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Abstract
Background  Head and neck squamous cell carcinoma (HNSCC) is the six leading cancer by incidence worldwide. The 5-year 
survival rate of HNSCC patients remains less than 65% due to lack of symptoms in the early stage. Hence, biomarkers which 
can improve detection of HNSCC should improve clinical outcome.
Methods  Gene expression profiles (GSE6631, GSE58911) and the Cancer Genome Atlas (TCGA) HNSCC data were used 
for integrated bioinformatics analysis; the differentially expressed genes (DEGs) were then subjected to functional and 
pathway enrichment analysis, protein–protein interaction (PPI) network construction. Subsequently, module analysis of the 
PPI network was performed and overall survival (OS) analysis of hub genes in subnetwork was studied. Finally, immuno-
histochemistry was used to verify the selected markers.
Results  A total of 52 up-regulated and 80 down-regulated DEGs were identified, which were mainly associated with ECM–
receptor interaction and focal adhesion signaling pathways. Importantly, a set of prognostic signatures including SERPINE1, 
PLAU and ACTA1 were screened from DEGs, which could predict OS in HNSCC patients from TCGA cohort. Experiment 
of clinical samples further successfully validated that these three signature genes were aberrantly expressed in the oral epi-
thelial dysplasia and HNSCC, and correlated with aggressiveness of HNSCC patients.
Conclusions  SERPINE1, PLAU and ACTA1 played important roles in regulating the initiation and progression of HNSCC, 
and could be identified as key biomarkers for precise diagnosis and prognosis of HNSCC, which will provide potential 
targets for clinical therapies.
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Introduction

Head and neck squamous cell carcinoma (HNSCC), which 
arises from the oral cavity, larynx and pharynx, ranks as the 
sixth most common malignancy with an estimated 835,000 
new cases and 43,000 associated deaths worldwide in 2018 
[1, 2]. Unfortunately, diagnosis of HNSCC is usually made 
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at advanced stages due to lack of symptoms in the early stage 
of head and neck tumorigenesis, and the 5-year survival rate 
is still less than 65% now [3]. It is widely believed that accu-
mulation of numerous genetic alterations in epithelial cells is 
the essential process driven by the initiation and progression 
of HNSCC [4]. Therefore, investigation of the potential key 
biomarkers may help to further uncover the biological basis 
of HNSCC and improve clinical therapy.

Recently, microarrays based on high-throughput plat-
forms for analysis of gene expression are increasingly valued 
as a promising and efficient tool to screen significant genetic 
alternations in carcinogenesis and identify biomarkers for 
diagnosis and prognosis of cancer [5]. A number of gene 
expression profiling microarrays have been conducted to find 
various differentially expressed genes (DEGs) in HNSCC 
[6]; however, considerable efforts in the identification of bio-
marker have met with limited success, primarily because of 
independent numbers of gene profiling. Now, by the means 
of integrated bioinformatics analysis for available microar-
ray data, it is possible to make more reliable and precise 
screening results via overlapping relevant datasets.

In the current study, microarray data of gene expres-
sion profiles (GSE6631 [7], GSE58911 [8]) and the Cancer 
Genome Atlas (TCGA) HNSCC data [9] were integrated and 
analyzed by a series of biological informatics approaches, 
aberrantly DEGs and pathways were identified in HNSCC, 
protein–protein interaction (PPI) network was also con-
structed and hub genes were revealed. Subsequently, we 
investigated the relationship between the hub genes of sub-
network and overall survival (OS) in TCGA database, and 
tested the expression status of these hub genes in clinical 
samples at different stages of tumorigenesis. By this mean, 
we may bring to light the underlying mechanisms and iden-
tify the potential candidate biomarkers for diagnosis and 
prognosis of HNSCC.

Materials and methods

Microarray data

In the present study, the gene expression profiles (GSE6631, 
GSE58911) were obtained from Gene Expression Omni-
bus (GEO, https​://www.ncbi.nlm.nih.gov/geo/). Totally 22 
paired samples of HNSCC and normal tissues were consisted 
in GSE6631, which based on GPL8300 platform (Affym-
etrix Human Genome U95 chips). GSE58911 dataset was 
already deposited in GPL6244 (Affymetrix Human Gene 
1.0 ST Array), including 15 paired normal and HNSCC sam-
ples. Moreover, the TCGA HNSCC data (https​://cance​rgeno​
me.nih.gov/) were also downloaded, including 44 normal 
and 502 HNSCC tissues. We chose these 3 datasets for inte-
grated analysis to identify commonly DEGs.

Data processing and identification of DEGs

The original raw array data were subjected to background 
correction, quartile data normalization, and converted into 
gene expression values. Data were normalized using the 
Bioconductor R package (https​://cran.r-proje​ct.org/mirro​
rs.html). Then, the DEGs between HNSCC samples and 
normal controls were identified using the empirical Bayes 
approach in linear models for the microarray data (limma) 
package. |logFC| > 1 and p < 0.05 were selected as the cutoff 
criterion.

Functional and pathway enrichment analysis 
of DEGs

To analyze the identified DEGs at the functional level, the 
significant gene ontology (GO) biological process terms [10] 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis [11] were performed using the 
Database for Annotation, Visualization and Integrated Dis-
covery (DAVID, https​://david​.ncifc​rf.gov/) with the thresh-
olds of p < 0.05 and false discovery rate (FDR) < 0.01 [12].

Modules from the PPI network

To evaluate the interactive relationships among DEGs, we 
mapped the DEGs to the Search Tool for the Retrieval of 
Interacting Genes (STRING) database (https​://strin​g-db.
org) [13]. Then, the interactive DEGs were selected to con-
struct the PPI network (combined score ≥ 0.4) and visualized 
using Cytoscape [14]. The Molecular Complex Detection 
(MCODE) plugin in Cytoscape was used to screen the mod-
ules of PPI network with MCODE score > 3 and number of 
nodes > 4.

Survival analysis of the hub gene in TCGA database

The association between the corresponding genes in the 
top modules and patient OS for 5 years was analyzed using 
HNSCC samples from the TCGA data. All HNSCC patients 
were classified into high or low expression based on whether 
Z-score expression was > median (high) or < median (low), 
log-rank analysis and Kaplan–Meier plots were produced 
using Bioconductor R package.

Clinical samples and clinical staging system

A total of 52 paraffin-embedded HNSCC (39) and oral epi-
thelial dysplasia (OED, 13) samples were obtained from 
the archives of the Department of Pathology of Shandong 
Provincial Hospital, Jinan, China. Of the HNSCC samples, 

https://www.ncbi.nlm.nih.gov/geo/
https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://cran.r-project.org/mirrors.html
https://cran.r-project.org/mirrors.html
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https://string-db.org
https://string-db.org
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there were 23 (59%) well, 10 (26%) moderately and 6 (15%) 
poorly differentiated HNSCC tissues; 10 matched adjacent 
non-cancerous oral mucosa (NOM) tissues were selected 
from the above-mentioned patients and detailed sample 
information is presented in Supplementary Table 1. For the 
use of these clinical materials for research purposes, prior 
patient consent and approval from the Institute Research 
Ethics Committee were obtained. The approval number 
was no. 2018-037. The stages of all HNSCC patients were 
classified according to the Union for International Cancer 
Control (UICC 2017).

Immunohistochemical analysis

Protein expression was evaluated on paraffin-embedded sec-
tions using microwave antigen retrieval with 0.01 M citrate 
buffer (pH 6.0). Rabbit polyclonal anti-SERPINE1 (1:200, 
sc-5297, Santa Cruz), rabbit polyclonal anti-PLAU (1:150, 
ab133563, Abcam) and rabbit polyclonal anti-ACTA1 
(1:100, sc-5867, Santa Cruz) antibodies were utilized. 
The immunohistochemical procedure was as previously 
described [15, 16]. Interpretation of immunohistochemical 
staining was made independently by two specialists and the 
mean protein staining intensity (SI; 0, no staining; 1, weak; 
2, moderate; 3, strong), labeling indices (LIs, defined as the 
percentage of positive cells in total cells), and mean labeling 
scores (LS, defined as LI × SI) in HNSCC, OED and NOM 
samples were calculated and compared among groups.

Statistical analysis

Comparison of two Kaplan–Meier curves was performed 
using the log-rank test of the R-package survival. The mean 
LS for HNSCC, OED and NOM samples was compared 
among the three groups by analysis of variance (ANOVA) 
using the SPSS 10.0 software package. p < 0.05 was consid-
ered statistically significant.

Results

Identification of aberrantly DEGs in HNSCC

Data from each microarray were separately analyzed to 
screen DEGs. As represented in Fig. 1, our integrated bio-
informatics analysis indicated that a total of 132 genes were 
consistently and significantly deregulated in the same direc-
tion in these datasets, including 52 overlapping up-regulated 
(163 in GSE6631, 172 in GSE58911 and 5679 in TCGA) 
and 80 down-regulated genes (128 in GSE6631, 427 in 
GSE58911 and 3436 in TCGA) in HNSCC tissues, as com-
pared to normal epithelial tissues (Table 1).

Fig. 1   Identification of 132 common DEGs from the three cohort 
profile datasets (GSE6631, GSE58911 and TCGA) using Morpheus 
Website (https​://softw​are.broad​insti​tute.org). Different color areas 
represented different datasets. The cross areas meant the commonly 
changed DEGs. DEGs were identified with classical t test; statisti-
cally significant DEGs were defined with p < 0.05 and |logFC| > 1 as 
the cutoff criterion

Table 1.   132 DEGs were identified from three profile datasets, 
including 52 up-regulated genes and 80 down-regulated genes in the 
HNSCC tissues, compared to normal tissue

DEGs Gene names

Up-regulated PXDN, KIF14, CDH11, NELL2, MMP1, 
FCGR2A, MMP3, FAT1, NREP, LAPTM4B, 
MMP13, PTHLH, MYO10, DFNA5, 
COL3A1, BST2, COL6A3, SPARC, 
PRAME, RBP1, IGF2BP3, LTBP1, FN1, 
LAMB3, COL5A2, SPP1, ITGA6, PLOD2, 
MMP12, MMP11, COL4A2, LUM, POSTN, 
MFAP2, COL4A1, LOX, LAMC2, MMP10, 
SLC16A1, PLAU, CXCL8, PFN2, TNC, 
FAP, LAMB1, LOXL2, DLX5, SERPINE1, 
COL10A1, TGFBI, SEMA3C, MMP9

Down-regulated CEACAM6, ENDOU, TF, MYH2, FHL1, 
CSRP3, SORBS2, SPINK5, CSTA, PPL, 
PITX1, CLDN10, MALL, GPD1L, PDK4, 
BLNK, ALOX12, SASH1, KRT4, AQP3, 
FUT3, APOD, DIO2, IL1RN, SLURP1, 
ACTA1, CEACAM1, CKMT2, LPIN1, 
PSCA, SULT2B1, KAT2B, ABLIM1, 
HOPX, PTN, AADAC, KRT13, CRYAB, 
MAL, ECM1, ANXA9, EMP1, ATP2A1, 
ABCA8, SERPINB2, ADH7, FCER1A, 
TGM3, MYL1, ACPP, HPGD, SCEL, 
MYLPF, CRISP3, NEB, TGM1, CD24, 
NUCB2, KLK13, MB, EXPH5, SERPINB1, 
ALDH3A1, CXCL12, MYH7, FMO2, 
ZNF185, TTN, FLG, ADH1B, COX6A2, 
PDLIM3, PPP1R3C, RRAGD, LCN2, 
CASQ2, KLK11, TTC9, PGD, ATP10B

https://software.broadinstitute.org
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DEGs functional and pathway enrichment analysis

The top 5 significant terms of GO analysis in DAVID were 
illustrated in Table 2. In the biological process (BP) group, 
GO analysis results showed that up-regulated DEGs were 
significantly enriched in extracellular matrix organization, 
collagen catabolic process, extracellular matrix disassem-
bly, cell adhesion and collagen fibril organization; the down-
regulated DEGs were mainly enriched in muscle contraction 
and muscle filament sliding. For molecular function (MF), 
the enrichment of up-regulated DEGs was in metalloendo-
peptidase activity, extracellular matrix structural constitu-
ent, serine-type endopeptidase activity, collagen binding 
and endopeptidase activity, and down-regulated genes were 
enriched in structural constituent of muscle. Besides, GO 
cell component (CC) analysis indicated that the enrichment 
of up-regulated DEGs was predominantly in extracellular 
matrix, proteinaceous extracellular matrix, extracellular 
region, extracellular space and basement membrane, and 
down-regulated DEGs were enriched in extracellular exo-
some, muscle myosin complex and Z disc.

We also determined the canonical signaling pathways 
associated with the commonly DEGs in the carcinogenesis 
of HNSCC by performing KEGG analysis. The activated 

pathways were enriched in ECM–receptor interaction, focal 
adhesion, PI3K–Akt signaling pathway, while the sup-
pressed pathways were mainly involved in drug metabo-
lism–cytochrome P450, tyrosine metabolism and tight junc-
tion (Table 3).

PPI network construction and module analysis

Using the STRING online database and Cytoscape soft-
ware, 90 DEGs (37 up-regulated and 53 down-regulated 
genes) of the 132 commonly DEGs were filtered into 
the PPI network complex, containing 131 nodes and 
289 edges (Fig. 2), and the top 10 node degree genes 
were FN1, MMP9, SPP1, COL3A1, MMP13, POSTN, 
SPARC, COL4A1, ACTA1 and SERPINE1. According 
to the importance of degree, we chose two most signifi-
cant modules from the PPI network complex for further 
analysis using Cytoscape MCODE. Pathway enrich-
ment analysis showed that the module 1 consisted of 12 
nodes and 40 edges, which were mainly associated with 
ECM–receptor interaction, focal adhesion and PI3K–Akt 
signaling pathway, while the module 2 included 12 nodes 
and 31 edges, which were also enriched in focal adhesion 

Table 2   Go analysis of DEGs associated with HNSCC

Category Term Count % p value FDR

Up-regulated DEGs
 GOTERM_BP GO:0030198 ~ extracellular matrix organization 21 40.38 4.57E−26 6.38E−23
 GOTERM_BP GO:0030574 ~ collagen catabolic process 13 25 4.42E−19 6.17E−16
 GOTERM_BP GO:0022617 ~ extracellular matrix disassembly 11 21.15 2.15E−14 3.01E−11
 GOTERM_BP GO:0007155 ~ cell adhesion 14 26.92 7.43E−10 1.04E−06
 GOTERM_BP GO:0030199 ~ collagen fibril organization 6 11.54 1.13E−07 1.57E−04
 GOTERM_CC GO:0031012 ~ extracellular matrix 19 36.54 6.18E−20 6.78E−17
 GOTERM_CC GO:0005578 ~ proteinaceous extracellular matrix 18 34.62 3.89E−19 4.27E−16
 GOTERM_CC GO:0005576 ~ extracellular region 30 57.69 4.60E−18 5.05E−15
 GOTERM_CC GO:0005615 ~ extracellular space 24 46.15 2.09E−13 2.30E−10
 GOTERM_CC GO:0005604 ~ basement membrane 7 13.46 8.44E−08 9.25E−05
 GOTERM_MF GO:0004222 ~ metalloendopeptidase activity 8 15.38 3.40E−08 3.80E−05
 GOTERM_MF GO:0005201 ~ extracellular matrix structural constituent 7 13.46 8.80E−08 4.25E−05
 GOTERM_MF GO:0004252 ~ serine-type endopeptidase activity 9 17.31 6.41E−07 7.17E−04
 GOTERM_MF GO:0005518 ~ collagen binding 6 11.54 8.09E−07 9.05E−04
 GOTERM_MF GO:0004175 ~ endopeptidase activity 5 9.62 1.78E−05 1.99E−03

Down-regulated DEGs
 GOTERM_BP GO:0006936 ~ muscle contraction 8 10 5.33E−07 7.80E−04
 GOTERM_BP GO:0030049 ~ muscle filament sliding 6 7.5 7.42E−07 1.09E−03
 GOTERM_CC GO:0070062 ~ extracellular exosome 34 42.5 1.66E−08 1.95E−05
 GOTERM_CC GO:0005859 ~ muscle myosin complex 5 6.25 5.72E−07 6.73E−04
 GOTERM_CC GO:0030018 ~ Z disk 8 10 7.87E−07 9.26E−04
 GOTERM_CC GO:0005615 ~ extracellular space 20 25 3.46E−06 4.07E−03
 GOTERM_MF GO:0008307 ~ structural constituent of muscle 7 8.75 3.40E−08 4.25E−05
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and ECM–receptor interaction (Fig. 3), suggesting that 
ECM–receptor interaction and focal adhesion signaling 
pathways were essential in the carcinogenesis of HNSCC.

The validation of hub genes as independent 
predictors for OS in the TCGA database

We subsequently sought to assess the significance of hub 
genes for HNSCC; the relationships between expression 
of hub genes and OS were verified in the TCGA HNSCC 
cohort. For most of the hub genes, our results showed 
that poor OS was associated only in those patients with 
high expression of SERPINE1 (p = 0.00054) or PLAU 
(p = 0.00289), as well as the low expression of ACTA1 
(p = 0.04147), MYL1 (p = 0.01405), MYH2 (p = 0.04987) 
or MYLPF (p = 0.02122) (Fig. 4), suggesting that these 
candidate genes are associated with clinical outcome of 
HNSCC patients.

SERPINE1, PLAU and ACTA1 are aberrantly 
expressed in the carcinogenesis of HNSCC.

To further clarify the potential biological role of these prog-
nosis-associated genes in HNSCC transformation, we next 
characterized the expression changes of signature genes by 
microarray analysis (Supplementary Fig. 1). Among these hub 
genes that had large change levels in HNSCC samples, we 
compared their degrees in the highest ranked modules, two up-
(SERPINE1, PLAU) and one down-regulated (ACTA1) genes 
were particularly selected to further test the protein expres-
sion in NOM, OED and HNSCC tissues. As expected, we 
found that the expression of SERPINE1 and PLAU increased 
from NOM to OED and HNSCC. The mean LS of SER-
PINE1 increased in OED (230.38 ± 53.046%) and HNSCC 
samples (205.85 ± 51.427%), compared with that of NOM 
(58.50 ± 15.072%). Likewise, the level of PLAU also increased 
significantly from NOM (51.80 ± 10.727%) through OED 
(194.54 ± 46.321%) to HNSCC samples (199.61 ± 47.895%), 

Table 3   KEGG pathway enrichment analysis of up-regulated and down-regulated DEGs

Pathways Name Count % p value Genes

Up-regulated DEGs
 hsa04512 ECM–receptor interaction 12 23.08 7.28E−15 COL4A2, LAMB3, COL4A1, ITGA6, TNC, 

COL3A1, COL6A3, LAMC2, LAMB1, COL5A2, 
SPP1, FN1

 hsa04510 Focal adhesion 12 23.08 1.09E−10 COL4A2, LAMB3, COL4A1, ITGA6, TNC, 
COL3A1, COL6A3, LAMC2, LAMB1, COL5A2, 
SPP1, FN1

 hsa05146 Amoebiasis 9 17.31 4.10E−09 COL4A2, LAMB3, COL4A1, COL3A1, CXCL8, 
LAMC2, LAMB1, COL5A2, FN1

 hsa04151 PI3K–Akt signaling pathway 12 23.08 2.60E−08 COL4A2, LAMB3, COL4A1, ITGA6, TNC, 
COL3A1, COL6A3, LAMC2, LAMB1, COL5A2, 
SPP1, FN1

 hsa05222 Small cell lung cancer 7 13.46 6.98E−07 COL4A2, LAMB3, COL4A1, ITGA6, LAMC2, 
LAMB1, FN1

 hsa05200 Pathways in cancer 10 19.23 1.06E−05 COL4A2, LAMB3, COL4A1, ITGA6, MMP9, 
CXCL8, LAMC2, LAMB1, MMP1, FN1

 hsa04974 Protein digestion and absorption 6 11.54 1.93E−05 COL4A2, COL4A1, COL3A1, COL6A3, COL5A2, 
COL10A1

 hsa05145 Toxoplasmosis 4 7.69 0.0105 LAMB3, ITGA6, LAMC2, LAMB1
 hsa05219 Bladder cancer 3 5.77 0.0110 MMP9, CXCL8, MMP1
 hsa05202 Transcriptional misregulation in cancer 4 7.69 0.0269 MMP9, CXCL8, MMP3, PLAU
 hsa05205 Proteoglycans in cancer 4 7.69 0.0419 LUM, MMP9, PLAU, FN1
 hsa05323 Rheumatoid arthritis 3 5.77 0.0458 CXCL8, MMP3, MMP1

Down-regulated DEGs
 hsa00982 Drug metabolism-cytochrome P450 4 5 0.0040 FMO2, ADH1B, ADH7, ALDH3A1
 hsa00350 Tyrosine metabolism 3 3.75 0.0119 ADH1B, ADH7, ALDH3A1
 hsa04530 Tight junction 4 5 0.0270 MYH2, MYLPF, CLDN10, MYH7
 hsa00010 Glycolysis/gluconeogenesis 3 3.75 0.0403 ADH1B, ADH7, ALDH3A1
 hsa00980 Metabolism of xenobiotics by cytochrome P450 3 3.75 0.0483 ADH1B, ADH7, ALDH3A1
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there was a significant difference in the mean LS of SERPINE1 
or PLAU between NOM and OED (p = 0.000) or HNSCC 
samples (p = 0.000), respectively; however, the LS of SER-
PINE1 or PLAU between OED and HNSCC had no significant 
difference. Representative microphotographs of SERPINE1 
and PLAU staining for NOM, OED and HNSCC are shown in 
Fig. 5. Instead, the level of ACTA1 showed an opposite trend; 
the LS was reduced from NOM (136.10 ± 49.249%) through 
OED (81.77 ± 5.403%) to HNSCC samples (60.66 ± 9.089%). 
There was a significant difference in the expression of ACTA1 
among the 3 groups (Table 4). Thus, combined with the TCGA 
data analysis, these results suggested that SERPINE1, PLAU 
and ACTA1 are required for the initiation of head and neck 
tumorigenesis.

SERPINE1, PLAU and ACTA1 are correlated 
with clinical aggressiveness of HNSCC patients

As the expression levels of SERPINE1, PLAU and ACTA1 
were validated as independently predicted factors for OS 

of HNSCC patients, we continued to define the associa-
tion of these genes and clinical histology classification 
in HNSCC samples. As shown in Fig. 6, there was a sig-
nificant difference in these three hub genes expression 
between well and moderately or poorly differentiated 
HNSCC. The results showed that the LS of SERPINE1 
increased significantly from well (166.78 ± 13.426%) 
through moderately (234.60 ± 36.439%) to poorly differ-
entiated HNSCC samples (282.00 ± 7.589%) (Table 5). A 
significant difference in the LS of PLAU was also found 
between poorly and well (p = 0.000) or moderately dif-
ferentiated HNSCC tissues (p = 0.005). In contrast, the 
expression of ACTA1 showed an obviously downward 
trend between well and moderately or poorly HNSCC 
samples; the mean LS of ACTA1 in well-differentiated 
HNSCC was 64.78 ± 9.400%; however, the results of LS 
between moderately and poorly differentiated HNSCC 
were all zero. Thus, our findings indicated that SERPINE1, 
PLAU and ACTA1 were correlated with clinical malig-
nancy of HNSCC patients.

Fig. 2   DEGs PPI network complex and module analysis. Using the STRING online database, a total of 90 DEGs (37 up-regulated in red stand-
ing and 53 down-regulated genes in green standing) were filtered into the DEGs PPI network complex
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Discussion

Identifying oncogenic biomarkers and elucidating the 
underlying mechanism of the initiation and development 
of HNSCC would greatly benefit the early diagnosis and 
effective treatment for patients with high malignancy [17]. 
Emergency bioinformatics analysis has provided a power-
ful tool for the identification of biomarkers and therapeutic 
targets relevant to tumor progression and treatment response 
[18]. In the present study, we identified 52 up-regulated and 
80 down-regulated DEGs through analyzing available data 
of gene expression profile datasets (GSE6631, GSE58911 
and TCGA) in HNSCC by multiple bioinformatics tools. 
Functional analysis demonstrated that these DEGs are 
mainly associated with activation of ECM–receptor inter-
action and focal adhesion and suppression of drug metabo-
lism–cytochrome P450 pathways. More importantly, based 
on TCGA dataset, our clinical experiments proved that a 
set of prognostic signatures including SERPINE1, PLAU 
and ACTA1 were identified as biomarkers for diagnosis and 
prognosis of HNSCC, which may provide novel insights for 
unraveling pathogenesis of HNSCC.

Recently, some basic studies have been conducted to 
identify the DEGs in HNSCC [19, 20]. For example, Yang 
et al. analyzed the gene expression profile of GSE6791 
and identified 550 up-regulated and 261 down-regulated 

genes [21]. Similarly, Zhao found that PLAU, CLDN8 and 
CDKN2A could predict OS using gene expression profiles 
of GSE13601, GSE30784, GSE37991 and TCGA in oral 
squamous cell carcinoma [22]. Our integrated bioinfor-
matics analysis indicated that 132 genes were consistently 
and significantly deregulated in GSE6631, GSE58911 and 
TCGA. Interestingly, our results revealed that there were 
also examples of genes that did not overlap compared with 
these reports; the main reason of this discrepancy may be 
because we used 3 different multiple profiles, which could 
greatly minimize the intra-tumoral heterogeneity and diver-
sity of anatomical sites of HNSCC.

As was suggested by DAVID analysis, the up-regulated 
DEGs were mainly involved in extracellular matrix organi-
zation, collagen catabolic process, extracellular matrix dis-
assembly, cell adhesion and collagen fibril organization at 
the level of BP. Extracellular matrix (ECM), as a crucial 
component of the cancer cell niche, provides the mechanical 
support for the tissue and mediates the cell–microenviron-
ment interactions [23]. Significantly, collagens are one of 
the major proteins found within the ECM, and have them-
selves been implicated in many aspects of neoplastic trans-
formation. Therefore, it is consistent with the findings that 
active functions of these cellular processes through ECM 
were the main cause for tumor development, progression 
and metastasis [24], whereas the down-regulated DEGs in 

Fig. 3   Top two modules from PPI network. a Module 1 and its enriched pathways (upper); b module 2 and its enriched pathways (bottom)
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Fig. 4   Kaplan–Meier curves exhibit the OS in the TCGA HNSCC cohort with high and low expression of SERPINE1, PLAU, ACTA1, MYL1, 
MYH2 and MYLPF
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HNSCC were mainly enriched in actin-mediated cell con-
traction and filament sliding, which were associated with 
decreased muscle function-mediated cytoskeleton remod-
eling in cancer development and progression [25]. Further-
more, the enriched KEGG pathway of up-regulated DEGs 

mainly induced ECM–receptor interaction, focal adhesion 
and PI3K–Akt signaling pathway. Significantly, 12 overlap-
ping genes, including ITGA6, SPP1 and FN1, were identi-
fied to functionally involve in interactions between ECM 
and cells by activating these three signaling pathways, 
which lead to a direct or indirect control of cellular activi-
ties such as cell migration, differentiation and proliferation 
[26–28]. As a contrast, down-regulated DEGs were related 
to drug metabolism–cytochrome P450. The recent study 
has reported that the cytochrome P450 slowed metabolizers 
CYP2C9*2 and CYP2C9*3, which could directly regulate 
tumorigenesis via reduced epoxyeicosatrienoic acid produc-
tion [29]. Together, these data suggested that deregulated 
pathways may be a major factor of HNSCC tumorigenesis, 
detecting these aberrant signaling pathways could precisely 
predict tumor progression [30].

After constructing PPI network with DEGs and list-
ing the top degree of hub genes, the most significant two 
modules were filtered from the PPI network complex; 

Fig. 5   Immunohistochemical staining of SERPINE1, PLAU and 
ACTA1 in oral epithelium at different stages of head and neck car-
cinogenesis (× 40). The SERPINE1 was expressed in nucleus and 
cytoplasm, while PLAU was mainly expressed in cytoplasm; the 
cytoplasmic and/or nuclear staining intensity of basal layers were 

much denser than that of upper epithelial cells for SERPINE1 and 
PLAU. The expression of ACTA1 was mainly distributed at the cyto-
plasm of epithelial cells in prickle layer (red arrow, × 200). NOM, 
non-cancerous oral mucosa; OED, oral epithelial dysplasia

Table 4   The mean LS of SERPINE1, PLAU and ACTA1 in NOM, 
OED and HNSCC tissues

LS labeling scores, NOM non-cancerous oral mucosa, OED oral epi-
thelial dysplasia
*p < 0.05, compared to NOM group; #p < 0.05, compared to OED 
group

Group Mean LS ± SD (100%)

SERPINE1 PLAU ACTA1

NOM 58.50 ± 15.072 51.80 ± 10.727 136.10 ± 49.249
OED 230.38 ± 53.046* 194.54 ± 46.321* 81.77 ± 5.403*
HNSCC 205.85 ± 51.427* 199.61 ± 47.895* 60.66 ± 9.089*,#
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consequent functional analysis showed that most of corre-
sponding genes were associated with ECM–receptor interac-
tion and focal adhesion. Furthermore, survival analysis of 
hub genes in these two modules revealed that SERPINE1, 
PLAU, ACTA1, MYL1, MYH2 and MYLPF were identified 
as prognostic markers for clinical outcome in the TCGA 

cohort. Among the up-regulated hub genes, PLAU, one of 
the major proteolytic enzymes involved in degradation of 
extracellular matrix, has been demonstrated to play critical 
roles in tissue remodeling and migration in the developmen-
tal as well as tumorigenesis process, whereas SERPINE1, 
as the most important physiological inhibitor of the PLAU, 
could in turn reverse this process and regulate the adhesion/ 
deadhesion balance of cells to the ECM [31]. However, it 
has been reported that SERPINE1 could induce the EMT 
process and promote tumor cell survival in breast and ovar-
ian cancers [32, 33]. In our study, the bioinformatics analysis 
revealed significantly increased expressions of PLAU and 
SERPINE1 in HNSCC tissues, which were associated with 
poor clinical outcome. In contrast, for the down-regulated 
actin-family genes, ACTA1 gene encodes a protein exerting 
functions in cell motility, structure and integrity. Consist-
ent with our observation, ACTA1 is also down-regulated 
in colorectal cancer [34]. In addition, our results showed 
that the other three specific down-regulation genes (MYL1, 

Fig. 6   Immunohistochemical staining of SERPINE1, PLAU and ACTA1 in tumor nests of HNSCC tissues, and the expression levels of three 
genes were associated with tumor differentiation (× 100)

Table 5   The mean LS of SERPINE1, PLAU and ACTA1 in well, 
moderately and poorly differentiation of HNSCC tissues

LS labeling scores
*p <  0.05, compared to well-differentiated group; #p <  0.05, com-
pared to moderately differentiated group 

Histology Mean LS ± SD (100%)

SERPINE1 PLAU ACTA1

Well 166.78 ± 13.426 106.78 ± 37.323 64.78 ± 9.400
Moderately 234.60 ± 36.439* 182.40 ± 6.450* 0.000*
Poorly 282.00 ± 7.589*,# 272.50 ± 36.812*,# 0.000*



1040	 International Journal of Clinical Oncology (2019) 24:1030–1041

1 3

MYH2 and MYLPF) were involved in muscle contraction 
process, which might play a regulatory role in remodeling 
of muscle function in HNSCC tissues; however, the specific 
roles of these genes in cancers still need to be elucidated.

Of note, in view of the prognostic potency of these hub 
genes for HNSCC in TCGA database, by the validation of 
their top degree of genes and change levels of mRNA in 
microarrays, we selected SERPINE1, PLAU and ACTA1 
to further detect their protein level by immunostaining. Our 
clinical analysis showed that SERPINE1, PLAU and ACTA1 
were significantly changed in the progression of HNSCC. 
They were aberrantly expressed in the epithelium of OED 
and HNSCC and correlated with aggressiveness of HNSCC 
patients, which implied that these signature genes are pos-
sibly not only involved in the initiation of tumorigenesis 
but also late stages of cancer. Therefore, SERPINE1, PLAU 
and ACTA1 could be potentially utilized as diagnostic and 
prognostic biomarkers for HNSCC. More importantly, by 
comparing the extent of protein changes, the overexpressed 
SERPINE1 and PLAU are the most promising markers, and 
its detection could help to identify tumor cells in tissues.

In conclusion, the current study was intended to iden-
tify DEGs with comprehensive bioinformatics analysis to 
find the potential biomarkers and predict progression of 
HNSCC. We found that SERPINE1, PLAU and ACTA1 
might be exploited as diagnostic and prognostic indica-
tors for HNSCC. Finally, the results also suggested that the 
function of ECM–receptor interaction and focal adhesion 
may be essential signaling pathways in the development of 
HNSCC. Hence, our findings could significantly improve 
our understanding of the cause and underling molecular 
events of HNSCC, and provide potential targets for anti-
cancer therapies.

Acknowledgments  This work was supported by the National Science 
Foundation of Shandong Province (Grant no. ZR2016HQ25)

Compliance with ethical standards 

Conflict of interest  The authors declared no relevant or potential con-
flict of interest.

Open Access  This article is distributed under the terms of the Creative 
Commons Attribution 4.0 International License (http://creativecom-
mons.org/licenses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.  

References

	 1.	 Torre LA, Bray F, Siegel RL et al (2015) Global cancer statistics, 
2012. CA Cancer J Clin 65(2):87–108. https​://doi.org/10.3322/
caac.21262​

	 2.	 Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer sta-
tistics 2018: GLOBOCAN estimates of incidence and mortality 
worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 
https​://orcid​.org/10.3322/caac.21492​

	 3.	 Miller KD, Siegel RL, Lin CC et al (2016) Cancer treatment and 
survivorship statistics, 2016. CA Cancer J Clin 66(4):271–289. 
https​://doi.org/10.3322/caac.21349​

	 4.	 Puram SV, Tirosh I, Parikh AS et al (2017) Single-cell transcrip-
tomic analysis of primary and metastatic tumor ecosystems in 
head and neck cancer. Cell 171(7):1611 e162–1624 e162. https​
://doi.org/10.1016/j.cell.2017.10.044

	 5.	 Vervoort Y, Linares AG, Roncoroni M et  al (2017) High-
throughput system-wide engineering and screening for micro-
bial biotechnology. Curr Opin Biotechnol 46:120–125. https​://
doi.org/10.1016/j.copbi​o.2017.02.011

	 6.	 Kuang J, Zhao M, Li H et al (2016) Identification of poten-
tial therapeutic target genes and mechanisms in head and neck 
squamous cell carcinoma by bioinformatics analysis. Oncol Lett 
11(5):3009–3014. https​://doi.org/10.3892/ol.2016.4358

	 7.	 Kuriakose MA, Chen WT, He ZM et al (2004) Selection and 
validation of differentially expressed genes in head and neck 
cancer. Cell Mol Life Sci CMLS 61(11):1372–1383. https​://doi.
org/10.1007/s0001​8-004-4069-0

	 8.	 Lobert S, Graichen ME, Hamilton RD et al (2014) Prognostic 
biomarkers for HNSCC using quantitative real-time PCR and 
microarray analysis: beta-tubulin isotypes and the p53 interac-
tome. Cytoskeleton 71(11):628–637. https​://doi.org/10.1002/
cm.21195​

	 9.	 Deng M, Bragelmann J, Schultze JL et al (2016) Web-TCGA: 
an online platform for integrated analysis of molecular cancer 
data sets. BMC Bioinform 17:72. https​://doi.org/10.1186/s1285​
9-016-0917-9

	10.	 Gene Ontology C (2015) Gene ontology consortium: going 
forward. Nucleic Acids Res 43(Database issue):D1049–D1056. 
https​://doi.org/10.1093/nar/gku11​79

	11.	 Kanehisa M, Furumichi M, Tanabe M et al (2017) KEGG: new 
perspectives on genomes, pathways, diseases and drugs. Nucleic 
Acids Res 45(D1):D353–D361. https​://doi.org/10.1093/nar/
gkw10​92

	12.	 da Huang W, Sherman BT, Lempicki RA (2009) Systematic 
and integrative analysis of large gene lists using DAVID bio-
informatics resources. Nat Protoc 4(1):44–57. https​://doi.
org/10.1038/nprot​.2008.211

	14.	 Praneenararat T, Takagi T, Iwasaki W (2012) Integra-
tion of interactive, multi-scale network navigation 
approach with Cytoscape for functional genomics in the 
big data era. BMC Genom 13(Suppl 7):S24. https​://doi.
org/10.1186/1471-2164-13-S7-S24

	15.	 Zhao T, Hu F, Qiao B et al (2015) Telomerase reverse tran-
scriptase potentially promotes the progression of oral squamous 
cell carcinoma through induction of epithelial–mesenchymal 
transition. Int J Oncol 46(5):2205–2215. https​://doi.org/10.3892/
ijo.2015.2927

	16.	 Zhao T, Hu F, Liu X et al (2015) Blockade of telomerase reverse 
transcriptase enhances chemosensitivity in head and neck cancers 
through inhibition of AKT/ERK signaling pathways. Oncotarget 
6(34):35908–35921. https​://doi.org/10.18632​/oncot​arget​.5468

	17.	 Kang H, Kiess A, Chung CH (2015) Emerging biomarkers in 
head and neck cancer in the era of genomics. Nat Rev Clin Oncol 
12(1):11–26. https​://doi.org/10.1038/nrcli​nonc.2014.192

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3322/caac.21262
https://doi.org/10.3322/caac.21262
https://orcid.org/10.3322/caac.21492
https://doi.org/10.3322/caac.21349
https://doi.org/10.1016/j.cell.2017.10.044
https://doi.org/10.1016/j.cell.2017.10.044
https://doi.org/10.1016/j.copbio.2017.02.011
https://doi.org/10.1016/j.copbio.2017.02.011
https://doi.org/10.3892/ol.2016.4358
https://doi.org/10.1007/s00018-004-4069-0
https://doi.org/10.1007/s00018-004-4069-0
https://doi.org/10.1002/cm.21195
https://doi.org/10.1002/cm.21195
https://doi.org/10.1186/s12859-016-0917-9
https://doi.org/10.1186/s12859-016-0917-9
https://doi.org/10.1093/nar/gku1179
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1186/1471-2164-13-S7-S24
https://doi.org/10.1186/1471-2164-13-S7-S24
https://doi.org/10.3892/ijo.2015.2927
https://doi.org/10.3892/ijo.2015.2927
https://doi.org/10.18632/oncotarget.5468
https://doi.org/10.1038/nrclinonc.2014.192


1041International Journal of Clinical Oncology (2019) 24:1030–1041	

1 3

	18.	 Hollstein M, Alexandrov LB, Wild CP et al (2017) Base changes 
in tumour DNA have the power to reveal the causes and evolu-
tion of cancer. Oncogene 36(2):158–167. https​://doi.org/10.1038/
onc.2016.192

	19.	 Yan L, Zhan C, Wu J et al (2016) Expression profile analysis of 
head and neck squamous cell carcinomas using data from The 
Cancer Genome Atlas. Mol Med Rep 13(5):4259–4265. https​://
doi.org/10.3892/mmr.2016.5054

	20.	 Li X, Sun R, Geng X et al (2017) A comprehensive analysis of 
candidate gene signatures in oral squamous cell carcinoma. Neo-
plasma 64(2):167–174. https​://doi.org/10.4149/neo_2017_201

	21.	 Yang B, Chen Z, Huang Y et al (2017) Identification of potential 
biomarkers and analysis of prognostic values in head and neck 
squamous cell carcinoma by bioinformatics analysis. OncoTargets 
Ther 10:2315–2321. https​://doi.org/10.2147/OTT.S1355​14

	22.	 Zhao X, Sun S, Zeng X et al (2018) Expression profiles analysis 
identifies a novel three-mRNA signature to predict overall survival 
in oral squamous cell carcinoma. Am J Cancer Res 8(3):450–461

	23.	 He X, Lee B, Jiang Y (2016) Cell–ECM interactions in tumor inva-
sion. Adv Exp Med Biol 936:73–91. https​://doi.org/10.1007/978-
3-319-42023​-3_4

	25.	 Rubinstein B, Pinto IM (2015) Epithelia migration: a spatiotempo-
ral interplay between contraction and adhesion. Cell Adhes Migr 
9(5):340–344. https​://doi.org/10.1080/19336​918.2015.10083​29

	26.	 Brooks DL, Schwab LP, Krutilina R et al (2016) ITGA6 is directly 
regulated by hypoxia-inducible factors and enriches for cancer 
stem cell activity and invasion in metastatic breast cancer models. 
Mol Cancer 15:26. https​://doi.org/10.1186/s1294​3-016-0510-x

	27.	 Wu J, Wang Y, Xu X et al (2016) Transcriptional activation of 
FN1 and IL11 by HMGA2 promotes the malignant behavior of 
colorectal cancer. Carcinogenesis 37(5):511–521. https​://doi.
org/10.1093/carci​n/bgw02​9

	28.	 Xu C, Sun L, Jiang C et al (2017) SPP1, analyzed by bioinformat-
ics methods, promotes the metastasis in colorectal cancer by acti-
vating EMT pathway. Biomed Pharmacother Biomed Pharmaco-
ther 91:1167–1177. https​://doi.org/10.1016/j.bioph​a.2017.05.056

	29.	 Sausville LN, Gangadhariah MH, Chiusa M et al (2018) The 
cytochrome P450 slow metabolizers CYP2C9*2 and CYP2C9*3 

directly regulate tumorigenesis via reduced epoxyeicosatrienoic 
acid production. Cancer Res 78(17):4865–4877. https​://doi.
org/10.1158/0008-5472.CAN-17-3977

	30.	 Isaacsson Velho PH, Castro G Jr, Chung CH (2015) Targeting 
the PI3K pathway in head and neck squamous cell carcinoma. 
Am Soc Clin Oncol Educ Book ASCO Am Soc Clin Oncol Meet. 
https​://doi.org/10.14694​/EdBoo​k_AM.2015.35.123

	31.	 Pavon MA, Arroyo-Solera I, Cespedes MV et al (2016) uPA/uPAR 
and SERPINE1 in head and neck cancer: role in tumor resist-
ance, metastasis, prognosis and therapy. Oncotarget 7(35):57351–
57366. https​://doi.org/10.18632​/oncot​arget​.10344​

	32.	 Azimi I, Petersen RM, Thompson EW et al (2017) Hypoxia-
induced reactive oxygen species mediate N-cadherin and SER-
PINE1 expression, EGFR signalling and motility in MDA-
MB-468 breast cancer cells. Sci Rep 7(1):15140. https​://doi.
org/10.1038/s4159​8-017-15474​-7

	33.	 Pan JX, Qu F, Wang FF et al (2017) Aberrant SERPINE1 DNA 
methylation is involved in carboplatin induced epithelial–mes-
enchymal transition in epithelial ovarian cancer. Arch Gynecol 
Obstet 296(6):1145–1152. https​://doi.org/10.1007/s0040​
4-017-4547-x

	34.	 Liu J, Li H, Sun L et al (2017) Aberrantly methylated-differen-
tially expressed genes and pathways in colorectal cancer. Cancer 
Cell Int 17:75. https​://doi.org/10.1186/s1293​5-017-0444-4

	13.	 Szklarczyk D, Franceschini A, Wyder S et al (2015) STRING v10: 
protein–protein interaction networks, integrated over the tree of 
life. Nucleic Acids Res 43(Database issue):D447–D452. https​://
doi.org/10.1093/nar/gku10​03

	24.	 Multhaupt HA, Leitinger B, Gullberg D et al (2016) Extracel-
lular matrix component signaling in cancer. Adv Drug Deliv Rev 
97:28–40. https​://doi.org/10.1016/j.addr.2015.10.013

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/onc.2016.192
https://doi.org/10.1038/onc.2016.192
https://doi.org/10.3892/mmr.2016.5054
https://doi.org/10.3892/mmr.2016.5054
https://doi.org/10.4149/neo_2017_201
https://doi.org/10.2147/OTT.S135514
https://doi.org/10.1007/978-3-319-42023-3_4
https://doi.org/10.1007/978-3-319-42023-3_4
https://doi.org/10.1080/19336918.2015.1008329
https://doi.org/10.1186/s12943-016-0510-x
https://doi.org/10.1093/carcin/bgw029
https://doi.org/10.1093/carcin/bgw029
https://doi.org/10.1016/j.biopha.2017.05.056
https://doi.org/10.1158/0008-5472.CAN-17-3977
https://doi.org/10.1158/0008-5472.CAN-17-3977
https://doi.org/10.14694/EdBook_AM.2015.35.123
https://doi.org/10.18632/oncotarget.10344
https://doi.org/10.1038/s41598-017-15474-7
https://doi.org/10.1038/s41598-017-15474-7
https://doi.org/10.1007/s00404-017-4547-x
https://doi.org/10.1007/s00404-017-4547-x
https://doi.org/10.1186/s12935-017-0444-4
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1016/j.addr.2015.10.013

	Identification of SERPINE1, PLAU and ACTA1 as biomarkers of head and neck squamous cell carcinoma based on integrated bioinformatics analysis
	Abstract
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Materials and methods
	Microarray data
	Data processing and identification of DEGs
	Functional and pathway enrichment analysis of DEGs
	Modules from the PPI network
	Survival analysis of the hub gene in TCGA database
	Clinical samples and clinical staging system
	Immunohistochemical analysis
	Statistical analysis

	Results
	Identification of aberrantly DEGs in HNSCC
	DEGs functional and pathway enrichment analysis
	PPI network construction and module analysis
	The validation of hub genes as independent predictors for OS in the TCGA database
	SERPINE1, PLAU and ACTA1 are aberrantly expressed in the carcinogenesis of HNSCC.
	SERPINE1, PLAU and ACTA1 are correlated with clinical aggressiveness of HNSCC patients

	Discussion
	Acknowledgments 
	References




