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AqSolDB, a curated reference 
set of aqueous solubility and 2D 
descriptors for a diverse set of 
compounds
Murat Cihan Sorkun1,2, Abhishek Khetan1,2 & Süleyman Er1,2

Water is a ubiquitous solvent in chemistry and life. It is therefore no surprise that the aqueous solubility 
of compounds has a key role in various domains, including but not limited to drug discovery, paint, 
coating, and battery materials design. Measurement and prediction of aqueous solubility is a complex 
and prevailing challenge in chemistry. For the latter, different data-driven prediction models have 
recently been developed to augment the physics-based modeling approaches. To construct accurate 
data-driven estimation models, it is essential that the underlying experimental calibration data used by 
these models is of high fidelity and quality. Existing solubility datasets show variance in the chemical 
space of compounds covered, measurement methods, experimental conditions, but also in the non-
standard representations, size, and accessibility of data. To address this problem, we generated a new 
database of compounds, AqSolDB, by merging a total of nine different aqueous solubility datasets, 
curating the merged data, standardizing and validating the compound representation formats, marking 
with reliability labels, and providing 2D descriptors of compounds as a Supplementary Resource.

Background & Summary
Aqueous solubility constitutes a crucial property of chemical substances that governs behavior of phenomena in 
several areas like geochemistry, climate predictions, biochemistry, drug-design, agrochemical design, and protein 
ligand binding. It is defined as the maximum amount of a compound, i.e., the solute, that can get dissolved in 
a given volume of water, and depends on physical conditions such as temperature and pressure. It is of critical 
importance in especially pharmaceutical drug design, where poor aqueous solubility is likely to lead to precip-
itation of compounds from screening buffer, which may create a high risk of erroneous results, false leads, and 
increased costs and formulation difficulties during clinical development.

Although the aqueous solubility of a compound can be related to its other structural and physico-chemical 
properties such as shape, polar surface area (PSA), acid dissociation constant (pKa), lipophilicity (logD), and 
the number of hydrogen bond donors and acceptors, theoretical predictions are often inaccurate. In order to 
overcome these challenges, several data-driven models have been developed to predict the aqueous solubility of 
compounds last couple of decades1–6.

The development of reliable data-driven models, however, has been hindered by uncertainties and disagree-
ments in the underlying data, which are obtained from many disparate sources. Unsystematic errors between 
different experimental methodologies potentially limit the accuracy with which the models can be trained and 
validated. To develop generalizable prediction models, accurate datasets are needed that are diverse and large at 
the same time7.

In this work, we assess the quality of aqueous solubility datasets under 2 categories: generalizability and fidel-
ity. Generalizability can be interpreted in terms of the chemical diversity of the dataset, as well as its size. Machine 
learning models developed using datasets, which have small size and lack chemical diversity, show poor predic-
tive capability on external test sets, as shown in the study by Wang et al.8. Another very important indicator of 
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dataset quality is fidelity. Fidelity can be understood as accuracy of data in terms of the reliability of the exper-
imental technique, human errors in either conducting the experiments and recording the measured values. In 
their review, Wang et al. reported inconsistencies of experimental values in different databases9. Balakin et al. also 
reported the same problem where they found standard deviation (SD) of experimental solubility values of the 
same compounds as large as 0.5 in LogS units7. These errors may result from experimental noise or unintentional 
misprints. Data verification is important in order to increase the reliability of datasets9.

The aim of this study is to curate a large experimental aqueous solubility data, AqSolDB, for data-driven model 
development. For this purpose, we searched for and collected nine open source datasets on aqueous solubility. In 
order to merge the datasets, we followed systematic steps of identifier generation by converting CAS numbers and 
SLN identifiers into SMILES representations, and validation10–12. All identifiers were converted to SMILES format 
and experimental solubility values were all standardized to the LogS units. After we standardized the datasets, 
we merged all the datasets into one and further grouped them based on their reliability label and the number of 
occurrences in the merged dataset.

In this data descriptor, we provided a general algorithm for selection of the statistically most reliable values 
from a set of competing values. AqSolDB consists of aqueous solubility values of 9,982 unique compounds, along 
with some relevant topological and physico-chemical 2D descriptors. Additionally, the dataset contains validated 
representations of each of the compounds.

AqSolDB is an openly accessible, easy-to-use, and well-structured database of compound. We expect it to 
serve a broad community as a reference aqueous solubility dataset for the bench-marking of new experimental 
and physics-based modelling results, and additionally as machine-readable ancillary resource to improve the 
prediction capability of future machine learning approaches.

Methods
To curate our dataset we followed three steps. First, we collected nine publicly available aqueous solubility data-
set and converted them into a standardized format. Second, we combined datasets into one single dataset by 
applying a data verification algorithm that selects statistically most reliable experimental value among multiple 
occurrences. Finally, we added topological and physico-chemical 2D descriptors to the merged dataset. Figure 1 
shows the flow of the curation process.

Step 1: Collecting and pre-processing datasets.  Solubility data was first collected from nine publicly 
available datasets as shown in Table 1. A set of three pre-processing steps were applied to each of the datasets in 
order to standardize the representation format and solubility values in the same units. These steps also describe 
our exclusion criteria on the basis of unique identifier validation. The steps are as follows:
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Fig. 1  Process diagram of curating solubility dataset.
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	 1.	 Identifier generation: We chose the SMILES representation as the standard identifier for compounds for 
our curated dataset. In external datasets, where SMILES representations were not available, we used the 
name and the CAS Registry Number of compounds as inputs to retrieve the SMILES strings from the 
Chemical Identifier Resolver web service of the National Cancer Institute (https://cactus.nci.nih.gov/
chemical/structure). Lastly, SLN identifiers available from some datasets were converted to SMILES using 
RDKit open-source cheminformatics software.

	 2.	 Unit Conversion: The chosen unit of solubility in this dataset is LogS, where S is the aqueous solubility in mol/L 
(or M). Units such as g/L and mg/L were converted to LogS using the molecular mass of the compounds.

	 3.	 SMILES Validation: In order to ensure consistency and robustness of the SMILES representations, we 
used InChI representations in the scheme shown in Fig. 213. First, SMILES strings were converted to into 
RDKit mol objects. If an error occurred during the conversion, the input SMILES string was considered 
to be invalid. Next, the obtained RDKit mol objects were converted to InChI representations. The InChI 
representations were used to regenerate the RDKit mol objects. Finally, the thus obtained mol objects were 
converted back to InChI representations. The original and regenerated InChI were checked for consistency 
to ensure that the generated InChI were reproducible. This step also validated that both SMILES and InChI 
representations led to the same RDKit mol object, and thus the chemical compound.

Table 1 shows the type of information contained in the datasets. Every dataset was processed separately in 
order to standardize them. The extraction process and standardization methods applied for each dataset, along 
with the temperature based exclusion criteria, are explained below. We named the datasets from A to I according 
to the number of instances they have in descending order.

Dataset A (6,110 instances).  Dataset A was obtained from eChemPortal14, which is an open source chemi-
cal property database developed by the Organisation for Economic Co-operation and Development (OECD). 
Solubility data was extracted after applying the filters “experimental studies” and “water solubility”. This yielded 
several lines of bulk text which were then parsed to obtain CAS number, name, and experimental results on sol-
ubility including temperature and pH conditions. A total of 14,180 instances were thus obtained and these were 
further filtered by temperature for a range between 25 ± 5 °C. After filtering, 8,419 instances were obtained. In 
the identifier generation step, 6,183 of 8,419 compounds were successfully converted into SMILES. Finally, after 
applying SMILES validation 6,110 instances were obtained.

Dataset B (4,651 instances).  Dataset B was downloaded from EPI Suite Data website15. This open-source dataset 
consisted of 5,764 liquid and crystalline organic compounds with the following properties: CAS number, name, 
molecular weight, water solubility, temperature. SMILES identifiers were successfully generated for 5,367 of these 

Dataset
ID

Original
Size

Filtered
Size

Compound
Representations

Solubility
Units

A14 14,180 6,110 name, CAS g/L, mg/L, μg/L

B15 5,764 4,651 name, CAS LogS

C16 2,603 2,603 name, SMILES LogS

D17 2,267 2,115 name, CAS LogS

E1 1,291 1,291 name, SMILES, 
CAS LogS

F8 1,210 1,210 SLN LogS

G2 1,144 1,144 name, SMILES LogS

H8 578 578 SLN LogS

I20 105 94 name, SMILES, 
InChI μM

Table 1.  List of datasets used to curate AqSolDB. Dataset ID: identifier of the dataset during the curation 
process. Original Size: number of instances of the dataset when we collected. Filtered Size: number of instances 
after the pre-process. Compound Representation: available compound representations of the dataset when we 
collected. Solubility Units: units of experimental solubility values of the dataset.

SMILES Mol object

InChI

InChI

Mol object

Fig. 2  Validation steps of compound representations. Blue box represents the SMILES values from the dataset 
and gray boxes represent the generated values using RDKit. Red arrows represent the conversion steps and 
green equal sign represents the validation of consistency.
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compounds. After that, we filtered the data by temperature between 25 ± 5 °C to obtain 5,206 compounds. In the 
final step, the InChI and InChIKey were validated to obtain 4,651 compounds.

Dataset C (2,603 instances).  Dataset C was collected from the work of Raevsky et al.16 and it contains solubility 
data measured at 25 ± 5 °C. The dataset consists of solubility of 2,603 crystalline solid compounds along with 
SMILES strings. All compounds were successfully recreated after pre-processing steps.

Dataset D (2,115 instances).  Dataset D was downloaded from EPI Suite Data website17. This open-source data-
set consisted of 2,267 liquid and crystalline organic compounds, out of which 2,115 compounds remained after 
applying the pre-processing steps.

Dataset E (1,291 instances).  Dataset E was taken from the work of Huuskonen et al.1. In this study, the experi-
mental aqueous solubility value measured between 20–25 °C were obtained from the AQUASOL database of the 
University of Arizona and SCR’s PHYSPROP Database. The extended version of this dataset with 1,291 solubility 
values and SMILES was downloaded from the Cheminformatics (http://cheminformatics.org/). All compounds 
were successfully recreated after pre-processing steps.

Dataset F (1,210 instances).  Dataset F was taken from the work of Wang et al.8. They extracted 1,210 compounds 
from the Beilstein database and sanitized it. However, the dataset contains compound identifiers in only the 
SLN format12. We converted SLN to SMILES representation using RDKit SLN parser. During the conversion 93 
of 1,210 compounds could not be produced. Using Molview (http://molview.org/) web tool, we obtained valid 
SMILES for 93 missing compounds. Name information was collected from NCI Chemical Identifier Resolver 
service, Molview and SpyderChem18 websites. InChI and InChIKey values are produced and validated using the 
pre-processing steps and all compounds were successfully recreated.

Dataset G (1,144 instances).  Dataset G was taken from the work of Delaney et al.2. The dataset consists of 1,144 
small compounds with experimental solubility measured at 25 °C and SMILES information. All compounds were 
successfully recreated after applying the pre-processing steps.

Dataset H (578 instances).  Dataset H was taken from the work of Wang et al.8, who sanitized the dataset used by 
Jain and Yalkowsky by removing duplicate entries19. This dataset consists of 322 liquid and 256 solid compounds. 
The dataset contained only SLN as the compound identifiers and after applying the pre-processing steps all com-
pounds are successfully recreated.

Dataset I (94 instances).  Dataset I was taken from the Goodman Group website (http://www-jmg.ch.cam.ac.uk/
data/solubility/) as the corrected version of solubility challenge20. The dataset consists of 105 drug-like com-
pounds with name, SMILES, and solubility information. The solubility values were measured at 25 °C. 11 of 105 
crystalline data had to be removed because their solubility values were missing. All compounds were successfully 
recreated after applying the pre-processing steps.

Step 2: Merging datasets.  The purpose of this step is combining all datasets into the one single repository 
that contains only unique compounds paired with the most reliable aqueous solubility value. The InChI representa-
tion was used to identify compounds uniquely and solubility values within 0.01 LogS units of each other were 
deemed to be identical. Based on these conditions, a preliminary analysis of the combined repository revealed two 
different kinds of redundancies - (1) a given compound was found to repeat with a different solubility value, or (2) a 
given compound was found to repeat with the same solubility value. In order to quantify the relative uniqueness of 
each of these datasets, redundancy matrices are plotted in Fig. 3, where the rows and columns of these matrices 
represent the various datasets. Redundant compounds of kind (1) and (2) between any two data sets are represented 
as fractional values Mij

d (Fig. 3a) and Mij
s (Fig. 3b), respectively, where i and j represent the two datasets in consider-

ation. As an example, the value MBA
d  = 0.13 represents that 13% of the compounds from dataset B can be found in 

dataset A, but with a different solubility value. In a similar way, the value MBA
s  = 0.09 represents that 9% of the com-

pounds from dataset B can be found in dataset A, but with the same solubility value. The matrix is not symmetric in 
the fractional representation because of the different sizes of the datasets. While data of kind (2) can be handled 
simply by removing identical copies, it can be deduced from Fig. 3a about compounds of kind (1) that the datasets 
possess a high degree of redundancy, which necessitates a strategy for selecting the most reliable value.

There are a total of 19,796 instances in the merged repository with 9,982 unique compounds before redundant 
values are eliminated. To curate this data set with a unique solubility value for every compound, we design an 
algorithm to select the most reliable experimental value. The selection is performed by first classifying the com-
pounds into five distinct groups which are defined based on the statistics of occurrence of a compound in the 
dataset. The flow chart of the curation algorithm is shown in Fig. 4 and described as follows:

	 1.	 For every compound in the dataset, the number of occurrences is determined. If the compound has a 
unique value or multiple values which are within 0.01 LogS units, the value is simply accepted. This step 
leads to the curation of 7,746 unique instances, which were assigned to group G1.

	 2.	 Next, for compounds with occurrence count >1 with different solubility values (819), we used the closest 
to the mean algorithm to select the value. In this method, the mean value is first calculated then the closest 
value to mean value among the candidates is selected. If the standard deviation (SD) of the set of values was 
>=0.5 LogS units, we assigned the compounds to group G4 (183), else to G5 (636).
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	 3.	 For compounds with exactly 2 values (1,417), the closest to the mean method cannot be applied because mean 
is always at the middle of the two values. For this case, we used an alternative method, which is closest to the 
reference. We selected the closest value to an external reference value, which is obtained using the solubility 
prediction tool ALOGPS21. ALOGPS is an open source online solubility prediction tool that is based on artificial 
neural networks and has an overall error of 0.49 Root Mean Squared Error (RMSE) in LogS units22. If the SD of 
the two values was >=0.5 LogS units, we assigned the compounds to group G2 (235), else to G3 (1,182).

a

b

High

Low

A B C D E F G H I
A 0.08 0.01 0.06 0.03 0.00 0.02 0.01 0.00
B 0.09 0.18 0.39 0.15 0.05 0.12 0.05 0.00
C 0.03 0.32 0.17 0.11 0.04 0.10 0.04 0.01
D 0.13 0.85 0.21 0.31 0.02 0.22 0.09 0.00
E 0.11 0.54 0.23 0.50 0.01 0.51 0.26 0.00
F 0.00 0.19 0.08 0.03 0.01 0.01 0.00 0.00
G 0.10 0.47 0.23 0.41 0.58 0.01 0.24 0.00
H 0.10 0.40 0.19 0.34 0.58 0.01 0.47 0.00
I 0.01 0.00 0.23 0.00 0.00 0.00 0.01 0.00

A B C D E F G H I
A 0.18 0.06 0.12 0.09 0.01 0.08 0.05 0.00
B 0.13 0.12 0.05 0.08 0.03 0.09 0.06 0.01
C 0.07 0.21 0.15 0.14 0.06 0.11 0.04 0.01
D 0.19 0.10 0.20 0.14 0.04 0.16 0.11 0.01
E 0.21 0.29 0.28 0.23 0.08 0.09 0.07 0.02
F 0.03 0.11 0.14 0.08 0.08 0.05 0.02 0.02
G 0.21 0.35 0.25 0.29 0.10 0.06 0.09 0.01
H 0.25 0.45 0.20 0.39 0.15 0.03 0.18 0.00
I 0.11 0.40 0.40 0.29 0.34 0.21 0.15 0.02

Fig. 3  Redundancy matrices showing fractional values for shared compounds between all collected datasets.  
(a) Mij

d shows fraction of compounds with differing solubility values, and (b) Mij
s shows fraction of compounds 

with the same solubility values.

Combination of 9 datasets
Total: 19,796
Unique: 9,982

Closest to 
mean

SD ≥ 0.5

Occurrence=2

Group: G4 Group: G5

Group: G1

Group: G2 Group: G3

Yes (7,746) No (2,236)

No (819)Yes (1,417)

Yes (235) Yes (183)No (1,182) No (636)

Closest to 
reference Reference Mean

Occurrence=1

SD ≥ 0.5

Fig. 4  Flowchart of the curation algorithm. Green box represents the initial state. Blue diamond shapes 
represent a decision according to the number of occurrences of a compound and the SD of multiple 
occurrences. Pink boxes represent the reliability group. Gray boxes represent the selection method for multiple 
occurrences. The numbers over the arrows represent the number of unique compound in the corresponding 
classification path.
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We selected 0.5 as a threshold for degree of agreement between multiple values based on the predictive capabilities 
of some the state-of-the-art models3,5,6. It must also be noted that the average SD of experimental solubility values for 
a given compound from different sources has been reported to be 0.5 LogS7,23. Using this threshold, the grouping of 
compound into 5 different groups provides a credible way of assessing reliability for data-driven modeling.

Step 3: Extending the dataset with 2D descriptors.  The purpose of this step is extending the infor-
mation space of compounds by adding basic topological and physico-chemical information. For this purpose, 
we calculated all the relevant 2D descriptors available from RDKit. The last 17 rows of Table 2 show the name, 
description and data type of the 2D descriptors.

Data Records
AqSolDB consists of 9,982 unique compounds. AqSolDB data is stored in the comma-separated values (CSV) 
format and contains representations, experimental aqueous solubility and calculated 2D descriptor data of all 
compounds, as described in Table 2. AqSolDB is openly accessible at the Harvard Dataverse Repository24.

Technical Validation
Analysis of solubility values.  Compounds can be classified according to solubility values (LogS); 
Compounds with 0 and higher solubility value are highly soluble, those in the range of 0 to −2 are soluble, those 
in the range of −2 to −4 are slightly soluble and insoluble if less than −4. Figure 5c shows the distribution of 
solubility values.

As no information about experimental errors from the original data sources was found to be available, we 
determined their reliability with a statistical approach. As described in the Methods section, each compound 
was labeled according to the selection process. Figure 5b shows the distribution of compounds to five groups. 
The G1 group constitutes the largest part of the data and has been encountered only once in all datasets. These 
compounds are selected directly and it is not possible to comment on their reliability. G2 and G3 groups are com-
posed of compounds that are found only twice in all datasets. Those with SD values greater than 0.5 were assigned 
to G2 group and those with small or equal values were assigned to G3 group. G4 and G5 groups are composed 
of compounds that are found three times or more in all datasets. Using the same process as the previous one, 
compounds with an SD of greater than 0.5 were included in the G4 group and those with a small or equal value 
in the G5 group. The difference between the results of the independent experiments shows the reliability of this 
value. Statistically, due to the fact that when sampling increases, reliability will increase, it can be concluded that 
G5 group is more reliable than G3 group and G4 group is more reliable than G2 group.

Column Name Description Type

ID ID from source (also shows the source) string

Name Name of compound string

InChI The IUPAC International Chemical Identifier string

InChIKey Hashed form of InChI value string

SMILES SMILES representation of compound string

Solubility Experimental aqueous solubility value (LogS) float

SD Standard deviation of multiple occurrences float

Occurrences Number of occurrences of compound integer

Group Generated reliability group (G1, G2, G3, G4, G5) string

Mol Wt Molecular weight float

Mol LogP Octanol-water partition coefficient float

Mol MR Molar refractivity float

Heavy Atom Count Number of non-H atoms integer

Num H Acceptors Number of H acceptors integer

Num H Donors Number of H donors integer

Num Heteroatoms Number of atoms not carbon or hydrogen integer

Num Rotatable Bonds Number of rotatable bonds integer

Num Valence Electrons Number of valence electrons integer

Num Aromatic Rings Number of aromatic rings integer

Num Saturated Rings Number of saturated rings integer

Num Aliphatic Rings Number of aliphatic rings integer

Ring Count Number of total rings integer

TPSA Topological polar surface area float

Labute ASA Labute’s Approximate Surface Area float

Balaban J Balaban’s J index (graph index) float

Bertz CT A topological complexity index of compound float

Table 2.  List of available information in terms of name, description, and type of each column in the AqSolDB.
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Usage Notes
It is recommended for users to consider the group description when using the data as input to other models. The 
availability of the calculated 2D descriptors makes it possible to directly use the data for developing machine 
learning models. To create a more complex representation of compounds such as graphs or circular fingerprints, 
we recommend to use RDKit. We provided both SMILES and InChI representations of compounds which are 
validated and can be easily converted into the RDKit mol object. Further methodological notes on data processing 
can be found in the Code Ocean repository25.

Code Availability
The reproducibility of the curation algorithm can be verified by executing the provided scripts on Code Ocean25. The 
code has been developed and tested using Python 3.5 on Linux operating system and is available under the MIT license.

The RDKit cheminformatics software is freely available under the BSD licence (http://www.rdkit.org).
ALOGPS 2.1 used for reference value generation is freely available online (http://www.vcclab.org/lab/alogps/).
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