1 |
Bacillus cereus, Pseudomonas fluorescence, and Achromobacter sp. |
Permethrin, deltamethrin, fastac, fenvalerate, and fluvalinate |
pH-7.0 Temp-30°C Tween,80 to maintain relatively insoluble compound in solution |
3-Phenoxybenzoic acid was the major product Permethrin transformed rapidly as compared to others |
Maloney et al., 1988 |
2 |
Pseudomonas sp. ET1 |
3-Phenoxybenzoate |
pH-7.2 Temp-30°C |
Phenoxy substituted benzyl aldehyde was metabolized whereas benzyl alcohol, benzene, phenol, and aniline were not |
Toppw and Akhtar, 1991 |
3 |
Trichoderma viridae, Trichoderma terricola, Aspergillus niger, and Phanerochate chrysosporium
|
Beta-cyfluthrin |
pH-6.5°C czapek dox medium used |
Cleavage of ether linkage result in metabolites formation. That is confirmed by NMR analysis |
Saikia and Gopal, 2004; Deng et al., 2015
|
4 |
Acidomonas sp. |
Allethrin |
pH-7.0 Temp-37°C with minimal salt medium |
Allethrin is metabolized by hydrolytic pathway followed by dehydrogenation and oxidation |
Paingankar et al., 2005 |
5 |
Pseudomonas stutzeri S1 |
Beta-cyfluthrin |
pH-7.0 Temp-28°C Minimal salt media |
Strain able to degrade the beta-cyfluthrin |
Saikia et al., 2005 |
6 |
Aspergillus niger ZD11 |
Trans-permethrin, cis-permethrin, cypermethrin, fenvalerate, and deltamethrin |
pH-6.8 Temp-30°C Minimal salt media |
Novel pyrethroid hydrolase having the potential of wide range of pyrethroid degradation |
Liang et al., 2005; Deng et al., 2015
|
7 |
Micrococcus sp. CPN1 |
Cypermethrin |
Seuberts mineral salt medium at 150 rpm |
Presence of 3-phenoxybenzoate, protochatachauate, and phenol were investigated |
Tallur et al., 2008 |
8 |
Bacillus sp. |
Cypermethrin |
pH-7.0 Temp.30°C Rpm-110 Minimal salt medium |
3-Phenoxybenzaldegyde and other metabolites of the pathway |
Bhatt et al., 2016b, 2019b
|
9 |
Sphingobium sp. JZ-2 |
Fenpropathrin, cypermethrin, permethrin, cyhalothrin, deltamethrin, fenvalerate, and bifenthrin |
pH-7.0 Temp-30°C Luria Bertani medium |
3-Phenoxybenzadihyde, 2,2,3,3-tetramethylcyclopropanecarboxylic acid, 3-phenoxybenzaldehyde, 3-phenoxybenzoate, protocatechuate, and catechol |
Guo et al., 2009 |
10 |
Serratia spp. |
Beta-cypermethrin |
pH-6-9 Temp-20–38°C |
3-Phenoxybenzoic acid, phenol (92% degradation occurs within 10 days by Serratia strains) |
Zhang et al., 2010 |
11. |
Ochrobactrum tritici pyd-1 |
Cis and trans permethrin, fenpropathrin |
Luria Bertani medium Temp-30°C |
2,2,3,3-Tetramethylcyclopropane carboxylic, 3-phenoxybenzaldehyde, 3-phenoxybenzoic acid, 4-hydroxy-3-phenoxybenzoic acid, protocatechuate, and p-hydroquinone |
Wang et al., 2011 |
12 |
Clostridium sp. ZP3 |
Fenpropathrin |
pH-7.5 Temp-35°C |
Benzyl alcohol, benzenemathanol, and 3,5-dimethylamphetamine |
Zhang S. et al., 2011 |
13 |
Pseudomonas aeruginosa CH7 |
Beta-cypermethrin |
pH-6-9 Temp-25–35°C |
Biosurfactant production increased beta-cypermethrin degradation |
Zhang C. et al., 2011 |
14 |
Neustonic and epiphytic bacteria |
Deltamethrin |
pH-7.0 Temp-20°C Minimal salt medium |
Bacteria reduced the initial concentration of cypermethrin |
Kalwasinska et al., 2011 |
15 |
Bacillus cereus MTCC1305 |
Fenvalerate |
pH-6-7.4 |
HPLC analysis showed 500 ppm fenvalerate degradation by the bacterium |
Selvam et al., 2013 |
16 |
Pseudomonas viridoflava |
Fenvalerate |
pH-6.2-7.0 |
HPLC analysis showed the pyrethroid is degraded with different peak areas |
Selvam et al., 2013 |
17 |
Serratia marcescens |
Deltamethrin |
No data |
3-Phenoxybenzaldehyde and peaks of other metabolites |
Cycoń et al., 2014 |
18 |
Acinetobactor calcoaceticus Mcm5 |
Cypermethrin, bifenthrin, cyhalothrin, and deltamethrin |
pH-7.0 Temp-30°C |
All the pyrethroid degraded by the bacterial strain Mcm5 |
Akbar et al., 2015b |
19 |
Azorcus indigens HZ5 |
Cypermethrin |
pH-7.0 Temp-30°C |
70% cypermethrin degradation after 144 h |
Burns and Pastoor, 2018 |
20 |
Bacillus sp. SG2 |
Cypermethrin |
pH-7.0 Temp-32°C |
82% cypermethrin degraded after 15 days of experiment |
Bhatt et al., 2016b, 2019a
|
21 |
Bacillus sp. DG-02 |
Fenpropathrin, cypermethrin, cyfluthrin, lambda-cyhalothrin, deltamethrin, permethrin, and bifenthrin |
pH-7.5 Temp-30°C |
Different biodegradation patterns followed with distinct concentration |
Chen et al., 2012b, 2014
|
22 |
Bacillus amyloliquifaciens AP01 |
Cypermethrin |
pH-7.0 Temp-30°C |
Approximately 45% cypermethrin degradation observed in 5 days |
Lee et al., 2016 |
23 |
Bacillus megaterium Jcm2 Brevibacillus parabrevis Jcm4 |
Cypermethrin, bifenthrin, cyhalothrin, and deltamethrin |
pH-7.0 Temp-30°C |
Maximum 89% degradation obtained in cypermethrin |
Akbar et al., 2015a |
24 |
Brevibacterium aureum DG-12 |
Cyfluthrin, cyhalothrin, fenpropathrin, deltamethrin, bifenthrin, and cypermethrin |
pH-7.0 Temp-27°C |
Maximum 84.7% biodegradation observed with cyfluthrin |
Chen et al., 2013a |
25 |
Catellibacterium sp. CC-5
|
Cypermethrin, fenvlerate, fenpropathrin, deltamethrin, permethrin, and cyhalothrin |
pH-7.0 Temp-30°C |
90% biodegradation achieved after 7 days with cypermethrin and deltamethrin |
Zhao et al., 2013 |
26 |
Lysinbacillus sphaericus FLQ-11-1 |
Cyfluthrin |
pH-7.0 Temp-35°C |
Approximately 80% cyfluthrin removal after 5 days |
Hu et al., 2014 |
27 |
Ochrobactrum lupini DG-S-01 |
Cypermethrin, cyfluthrin, fenpropathrin, cyhalothrin, and deltamethrin |
pH-7.0 Temp-30°C |
Maximum 90% biodegradation obtained with cypermethrin within 5 days |
Chen et al., 2011a |
28 |
Pseudomonas aeruginosa JQ-41 |
Fenpropathrin, cypermethrin, deltamethrin, bifenthrin, and cyhalothrin |
pH-7.0 Temp-30°C |
Maximum 91.7% biodegradation obtained with fenpropathrin after 7 days of experiment |
Song et al., 2015 |
29 |
Pseudomonas flourescens |
Cypermethrin |
pH-7.0 Temp-25°C |
37.2% cypermethrin degraded in absence of sucrose after 96 h |
Grant et al., 2002 |
30 |
Rhodococcus sp. Jcm5 |
Cypermethrin, bifenthrin, cyhalothrin, and deltamethrin |
pH-7.0 Temp-30°C |
100% cypermethrin catabolism occures in 10 days |
Akbar et al., 2015b |
31 |
Stenotrophomonas sp. ZS-S-01 |
Fenvalerate, deltamethrin, cypermethrin, cyfluthrin, and cyhalothrin |
pH-7.0 Temp-30°C |
Catabolic degradation in case of fenvalerate complete degradation occurs in 6 days |
Chen et al., 2011d |
32 |
Streptomyces sp. HU-S-01 |
Cypermethrin |
pH-7.5 Temp-26–28°C |
90% cypermethrin degradation in 24 h |
Lin et al., 2011 |
33 |
Streptomyces aureus HP-S-01 |
Cypermethrin, deltamethrin, cyfluthrin, bifenthrin, fenvalerate, fenpropathrin, and permethrin |
pH-7.5-7.8 Temp-27–28°C |
Cyfluthrin, bifenthrin and fenvalerate degraded completely within 5 days |
Chen et al., 2011c, 2012d
|
34 |
Candia pelliculosa ZS-02 |
Bifenthrin, cyfluthrin, deltamethrin, fenvalerate, cypermethrin, and fenpropathrin |
pH-7.2 Temp-32°C |
Only bifenthrin degraded completely within 5 days |
Chen et al., 2012c |
35. clc |
Cladosporium sp. HU |
Fenvalerate, fenpropathrin, cypermethrin, deltamethrin, bifenthrin, and permethrin |
pH-7.2 Temp-26°C |
Fenvalerate, fenpropathrin, cypermethrin degraded completely within 5 days |
Chen et al., 2011b |
36 |
Phaenerochate chrysosporium |
Cyfluthrin |
pH-6.5 Temp-28°C |
Co-metabolic degradation (60%) after 30 days of experiment |
Saikia and Gopal, 2004 |
37 |
Bacillus cereus BCC01 |
Beta-cypermethrin, deltamethrin, cypermethrin, permethrin, fenvalerate, and cyhalothrin |
pH-7.0 Temp-30°C |
Six metabolites were detected after biodegradation: α-hydroxy-3-phenoxy-benzeneacetonitrile, 3-phenoxybenzaldehyde, methyl-3-phenoxybenzoate, 3,5-dihydroxybenzoic acid, 3,4-dihydroxybenzoic acid, and 3,5-dimethoxyphenol |
Hu et al., 2019 |
38 |
Bacillus subtilis BSF01 |
Cypermethrin, deltamethrin, cyhalothrin, and β-cyfluthrin |
pH-6.7 Temp-34.5°C |
Cis/trans β-cypermethrin, 3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropanecarboxylate, α-hydroxy-3-phenoxybenzeneacetonitrile, 3-phenoxybenzaldehyde, 3-pheoxybenzoic acid, and 3,5-dimethoxyphenol |
Xiao et al., 2015 |
39 |
Pseudomonas fulva P31 |
D-phenothrin |
pH-7.3 Temp-29.5°C |
3-Phenoxybenzaldegyde and 1,2- benzene dicarboxylic butyl dacyl ester identified as major intermediates |
Yang et al., 2018 |
40 |
Sepedonium maheswarium |
Beta-cyfluthrin |
PDA media Temp-25 ± 2°C |
Dissipation study |
Mukherjee and Mittal, 2007 |
41 |
Penicillum raistrickii CBMAI 93, Aspergillus sydowii CBMAI935, Cladosporium sp. CBMAI 1237, Microsphaeropsis sp. CBMAI1675, Acremonium sp. CBMAI 1676, Westerdykella sp. CBMAI 1679, and Cladosporium sp. CBMAI1678 |
Esfenvalerate |
pH-7 Temp-32°C |
All fungal strains degraded esfenvalerate with different efficiencies |
Birolli et al., 2016a; Zhao et al., 2016
|
42 |
Aspergillus sp. CBMAI 1829, Acremonium sp. CBMAI 1676, Microsphaeropsis sp. CBMAI 1675, and Westerdykella sp. CBMAI 1679 |
Lambda-cyhalothrin |
pH-7 Temp-32°C |
Enantioselctive degradation of cyhalothrin by the fungal strains |
Birolli et al., 2016a; Zhao et al., 2018
|
43 |
Cunninghamella elegans DSM1908 |
Cyhalothrin |
pH-5.6 Temp-28°C |
Intermediate metabolites and proposed pathways identified |
Birolli et al., 2018 |
44 |
Phtobacterium genghwense PGS6046 |
Cyfluthrin |
pH-8 Temp-30°C |
Characterized metabolites in different culture conditions |
Wang et al., 2018 |
45 |
Acinetobacter baumanii ZH-14 |
Permethrin |
pH-7.0 Temp-30°C |
Strain degraded permethrin as well as wide variety of pyrethroids |
Zhan et al., 2018 |
46 |
Raoultella ornithinolytica ZK4 |
Pyrethroids |
pH-6.5, Temp-37°C |
Bacteria was isolated from the soil sediment that degraded different pyrethroids |
Zhang et al., 2019 |
47 |
Klebsiella pneumoniae BPBA052 |
3-Phenoxybenzoic acid |
pH-7.7 Temp-35.01°C |
Bacterium uses 3-phenoxybenzoic acid as carbon and energy source |
Tang et al., 2019 |
48 |
Rhodopseudomonas sp. PSB07-21 |
Fenpropathrin |
pH-7.0 Temp-35°C |
Photoheterotrophic mode of growth was better as compared to photoautotrophic growth mode |
Luo et al., 2019 |