

developed an integrated network to investigate relationships between metabolomics, genomics, 

and AD risk factors using Wisconsin Registry for Alzheimer’s Prevention participants. Analyses 

included 1,111 non-Hispanic Caucasian participants with whole blood expression for 11,376 genes 

(imputed from dense genome-wide genotyping), 1,097 fasting plasma metabolites, and 17 AD risk 

factors. A subset of 155 individuals also had 364 fasting cerebral spinal fluid (CSF) metabolites. 

After adjusting each of these 12,854 variables for potential confounders, we developed an 

undirected graphical network, representing all significant pairwise correlations upon adjusting for 

multiple testing. There were many instances of genes being indirectly linked to AD risk factors 

through metabolites, suggesting that genes may influence AD risk through particular metabolites. 

Follow-up analyses suggested that glycine mediates the relationship between CPS1 and measures 

of cardiovascular and diabetes risk, including body mass index, waist-hip ratio, inflammation, and 
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insulin resistance. Further, 38 CSF metabolites explained more than 60% of the variance of CSF 

levels of tau, a detrimental protein that accumulates in the brain of AD patients and is necessary 

for its diagnosis. These results further our understanding of underlying mechanisms contributing 

to AD risk while demonstrating the utility of generating and integrating multiple omics data types.
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Introduction

Genome-wide association studies (GWAS) have identified tens of thousands of single 

nucleotide polymorphism (SNP)-trait associations(MacArthur et al., 2017). However, these 

variants tend to have very small effect sizes and typically explain a small portion of trait 

heritability. Late onset Alzheimer’s disease (AD) is an example of such a trait: 53% of its 

phenotypic variance can be explained by genomic variants, collectively (i.e., SNP 

heritability); yet, the 21 GWAS variants identified in a meta-analysis to be associated with 

AD only account for 31% of its genetic variance, leaving 69% unaccounted for(Ridge et al., 

2016). In order to more comprehensively understand the disease risk conveyed by genetic 

factors, it is crucial to consider genomics in combination with other omics data types and to 

use integrative multi-omics approaches that can capture intricate relationships.

Although there has been great interest recently in the integration of multi-omics datasets, 

progress in this field is still fairly limited and it faces many challenges(Bersanelli et al., 

2016; Buescher & Driggers, 2016; Gligorijevic & Przulj, 2015; S. Huang, Chaudhary, & 

Garmire, 2017; Lopez de Maturana, Pineda, Brand, Van Steen, & Malats, 2016; Ritchie, 

Holzinger, Li, Pendergrass, & Kim, 2015). However, studies have been able to show that the 

use of multiple omics data types is more predictive than single data types(Buescher & 

Driggers, 2016; Mankoo, Shen, Schultz, Levine, & Sander, 2011). A recent study with dense 

longitudinal omics data displayed the utility of integrating such data with regards to 

personalized medicine(Price et al., 2017). Although limited by its sample size of 108 

participants, this investigation identified meaningful systems biology relationships that were 

able to improve the health of its participants. As it is becoming more feasible and common 

to acquire multiple omics data types, it is essential that we move towards systems biology 

approaches of understanding complex diseases, rather than focusing on single data types that 

are unable to capture the intricacies imposed by biology.

Recent technological advances have made metabolomics studies increasingly favorable 

among investigations of AD(Enche Ady et al., 2017), obesity(Zhang, Sun, & Wang, 2017), 

and cardiovascular disease(Ussher, Elmariah, Gerszten, & Dyck, 2016), to name a few. An 

appeal of the metabolome is that of the biological systems, metabolomics could offer an 

effective way to accurately capture individual-level environmental exposures; it is the most 

proximal to the development of the phenotype(Horgan & Kenny, 2011) and many 

metabolites have a low heritability(Long et al., 2017; Shin et al., 2014), implying that such 

metabolites are more strongly influenced by the environment than genomics. Metabolomic 
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variations that precede disease onset could prove to be highly informative for predictive 

models as well as preventative and therapeutic medicine. Pathological changes that cause 

AD are known to begin decades before the diagnosis of AD(Jack et al., 2009). As such, an 

integrated approach of studying the genomics and metabolomics of risk factors that precede 

an AD diagnosis could provide a better understanding of the underlying biological and 

environmental mechanisms that lead to the onset of AD.

We developed an integrative network to investigate relationships between plasma 

metabolomics, cerebral spinal fluid (CSF) metabolomics, genomics, and AD risk factors 

using 1,111 participants with deep longitudinal phenotypes from the Wisconsin Registry for 

Alzheimer’s Prevention (WRAP). AD risk factors included neuropsychological measures of 

cognitive function, CSF levels of the two proteins required for an AD diagnosis that are 

known to accumulate in the brains of AD patients, amyloid-beta (Aβ) and tau, and measures 

of cardiovascular disease and diabetes risk, two diseases that are known to increase AD risk. 

Further, in order to understand whether plasma metabolite levels are representative of 

metabolites in CSF, which may be a more relevant tissue for neurological diseases, we also 

assessed the correlation of plasma and CSF metabolite levels.

Materials and Methods

Participants

Study participants were from WRAP, a longitudinal study of initially dementia free middle-

aged adults that allows for the enrollment of siblings and is enriched for a parental history of 

Alzheimer’s disease. Further details of the study design and methods used have been 

previously described(Johnson et al., 2018; Sager, Hermann, & La Rue, 2005). Participants 

included in this analysis had genetic ancestry that was primarily of European descent, had 

both genomic and metabolomic data available, and up to seventeen AD risk factors (Table 1; 

of note, cholesterol is not included in this table because it was measured on the metabolite 

panel). This study was conducted with the approval of the University of Wisconsin 

Institutional Review Board, and all subjects provided signed informed consent before 

participation.

Plasma and CSF collection and sample handling

Fasting blood samples for this study were drawn the morning of each study visit. Plasma 

samples were stored in ethylenediaminetetraacetic acid (EDTA) tubes at −80°C. Blood was 

collected in 10 mL ethylenediaminetetraacetic acid (EDTA) vacutainer tubes. They were 

immediately placed on ice, and then centrifuged at 3000 revolutions per minute for 15 

minutes at room temperature. Plasma was pipetted off within one hour of collection. Plasma 

samples were aliquoted into 1.0 mL polypropylene cryovials and placed in −80°C freezers 

within 30 minutes of separation.

As previously described(Darst et al., 2017), CSF was collected via lumbar puncture (LP) in 

the morning after a 12-hour fast, not necessarily on the same day as a study visit (LPs were 

drawn within a median of 120 days of the study visit, ranging from 0–661 days). LPs were 

performed using a Sprotte 25- or 24-gauge spinal needle at the L3/4 or L4/5 interspace using 
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gentle extraction into polypropylene syringes. CSF (22 mL) was then gently mixed and 

centrifuged at 2000g for 10 minutes. Supernatants were frozen in 0.5 mL aliquots in 

polypropylene tubes and stored at −80°C.

Plasma and CSF samples were never thawed before being shipped overnight on dry ice to 

Metabolon (Durham, NC), where they were again stored in −80°C freezers and thawed once 

before testing.

CSF biomarker quantification

CSF Aβ42, total tau (T-tau), and phosphorylated tau (P-tau) were quantified with sandwich 

ELISAs (INNOTEST β-amyloid1–42, hTAU-Ag, and Phospho-Tau[181P], respectively; 

Fujirebio Europe, Ghent, Belgium). CSF levels of Aβ42 and Aβ40 (a less amyloidogenic Aβ 
fragment as compared to Aβ42) were used to calculate the ratio of Aβ42/Aβ40 were 

quantified by electrochemiluminescence (ECL) using an Aβ triplex assay (MSD Human Aβ 
peptide Ultra-Sensitive Kit, Meso Scale Discovery, Gaithersburg, MD). A total of 223 

samples with CSF biomarkers among 141 individuals were available for this analysis.

Plasma and CSF metabolomic profiling and quality control

Untargeted plasma and CSF metabolomic analyses and quantification were performed by 

Metabolon (Durham, NC) using Ultrahigh Performance Liquid Chromatography-Tandom 

Mass Spectrometry (UPLC-MS/MS)(Evans et al., 2014); details are outlined in the 

Supplemental Note. Metabolites within eight super pathways were identified: amino acids, 

carbohydrates, cofactors and vitamins, energy, lipids, nucleotides, peptides, and xenobiotics.

Up to three longitudinal plasma samples were available for each participant. Plasma 

metabolites with an interquartile range of zero (i.e., those with very low or no variability) 

were excluded from analyses (178 metabolites). After removing these metabolites, samples 

were missing a median of 11.7% plasma metabolites, while plasma metabolites were 

missing in a median of 1.2% of samples.

Up to four longitudinal CSF samples were available for each participant. Similarly, CSF 

metabolites with an interquartile range of zero were excluded from analyses (48 CSF 

metabolites). After removing these metabolites, samples were missing a median of 6.9% 

CSF metabolites, while CSF metabolites were missing in a median of 0.3% of samples.

Missing plasma and CSF metabolite values were imputed to the lowest level of detection for 

each metabolite(Menni et al., 2013). Metabolite values were median-scaled and log-

transformed to normalize metabolite distributions(van den Berg, Hoefsloot, Westerhuis, 

Smilde, & van der Werf, 2006). If a participant reported that they did not fast or withhold 

medications and caffeine for at least eight hours prior to the blood draw, the plasma sample 

was excluded from analyses (159 plasma samples), leaving 1,097 plasma metabolites among 

2,189 plasma samples (1,111 individuals) for analyses. Similarly, if a participant reported 

that they did not fast for at least eight hours prior to the LP, the CSF sample was excluded 

from analyses (4 CSF samples), leaving 364 CSF metabolites among 346 CSF samples (155 

individuals) for analyses.
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CSF and plasma metabolite correlations

A total of 326 metabolites were captured in both CSF and plasma. The correlations of these 

metabolites between tissue types were calculated using the Pearson correlation coefficient. 

In order to reduce variability due to the time interval between plasma and CSF sample 

collection, correlations were based on 141 pairs of plasma and CSF samples that were 

collected within a timespan of four months of each other. After removing these samples, 

plasma and CSF samples were collected a median of 27 days apart.

DNA collection and genomics quality control

DNA was extracted from whole blood samples using the PUREGENE® DNA Isolation Kit 

(Gentra Systems, Inc., Minneapolis, MN). DNA concentrations were quantified using the 

Invitrogen™ Quant-iT™ PicoGreen™ dsDNA Assay Kit (Thermo Fisher Scientific, 

Hampton, NH) analyzed on the Synergy 2 Multi-Detection Microplate Reader (Biotek 

Instruments, Winooski, VT). Samples were normalized to 50 ng/ul following quantification.

A total of 1,340 samples were genotyped using the Illumina Multi-Ethnic Genotyping Array 

at the University of Wisconsin Biotechnology Center (Figure S1). Thirty-six blinded 

duplicate samples were used to calculate a concordance rate of 99.99%, and discordant 

genotypes were set to missing. Sixteen samples missing >5% of variants were excluded, 

while 35,105 variants missing in >5% of individuals were excluded. No samples were 

removed due to outlying heterozygosity. Six samples were excluded due to inconsistencies 

between self-reported and genetic sex.

Due to the sibling relationships present in the WRAP cohort, genetic ancestry was assessed 

using Principal Components Analysis in Related Samples (PC-AiR), a method that makes 

robust inferences about population structure in the presence of relatedness(Conomos, Miller, 

& Thornton, 2015). This approach included several iterative steps and was based on 63,503 

linkage disequilibrium (LD) pruned (r2<0.10) and common (MAF>0.05) variants, using the 

1000 Genomes data as reference populations(Genomes Project et al., 2015). First, kinship 

coefficients (KCs) were calculated between all pairs of individuals using genomic data with 

the Kinship-based Inference for Gwas (KING)-robust method(Manichaikul et al., 2010). PC-

AiR was used to perform principal components analysis (PCA) on the reference populations 

along with a subset of unrelated individuals identified by the KCs. Resulting principal 

components (PCs) were used to project PC values onto the remaining related individuals. All 

PCs were then used to recalculate the KCs taking ancestry into account using the PC-Relate 

method, which estimates KCs robust to population structure(Conomos, Reiner, Weir, & 

Thornton, 2016). PCA was performed again using the updated KCs, and KCs were also 

estimated again using updated PCs. The resulting PCs identified 1,198 WRAP participants 

whose genetic ancestry was primarily of European descent. This procedure was repeated 

within this subset of participants (excluding 1000 Genomes individuals) to obtain PC 

estimates used to adjust for population stratification in subsequent genomic analyses. 

Among European descendants, 160 variants were not in Hardy-Weinberg equilibrium 

(HWE) and 327,064 were monomorphic and thus, removed.
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A total of 1,294,660 bi-allelic autosomal variants among 1,198 European descendants 

remained for imputation, which was performed with the Michigan Imputation Server 

v1.0.3(Das et al., 2016), using the Haplotype Reference Consortium (HRC) v. r1.1 

2016(McCarthy et al., 2016) as the reference panel and Eagle2 v2.3(Loh et al., 2016) for 

phasing. Prior to imputation, the HRC Imputation Checking Tool(Rayner, Robertson, 

Mahajan, & McCarthy, 2016) was used to identify variants that did not match those in HRC, 

were palindromic, differed in MAF>0.20, or that had non-matching alleles when compared 

to the same variant in HRC, leaving 898,220 for imputation. A total of 39,131,578 variants 

were imputed. Variants with a quality score R2<0.80, MAF<0.001, or that were out of HWE 

were excluded, leaving 10,400,394 imputed variants. These were combined with the 

genotyped variants, leading to 10,499,994 imputed and genotyped variants for analyses. 

Data cleaning and file preparation were completed using PLINK v1.9(Chang et al., 2015) 

and VCFtools v0.1.14(Danecek et al., 2011). Coordinates are based on GRCh37 assembly 

hg19.

Whole blood gene expression imputation

The resulting 10,499,994 imputed and genotyped variants were used to impute whole blood 

gene expression using PrediXcan(Gamazon et al., 2015) with the Depression Genes and 

Networks reference dataset(Battle et al., 2014), PrediXcan’s largest reference sample 

consisting of 922 individuals with RNA sequencing on whole blood and GWAS data. 

PrediXcan filters results to only include genes that are imputed with reasonable accuracy, 

using a false discovery rate of 0.05. After removing genes with zero variability between 

individuals (162 genes), whole blood gene expression data for 11,376 genes were available 

for analyses.

Integrative network analysis

The analytic approach we used for our network analysis was similar to that of Price et al., 

2017(Price et al., 2017). A total of 12,856 variables, including 11,376 expressed genes, 

1,097 plasma metabolites, 364 CSF metabolites, and 17 AD risk factors, were available for 

the network analysis. Linear mixed models, as implemented by the lme4 package in 

R(Bates, Machler, Bolker, & Walker, 2015), were used to adjust each variable for age and 

sex and included a random intercept for individual to account for repeated measures and 

family to account for sibling relationships. Further adjustments were made specific to the 

variable being assessed: imputed gene expression was also adjusted for the first four 

principal components to account for ancestry; CSF and plasma metabolites were adjusted for 

cholesterol lowering medication use and sample storage time; the executive function and 

delayed recall composite scores were adjusted for practice effects; and systolic and diastolic 

blood pressure were adjusted for ace inhibitor and beta blocker medication use. For 

longitudinal traits (such as metabolites), random intercepts were used as the new outcomes 

for each individual, whereas for constant traits (such as imputed gene expression values), 

residuals were used as the new outcomes for each individual. These adjusted outcomes were 

used to assess all 82,606,231 pairwise correlations between traits using Spearman rank, and 

significance was determined using a Bonferroni-adjusted P-value (0.05/82,606,231=6.1e–

10). To identify relationships between omics data, significant inter-omic associations and 

significant associations with an AD risk factor were used to develop an integrative network, 
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which was created using the igraph R package(Csardi & Nepusz, 2006). Dense subgraphs 

were identified using a community detection algorithm that maximizes the modularity of the 

network, such that there is high connectivity within communities (or groups of distinct 

variables), but low connectivity between communities(Clauset, Newman, & Moore, 2004).

Targeted mediation and interaction analyses

Results from the integrated network analysis were used to identify potential mediation and 

interactions between imputed gene expression and metabolite levels that could impact AD 

risk factors, as a proof of concept. Although our network analysis suggested many 

potentially meaningful mediation or interaction relationships, we only investigated gene-

metabolite correlations with the most consistent biological support from the GWAS 

catalog(MacArthur et al., 2017) (www.ebi.ac.uk/gwas, date accessed: May 9, 2018), to 

illustrate the utility of the network analysis results. Such relationships were investigated 

using the longitudinal data (2,198 observations among 1,111 individuals) with linear mixed 

models, again as implemented by the lme4 package in R(Bates et al., 2015), including 

random intercepts for within-individual repeated measures and within-family relationships. 

To assess whether a metabolite mediated the relationship between imputed gene expression 

and an AD risk factor, models were run to assess whether: 1) the gene predicted the AD risk 

factor, 2) the gene predicted metabolite levels, 3) the metabolite predicted the AD risk factor, 

and 4) the gene predicted the AD risk factor while adjusting for the metabolite. The causal 

mediation effect, or the indirect effect of a gene on an AD risk factor through a metabolite, 

was calculated as the difference between the effect of the gene in model 1 and model 4, as 

implemented in the R mediation package(Imai, Keele, & Tingley, 2010). To determine 

whether this difference was significant, standard errors and P-values were estimated using 

the quasi-Bayesian Monte Carlo method with 1,000 simulations. Because the mediation 

package can only handle mixed models with one random effect, the mediation analysis was 

run with models 1 and 4 excluding the random effect for family. As a sensitivity analysis, the 

mediation analysis was rerun limiting models 1 and 4 to unrelated individuals (n=898 with 

1,774 observations). A fifth linear mixed model was used to assess interactions by adding a 

gene*metabolite interaction term to model 4. Model 5 did not use the mediation package and 

was thus able to include random intercepts for both within-individual repeated measures and 

within-family relationships. All models including a gene had covariates for age, sex, and the 

first four PCs, while models including a metabolite had covariates for age, sex, cholesterol 

lowering medication use, and sample storage time.

Secondary Analyses

Secondary analyses were performed to further evaluate network analysis results and assess 

the biological validity of our findings. To better understand resulting communities of 

particular interest, we performed a joint pathway analysis integrating the genes and 

metabolites of a community in a joint pathway analysis conducted in MetaboAnalyst 

4.0(Chong et al., 2018). This joint pathway analysis takes as input gene names and 

metabolite IDs from the Human Metabolome Database (HMDB)(Wishart et al., 2007) and 

identifies pathways that are over-represented.
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Results that led to the identification of numerous metabolites were expanded upon to 

investigate the combined influence of metabolites. Multiple metabolites were summarized 

into a single measurement using a principal component analysis (PCA), with input being 

limited to the metabolites under study. The resulting first principal component (PC1) was 

then used to determine whether the same results could be captured, repeating analyses using 

PC1 in place of the metabolites of interest.

Results

Participants

A total of 1,111 WRAP participants had both genomic and plasma metabolomic data. At 

baseline, 68.9% of participants were female and participants were 61.0 years old with a 

bachelor’s degree, on average (Table 2). Participants each had 1,097 plasma metabolites 

available for analyses, 347 (31.6%) of which were of unknown chemical structure, whole 

blood gene expression for 11,376 genes, and up to 17 AD risk factors. A subset of 155 

individuals also had 364 CSF metabolites available for analyses, 56 (15.4%) of which were 

of unknown chemical structure. Participants with CSF metabolomic data had similar 

characteristics as the full sample (Table 2). Properties of each plasma and CSF metabolite, 

such as biochemical name, super pathway, and sub pathway are described in Tables S1 and 

S2, and numbers of metabolites within each super pathway are summarized in Table S3.

Correlation between plasma and CSF metabolomics

The median correlation between the 326 metabolites common to both plasma and CSF was 

r=0.26, with some variability existing between different metabolite pathways (Figure 1). 

Xenobiotics had the highest median correlation (r=0.53), while lipids had the lowest 

(r=0.11). Overall, metabolite correlations ranged from |r|=0.0002 (inosine, a nucleotide) to |r|

=0.88 (quinate, a xenobiotic). Interestingly, one of the highest correlations was caffeine 

(r=0.81). Correlations between each of the 326 CSF and plasma metabolites are described in 

Table S4.

Integrated network

After applying a Bonferroni correction for multiple testing, a total of 90,308 significant 

correlations (edges) among 10,869 variables (nodes) were used to develop an overall 

‘hairball’ network (Figure S2). Notably, although there were far fewer metabolites than 

genes in the network (1,387 metabolites versus 9,481 genes), there were more edges 

between metabolites than genes (49,499 versus 37,473 edges, respectively).

The inter-omic network is shown in Figure 2 (a labeled version is shown in Figure S3), and 

its corresponding community partitions are shown in Figure S4. This network had 1,224 

edges and 635 nodes, including 171 metabolite-gene and 833 metabolite-AD risk factor 

edges. Of these, there were only four CSF metabolite-gene edges and 73 CSF metabolite-

AD risk factor edges, likely due to the much smaller number of CSF metabolomic samples. 

No genes were directly linked to AD risk factors; however, many genes were indirectly 

linked to AD risk factors through metabolites, as described below. Each of the 1,224 

correlations is described in Table S5.
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The largest community contained 680 edges among 289 nodes, which included 264 plasma 

metabolites, ten CSF metabolites, eight genes, and seven AD risk factors related to 

cardiovascular disease and diabetes: body mass index (BMI), waist-hip ratio (WHR), 

homeostatic model assessment of insulin resistance (HOMA-IR), interleukin 6 (IL-6), 

metabolic equivalents (METs), diastolic blood pressure (DBP), and systolic blood pressure 

(SBP) (Figure S5A). Expression levels of these eight genes were all indirectly linked to AD 

risk factors within this community through plasma metabolites. CPS1 expression levels were 

negatively correlated with plasma gamma-glutamylglycine, proprionylglycine, and glycine 

levels, all of which were negatively correlated with BMI, WHR, IL-6, and/or HOMA-IR 

(Figure 3). TMEM229B and PLEKHH1 were both negatively correlated with two 

glycerophosphatidylcholines (1-(1-enyl-palmitoyl)-2-palmitoleoyl-GPC (P-16:0/16:1) and 1-

(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-16:0/16:0)), which were also negatively correlated 

with BMI, WHR, and/or HOMA-IR. NAALAD2 was negatively correlated with an amino 

acid beta-citrylglutamate, which was positively correlated with BMI, WHR, IL-6, and 

HOMA-IR. ZNF655 and ZKSCAN1 were both positively correlated with X-12063, which 

was also positively correlated with BMI, WHR, and HOMA-IR. CHRNA5 was positively 

correlated with 5-hydroxylysine, which was positively correlated with BMI, WHR, IL-6, and 

HOMA-IR, and negatively correlated with METs. ARVCF was negatively correlated with 

X-11593, which was positively correlated with BMI, IL-6, and HOMA-IR.

We identified several key pathways involved in the cardiovascular and diabetes community 

using a joint genetic and metabolomic pathway analysis (Figure S5B). The analysis included 

all eight genes and 153 of the 264 plasma metabolites in this community, due to the 

remaining metabolites not having an identifying HMDB ID needed for analyses. The 

strongest pathway was valine, leucine, and isoleucine biosynthesis (P=6.3e-6), followed by 

aminoacyl-tRNA biosynthesis (P=7.3e-4) and alanine, aspartate, and glutamate metabolism 

(P=1.9e-3). Of these top three pathways, the alanine, aspartate, and glutamate metabolism 

pathway was the only one that included one of the eight genes in the cardiovascular 

community, which was CPS1.

Several genes outside of the cardiovascular and diabetes community were indirectly linked 

to AD risk factors within this community. Gene expression of FOSL2, KRTCAP3, and 

ZNF513 were positively correlated, while IFT172, NRBP1, PPM1G, and ZNF512 were 

negatively correlated, with levels of plasma mannose, a carbohydrate that was positively 

correlated with BMI, WHR, IL-6, and HOMA-IR (Figure S6A). CABP1, SPPL3, and 

UNC119B expression levels were negatively correlated with plasma butyrylcarnitine (C4), 

which was positively correlated with BMI, WHR, IL-6, and HOMA-IR (Figure S6B). 

SLC27A4, PHYHD1, ENDOG, and SH3GLB2 expression levels were negatively correlated 

with plasma 2’-O-methyluridine and 2’-O-methylcytidine levels, both nucleotides involved 

in pyrimidine metabolism, and the latter nucleotide is also negatively correlated with BMI 

and WHR (Figure S6C). PHYHD1 was also negatively correlated with CSF levels of 2’-O-

methylcytidine.

The only correlations identified among the CSF biomarkers (i.e., amyloid and tau) are 

shown in Figure 4. Higher CSF T-tau and P-tau levels were correlated with higher levels of 

38 CSF metabolites, collectively. These metabolites included 13 lipids (six 
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phosphatidylcholines, two lysophosphatidylcholines, five sphingolipids, and cholesterol), 

seven amino acids, five carbohydrates, one nucleotide, one energy metabolite, one cofactor 

and vitamin metabolite, one xenobiotic, and nine unknown metabolites. However, none of 

the CSF amyloid biomarkers were correlated with CSF metabolites. We investigated how 

much of the variance of T-tau and P-tau could be explained by these metabolites with linear 

mixed models that included random intercepts for within-subject repeated measures and 

within-family relationships, using the R2 statistic for mixed models as defined by Edwards et 

al., 2008(Edwards, Muller, Wolfinger, Qaqish, & Schabenberger, 2008) and implemented in 

the r2glmm R package. After removing the variation explained by age and sex, the 37 

metabolites correlated with T-tau explained 60.7% of the variation of T-tau, while the 35 

metabolites correlated with P-tau explained 64.0% of the variation of P-tau. Because a small 

number of identified metabolites had a HMDB ID, we were unable to perform pathway 

analyses to further understand this community.

Targeted mediation and interaction analyses

Targeted mediation and interaction analyses were focused on a particular pathway identified 

within the large cardiovascular and diabetes community involving CPS1, glycine plasma 

metabolites (glycine, proprionylglycine, and gamma-glutamylglycine), BMI, WHR, IL-6, 

and HOMA-IR. Associations between CPS1 variants and glycine have been reported in at 

least nine studies(Demirkan et al., 2015; Draisma et al., 2015; Kettunen et al., 2016; Long et 

al., 2017; Raffler et al., 2015; Shin et al., 2014; Suhre et al., 2011; Xie et al., 2013; Yu et al., 

2014), more than any of the other gene-metabolite associations identified in our network 

analysis, and these studies were based not only on Caucasian populations, but also on 

Japanese and African American populations. Many previous studies have also reported 

associations between glycine and cardiovascular risk factors, including BMI, waist 

circumference, inflammation, and HOMA-IR(Cheng et al., 2012; Demirkan et al., 2015; 

Ding et al., 2015; El Hafidi, Perez, & Banos, 2006; Felig, Marliss, & Cahill, 1969; 

Geidenstam et al., 2017; Kraus et al., 2016; Takashina et al., 2016; Thalacker-Mercer et al., 

2014). This evidence made this pathway a strong candidate for mediation and interaction 

analyses.

Figure 5 shows results from the mediation analyses using glycine as the mediator, including 

the total effect (i.e., the effect of CPS1 in the model unadjusted for glycine), the direct effect 

(i.e., the effect of CPS1 in the model adjusted for glycine), and the indirect effect (i.e., the 

effect of CPS1 due to the effect of CPS1 on glycine) for BMI (Figure 5A and Figure 5B), 

WHR (Figure 5C and Figure 5D), IL-6 (Figure 5E and Figure 5F), and HOMA-IR (Figure 

5G and Figure 5H). The total effect of CPS1 was null for each of these four outcomes, likely 

due to the negative association between CPS1 and glycine coupled with the negative 

association between glycine and the AD risk factor, resulting in direct and indirect effects 

that had opposing directions(Richiardi, Bellocco, & Zugna, 2013). Our results show that 

lower levels of CPS1 expression lead to increased glycine levels, and higher glycine levels 

lead to decreased BMI, WHR, IL-6, and HOMA-IR. Thus, with glycine as a mediator, lower 

levels of CPS1 lead to decreased BMI, WHR, IL-6, and HOMA-IR. Mediation analyses 

using propionylglycine and gamma-glutamylglycine as the mediator showed similar results 

and can be found in Figure S7 and Figure S8. We did not identify any interactions between 

Darst et al. Page 10

Genet Epidemiol. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CPS1 and the three glycine metabolites that were associated with BMI, WHR, IL-6, or 

HOMA-IR (all P-values>0.07). Similar results were observed in sensitivity analyses limited 

to unrelated individuals (due to the inability to include a random effect for family members 

in mediation analyses).

To expand on these mediation results, we conducted a PCA on the three glycine plasma 

metabolites and repeated mediation analyses. PC1 explained 71.8% of the variance of the 

three metabolites and was used to further test the mediation effect identified. Results 

similarly showed that while CPS1 expression did not have a direct effect on BMI, WHR, 

IL-6, or HOMA-IR, it had a very strong indirect effect, when including PC1 as a mediator, 

on all four outcomes (P<2.0e-16), further suggesting that lower CPS1 levels are protective 

against high levels of these cardiovascular risk factors (Figure S9).

Discussion

We developed an integrative network to investigate relationships between genomics, plasma 

metabolomics, CSF metabolomics, and AD risk factors. Although no gene expression levels 

were directly correlated with AD risk factors, there were many instances of genes being 

indirectly correlated with AD risk factors though metabolites. Building on one such 

instance, we found that glycine mediated the pathway between CPS1 expression and 

cardiovascular and diabetes risk factors. This suggests that our results may have generated 

many valid hypotheses that warrant further investigation. We also found that correlations 

between plasma and CSF metabolites ranged widely but typically had low correlations. This 

could suggest that most plasma metabolites are not representative of certain metabolic 

changes occurring in the brain, although we cannot rule out the possibility that the low 

average correlation is, at least partially, due to the time difference between the plasma and 

CSF sample collection.

The low correlation we observed between plasma and CSF metabolite levels could be related 

to ~98% of small molecules not being able to pass the blood-brain barrier (BBB)(Pardridge, 

2005). Cholesterol is an example of a lipid metabolite that typically cannot pass the 

BBB(Bjorkhem & Meaney, 2004), and was not correlated between tissues (r=−0.07). On the 

other hand, caffeine (a xenobiotic) readily crosses the BBB(McCall, Millington, & 

Wurtman, 1982) and it was highly correlated between tissues (r=0.81), as was 5-

acetylamino-6-amino-3-methyluracil (r=0.82), which is a caffeine metabolite, and 

theophylline (r=0.82), which is structurally and pharmacologically similar to caffeine. This 

could contribute to lipids having the weakest average correlation and xenobiotics having the 

strongest average correlation between plasma and CSF tissues. However, it is important to 

note that metabolites within a given pathway can vary widely from each other and should be 

considered on an individual basis, accordingly, as the averages presented here may not 

reflect a particular metabolite’s unique properties. The hypothesis about plasma and CSF 

differing due to the BBB is also supported by the only correlations in the network analysis 

involving CSF biomarkers (i.e., tau) being with CSF metabolites, although we cannot rule 

out the possibility that this correlation is related to CSF biomarkers and CSF metabolomics 

being analyzed from the same sample and thus, not having time-related variation.
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Our network analysis revealed that 38 CSF metabolites were highly predictive of CSF T-tau 

and P-tau, collectively explaining 60.7% and 64.0% of the variance of T-tau and P-tau, 

respectively. Further investigations of these CSF metabolites could lead to a better 

understanding of mechanisms and pathways that influence the development of tau tangles. In 

contrast, no CSF metabolites were correlated with CSF amyloid biomarkers, which could 

have implications about the biological function of amyloid versus tau. It is possible that we 

did not capture the small molecules that amyloid may be associated with, or that amyloid is 

generally not associated with small molecules. Although our CSF findings were limited by 

their small sample size, they offer potentially novel information regarding the interface 

between CSF biomarkers and CSF metabolites, as we have not identified previous studies 

investigating these relationships.

One advantage of using imputed gene expression data is that it only represents the 

genetically regulated component of gene expression, reducing the risk of confounding due to 

environmental factors and reverse causality in mediation analyses. We found that glycine 

mediated the relationship between CPS1 and BMI, WHR, IL-6, and HOMA-IR, such that 

lower CPS1 expression was associated with higher levels of glycine, which were associated 

with lower BMI, WHR, IL-6, and HOMA-IR. Relationships between CPS1, glycine, and 

cardiovascular risk factors have been hypothesized recently, but not clearly defined(Matone 

et al., 2016; Xie et al., 2013). The CPS1 (Carbamoyl-Phosphate Synthase 1) gene encodes 

for a mitochondrial enzyme that catalyzes the first step of the hepatic urea cycle by 

synthesizing carbamoyl phosphate from ammonia, bicarbonate, and two molecules of ATP, 

and is important for removal of urea from cells(Haberle et al., 2011). Notably, all genes 

encoding enzymes involved in the urea cycle are expressed in the brain, including 

CPS1(Hansmannel et al., 2010), and levels of enzymes and metabolic intermediates involved 

in the urea cycle are altered in AD patients(Griffin & Bradshaw, 2017). CPS1 variants have 

been linked to CPS1 deficiency(Haberle et al., 2011), neonatal pulmonary 

hypertension(Pearson et al., 2001), vascular function(Summar et al., 2004), traits related to 

blood clotting, such as fibrinogen levels and platelet count(Astle et al., 2016; Danik et al., 

2009; de Vries et al., 2016; Sabater-Lleal et al., 2013), homocysteine levels(Lange et al., 

2010; Pare et al., 2009; van Meurs et al., 2013; Williams et al., 2014), HDL 

cholesterol(Willer et al., 2013), kidney function and disease(Gorski et al., 2017; Kottgen et 

al., 2010; Mahajan et al., 2016; Pattaro et al., 2016), AD(Jun et al., 2016), and BMI(Locke et 

al., 2015; Melen et al., 2013). Higher adipose tissue expression of CPS1 has been associated 

with detrimental traits, including weight gain(Matone et al., 2016). At least nine studies have 

reported associations between CPS1 variants and glycine(Demirkan et al., 2015; Draisma et 

al., 2015; Kettunen et al., 2016; Long et al., 2017; Raffler et al., 2015; Shin et al., 2014; 

Suhre et al., 2011; Xie et al., 2013; Yu et al., 2014) and others have reported associations 

with betaine, a derivative of glycine(Hartiala et al., 2016; Long et al., 2017; Shin et al., 

2014). Notably, in previous work we found that glycine has a high heritability of 71.7% 

(Darst, Koscik, Hogan, Johnson, & Engelman, 2019), supporting the potential of glycine to 

mediate a genetic factor. Glycine is a common amino acid involved in the production of 

DNA, phospholipids, and collagen, and in the release of energy. Previous studies have 

identified negative correlations between glycine and cardiovascular and diabetes risk factors 

such as BMI, waist circumference, HOMA-IR, obesity and visceral obesity, subcutaneous 
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and visceral fat area, hypertension, and acute myocardial infarction(Cheng et al., 2012; 

Demirkan et al., 2015; Ding et al., 2015; El Hafidi et al., 2006; Felig et al., 1969; 

Geidenstam et al., 2017; Kraus et al., 2016; Takashina et al., 2016; Thalacker-Mercer et al., 

2014). These previous findings are in the same direction as our findings and are highly 

supportive of the biological relevance of our results, which lead us to hypothesize that the 

CPS1-cardiovascular risk pathway is linked through the mediation of glycine.

One particular CPS1 variant, rs715, has been linked to urine and blood glycine 

levels(Demirkan et al., 2015; Long et al., 2017; Raffler et al., 2015; Shin et al., 2014; Xie et 

al., 2013), blood levels of betaine(Hartiala et al., 2016; Long et al., 2017; Shin et al., 2014), 

blood levels of fibrinogen(de Vries et al., 2016; Sabater-Lleal et al., 2013), and BMI(Locke 

et al., 2015). This is a common variant, with a MAF=0.27 based on 62,784 whole genome 

sequences from Trans-Omics for Precision Medicine (TOPMed)(TNT, 2017). The minor C 

allele of rs715 decreases CPS1 expression(Hartiala et al., 2016). To further test our findings, 

we conducted additional mediation analyses using this variant and found highly consistent 

results, suggesting that having one or two minor alleles of rs715 (which decreases CPS1 
expression; MAF=0.33 in our data) increases levels of the three glycine plasma metabolites, 

which decreases BMI, WHR, IL-6, and HOMA-IR (P<2.0e-16 among 14 of the 16 tests) 

(Figures S10–S12). Thus, the minor C allele of rs715 may have a protective role in 

cardiovascular risk.

To further understand the cardiovascular and diabetes community, which was the largest 

community in our model and contained the glycine mediator, we performed a joint genetic 

and metabolomic pathway analysis, which led to strong evidence for the involvement of the 

valine, leucine, and isoleucine biosynthesis pathway in this community. Collectively, these 

three essential amino acids are referred to as branched-chain amino acids (BCAAs) and are 

acquired solely from external food(Y. Huang, Zhou, Sun, & Wang, 2011). Higher BCAA 

levels have been linked to the onset of type 2 diabetes, cardiovascular disease, and insulin 

resistance(Asghari et al., 2018; Bhattacharya et al., 2014; Wang et al., 2011). This further 

conveys the biological relevance of the factors identified in this community to cardiovascular 

disease and diabetes risk.

A notable challenge of this investigation is identifying an appropriate cohort to replicate 

novel findings. Although previous literature supports the biological plausibility of CPS1 
mediating the relationship between glycine and cardiovascular risk factors, it will be crucial 

to replicate this finding, along with the high variance of T-tau and P-tau explained by the 38 

CSF metabolites we identified. However, the robustness of our mediation results is 

strengthened by our consistent findings across several plasma glycine metabolites (glycine, 

proprionylglycine, and gamma-glutamylglycine, with r2 ranging from 0.17 to 0.76 between 

these three metabolites), four independent cardiovascular risk outcomes (BMI, WHR, IL-6, 

HOMA-IR, with r2 ranging from 0.02 to 0.14 between these four outcomes), and imputed 

CPS1 expression as well as rs715 within CPS1 (across these 24 tests, 20 had a mediation 

effect P<2.0e-16). It was further strengthened by similar results from analyses using PC1 

from a PCA of the three glycine metabolites as a mediator of CPS1 and cardiovascular risk. 

While we were encouraged by this internal validation, finding that many of our results 

replicated previous investigations, and biologically relevant pathways identified in the 
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cardiovascular and diabetes community pathway analysis, this does not preclude the need for 

external replication of novel findings.

Due to computational burdens, our network analysis did not fully utilize the longitudinal 

aspect of our data. Further, our sample sizes for CSF biomarkers and metabolites were 

limited, which is likely why we had few CSF findings in our network analysis. Plasma and 

CSF samples typically were not collected on the same day, which could influence our 

correlation results between these two tissues. However, this may not have influenced our 

network analysis to a large extent because we used individual level random effects for 

longitudinal traits. We were unable to include smoking behavior in our network analysis due 

to the prohibitive number of smokers in our cohort (n=48).

One of the primary strengths of this analysis is that it shows the feasibility of performing 

integrated omics analyses and the potential utility of such approaches. It is becoming more 

common for cohorts to collect such datasets; for example, the National Institutes of Health is 

sponsoring the new TOPMed nation-wide consortium that aims to deeply phenotype its 

participants utilizing omics technologies (www.nhlbiwgs.org). It is anticipated that 

initiatives such as TOPMed will greatly advance our knowledge of many complex diseases 

and traits. However, to fully utilize these rich data, it will be crucial to identify effective 

means of integrating them and maximize their potential to provide a more holistic 

understanding of the disease process. While there is still a great need for such methods, our 

inter-omic network analysis and subsequent targeted follow-up analyses outlines one 

approach to effectively integrate omics data.

Opponents of the “big data” era have criticized omics approaches because they are not 

hypothesis driven and do not follow the standard scientific method(Duncan, 2007; Stieb, 

Boot, & Turner, 2017). However, we know biology to be complex far beyond our current 

understanding. To believe that we currently have the ability to generate valid biological 

hypotheses to understand complex conditions without data would be a fallacy. This was a 

lesson learned in the years preceding the completion of the human genome sequence in 2001 

when research efforts were heavily invested into targeted genetic loci and genome-wide 

linkage screens of ~500 loci(Fallin, Duggal, & Beaty, 2016). This approach was successful 

for genes that follow Mendelian patterns, such as highly penetrant variants in the BRCA1 
and BRCA2 genes that are responsible for inherited forms of breast cancer and the APP, 

PSEN1, and PSEN2 genes that cause the inherited early onset form of AD. However, it had 

limited success for traits that follow complex inheritance patterns(Fallin et al., 2016). The 

utility of omics data, and particularly integrated omics approaches, is the ability to generate 

data driven hypotheses. Our knowledge of biology has been evolving for centuries; however, 

with the data we are able to generate due to recent biotechnological advances, we now have 

the opportunity to advance our knowledge of biology at an unprecedented rate. Such data 

could lead to dramatic improvements in the state of preventative and therapeutic medicine, 

particularly for complex diseases such as AD, for which few such preventative or therapeutic 

methods exist and little is known about the underlying biological mechanisms.

By integrating genomics, metabolomics, and clinical risk factors for AD, we were able to 

identify complex relationships that offer insight into the onset of AD and risk factors 
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associated with its onset. Our research has generated many promising hypotheses that could 

drive subsequent experimental investigations and potentially offer clinicians and researchers 

new insights regarding the development of tau tangles. As the generation of omics data 

accelerates across investigations of a variety of research fields, continued efforts to navigate 

statistical and computational issues will be critical. The work presented here represents early 

efforts to integrate omics data, but much more research is needed to identify the most 

effective means of doing so and thereby maximize the utility of such rich sources of data. 

The success of precision medicine is heavily reliant on the advancement of computational 

biology and the ability to translate millions of biological data points into individual clinical 

implications.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Correlations between plasma and CSF metabolites by super pathway. Vertical bars represent 

median correlations; box width represents the first and third quartiles; horizontal bars 

(whiskers) represent the range of correlations that are within 1.5 times the interquartile 

range; and dots represent outlier correlations that exceed 1.5 times the interquartile range.
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Figure 2. 
Inter-omic network. This network has 1,224 edges and 635 nodes, which included 171 

metabolite-gene edges, 833 metabolite-AD risk factor edges. Of these, 73 were CSF 

metabolite-AD risk factor edges (CSF T-tau and P-tau, exclusively) and 4 were CSF 

metabolite-gene edges. Red edges indicate negative correlations and blue edges indicate 

positive correlations.
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Figure 3. 
CPS1, glycine, and cardiovascular and diabetes sub-network. Relationships within this 

pathway are highly cited; however, the pathway as a whole is not understood as well. Red 

edges indicate negative correlations and blue edges indicate positive correlations.
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Figure 4. 
CSF biomarker community. This network has 73 edges among 38 CSF metabolites and CSF 

biomarkers T-tau and P-tau. Red edges indicate negative correlations and blue edges indicate 

positive correlations.
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Figure 5. 
Mediation analyses to assess whether plasma glycine mediates the relationships between 

imputed CPS1 expression, BMI, WHR, IL-6, and HOMA-IR. A. Total effect of CPS1 on 

BMI. B. Direct and indirect effects of CPS1 on BMI. C. Total effect of CPS1 on WHR. D. 

Direct and indirect effects of CPS1 on WHR. E. Total effect of CPS1 on IL-6. F. Direct and 

indirect effects of CPS1 on IL-6. F. Total effect of CPS1 on HOMA-IR. G. Direct and 

indirect effects of CPS1 on HOMA-IR. All models adjusted for age and sex; models 

including CPS1 additionally adjusted for the first four PCs; models that included glycine 

additionally adjusted for cholesterol lowering medication use and sample storage time.
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Table 1.

Seventeen AD Risk Factors Included in Network Analysis

Category of Risk Factor Risk Factor N

Cognitive

Executive function Composite Score 1,096

Delayed Recall Composite Score 1,107

Education 1,111

Mom’s age at memory loss 608

Dad’s age at memory loss 340

Cerebral Spinal Fluid

Aβ42 141

T-tau 141

P-tau 141

Aβ42/Aβ40 141

Cardiovascular/Diabetic

BMI 1,111

WHR 1,111

METs 1,108

Alcohol use 1,104

IL-6 1,088

Cardiovascular
SBP 1,111

DBP 1,111

Diabetic HOMA-IR 1,107

AD: Alzheimer’s disease, Aβ42: β-Amyloid42, T-tau: Total-tau, P-tau: Phosphorylated-tau, Aβ40: β-Amyloid40, BMI: Body-mass index, WHR: 

Waist-hip ratio, METs: Metabolic equivalents, IL-6: Interleukin 6, SBP: Systolic blood pressure, DBP: Diastolic blood pressure, HOMA-IR: 
Homeostatic model assessment of insulin resistance

Alcohol use=(#drinks/day)*(#days/week)
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Table 2.

WRAP Participant Characteristics at Baseline Sample. Mean (SD) or N (%).

Characteristic Overall (N= 1,111, obs=2,191) CSF Metabolomics (N=155, obs=346)

Age (years) 61.0 (6.7) 61.2 (6.6)

Female 766 (68.9) 103 (66.5)

Years of education 16.4 (2.8) 16.7 (2.9)

Parental history of AD 803 (72.3) 112 (72.3)

Use of cholesterol-lowering medication 354 (31.9) 45 (29.0)

Number of Visits 2.0 (0.6) 2.2 (1.0)

obs: observations, CSF: cerebral spinal fluid, AD: Alzheimer’s disease
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