Skip to main content
. 2019 Aug 2;10:852. doi: 10.3389/fphar.2019.00852

Table 1.

In vivo actions of synthetic pro-resolving lipid mediators (SPMs), ATL analogs and omega-3 acids in disease models.

Disease model Actions Mediator References
DSS colitis
  • Reduces body weight loss

  • Improves survival

15-Epi-16-parafluoro-LXA4
(ATL analog)
Gewirtz et al. (2002)
TNBS colitis
  • Reduces body weight loss

  • Improves survival

  • Reduces colon injury

  • Reduces mucosal inflammation

  • Reduces PMN infiltration

  • Reduces mRNA levels: iNOS, COX-2, MIP-2

  • Decreases protein levels: TNFα, IL-2, IFNγ

ZK-192
(ATL analog)
Fiorucci et al. (2004)
TNBS colitis
  • Reduces body weight loss

  • Improves survival

  • Reduces colon injury

  • Reduces PMN infiltration

  • Reduces mRNA levels: iNOS, COX-2, IL-12 p40, TNFα

Synthetic RvE1 Arita et al. (2005)
DSS colitis
  • Reduces body weight loss

  • Reduces colon shortening

  • Protects the epithelium and crypt architecture

  • Improves disease activity index

  • Induces colonic ALPI mRNA expression

  • Reduces proinflammatory IL-1β and murine KC (IL-8 human homolog)

Synthetic RvE1 Campbell et al. (2010)
DSS colitis
  • Reduces body weight loss

  • Reduces colon injury

  • Improves disease activity index

  • Reduces PMN infiltration

  • Reduces NF-κB activity

  • Reduces mRNA expression of TNFα, IL-1β, and IL-6

Synthetic RvE1 Ishida et al. (2010)
DSS colitis
  • Reduces body weight loss

  • Improves disease activity index

  • Reduces colonic tissue damage

  • Reduces PMN infiltration

  • Reduces colonic protein levels of mediators of inflammatory cell recruitment TNFα, IL-1β, MIP-2, and CXCL1/KC

  • Reduces NF-κB activity and mRNA expression

  • Reduces mRNA expression adhesion molecules VCAM-1, ICAM-1, and LFA-1

  • Potency AT-RvD1 > 17R-HDHA or RvD2

Synthetic
AT-RvD1
17R-HDHA
RvD2
Bento et al. (2011)
TNBS colitis
  • Reduces body weight loss

  • Improves disease activity index

  • Reduces colonic tissue damage

  • Reduces PMN infiltration

Synthetic
AT-RvD1
17R-HDHA
RvD2
Bento et al. (2011)
DSS colitis
  • Reduces body weight loss

  • Reduces colon shortening

  • Improves disease activity index

  • Reduces PMN infiltration

  • Reduces colonic tissue damage

  • Reduces NF-kB activity

  • Decreases ICAM-1 mRNA expression

  • Reduces IL-1β, TNFα, IL-6, and IFNγ in the acute colitis

  • Reduces IL-1β, IL-6 in chronic colitis

Synthetic
MaR1
Marcon et al. (2013)
TNBS colitis
  • Reduces body weight loss

  • Improves disease activity index

  • Reduces colonic tissue damage

  • Reduces PMN infiltration

Synthetic
MaR1
Marcon et al. (2013)
DSS colitis
  • Reduces colon shortening

  • Reduces colonic tissue damage

  • Reduces colon wall thickness

  • Reduces pro-inflammatory TNFα, IL-1β, IL-6

  • Reduces PMN infiltration

PD1n-3 DPA Gobbetti et al. (2017)
DSS colitis
  • Reduces colon shortening

  • Reduces colonic tissue damage

  • Reduces partially IL-1β

  • Reduces PMN infiltration

RvD5n-3 DPA Gobbetti et al. (2017)
DSS colitis
  • Reduces body weight loss

  • Reduces colonic tissue damage

  • Improves disease activity index

  • Reduces PMN infiltration

  • Potency 17-HDHA < 17-HDPAn-6, 10,17-HDPAn-6

Synthetics:
17-HDPAn-6,
10,17-HDPAn-6,
17-HDHA
Chiu et al. (2012)
APCMin/+ FAP model
  • Reduces weight loss

  • Reduces the number of tumors

  • Reduces the size of tumors

  • Increases tissue switch from AA to EPA

  • Reduces tissue prostaglandin levels of PGE2 and 6- keto-PGF1

EPA ethyl ester Hansen Petrik et al. (2000)
APCMin/+ FAP model
  • Reduces weight loss

  • Reduces lipid peroxidation

  • High reduction in polyp number

  • Reduces polyp load and size

  • Increases tissue switch from AA to EPA

  • Reduces COX-2 expression

  • Reduces β-catenin nuclear translocation

  • Reduces proliferation

  • Increases apoptosis

EPA free fatty acid Fini et al. (2010)
NMU-colorectal model
  • Reduces tumor incidence

  • Increases antioxidative enzyme activities of SOD and GPx

  • Reduces lipid peroxidation

Fish oil Kenar et al. (2008)
DSS colitis
  • Increases body weight loss

  • Increases colon shortening

  • Enhances inflammation

  • Exacerbates colitis

  • Decreases of adiponectin expression

Fish oil Matsunaga et al. (2008)
DSS colitis
  • Reduces body weight loss

  • Reduces colon shortening

  • Downregulates pro-inflammatory TNFα, COX-2, mPGES, TXAS

  • Upregulates anti-inflammatory PGDS

  • Restores the architecture of the colon epithelium

  • Reduces inflammatory cell infiltration

  • Reduces levels of LPO, protein carbonyl and ROS

  • Increases antioxidant activities of GPx, GST and GR

Fish oil Sharma et al. (2019)
DSS colitis
  • Reduces colon shortening

  • Reduces disease severity

  • Reduces tissue levels of pro-inflammatory TNFα, IL-1β, and IL-6

  • Decreases PMN infiltration

  • Reduces NF-kB activity

  • Decreases expression of COX-2 in colon

EPA monoglyceride Morin et al. (2016)
DSS colitis
Fat-1 mouse
  • Reduces body weight loss

  • Reduces colon shortening

  • Reduces colon damage

  • Reduces PMN infiltration

  • Produces RvE1, RvD3, NPD1, PD1, 17HDHA and 14-HDHA in colon

  • Reduces NF-kB activity

  • Decreases mRNA level of TNFα, iNOS, IL-1β

  • Increases mRNA level of mucoprotective factors Tollip and TFF3

Endogenous conversion of ω6- into ω3-PUFAs Hudert et al. (2006)
CAC model
Fat-1 mouse
  • Reduces weight loss

  • Reduces colon shortening

  • Decreases inflammation severity and mucosal thickness

  • Reduces tumor incidence

  • Reduces tumor growth rate

  • Reduces NF-kB activity

  • Increases TGFβ mRNA expression

  • Reduces iNOS mRNA expression

Endogenous conversion of ω6- into ω3-PUFAs Nowak et al. (2007)
CAC model
Fat-1 mouse
  • Reduces tumor number

  • Increases apoptosis

  • Improves inflammation and ulceration scores

  • Decreases ω6 PUFA-derived eicosanoids (PGE2, PGD2, PGE1 and 12-HETE)

  • Increases ω3 PUFA-derived eicosanoid (PGE3)

  • Decreases CD3+, CD4+ T helper, and macrophage cell numbers in colon

Endogenous conversion of ω6- into ω3-PUFAs Jia et al. (2008)
CAC model
Fat-1 mouse
  • Reduces tumor size

  • Reduces colon shortening

  • Reduces distal colon tumorogenesis

  • Reduces COX-2 protein expression

  • Represses NF-κB transcriptional activation

  • Reduces mucosal PGE2 levels

  • Preserves tumor suppressive 15-PGDH gene expression

  • Reduces proliferation

  • Reduces β-catenin nuclear translocation

  • Increases apoptosis

  • Increases apoptotic molecules FAS and Bax

  • Reduces expressions of antiapoptotic molecules survivin and Bcl-2

Endogenous conversion of ω6- into ω3-PUFAs Han et al. (2016b)
CAC model
C57BL/6 mouse
  • Similar ω3 tissue PUFAs content and ratio of ω6/ω3 than in the fat-1 mouse

  • Do not confirm anti-tumorigenic effects expressed above

DHA Han et al. (2016b)
CAC model
C57BL/6J mouse
At carcinogenesis initiation:
  • Reduces cell proliferation

  • Reduces β-catenin nuclear translocation

  • Increases apoptosis


At carcinogenesis initiation and promotion:
  • Reduces tumor multiplicity

  • Reduces tumor incidence

  • Reduces tumor size

  • Increases tissue switch from AA to EPA

  • Reduces PGE2

  • Restores the loss of Notch signaling

  • Increases Lactobacillus in gut microbiota

EPA free fatty acid Piazzi et al. (2014)
Reflux esophagitis model
  • Reduces esophageal damage

  • Reduces inflammation

  • Reduces expression of MyD88

  • Decreases pro-inflammatory cytokine expression IL-1, IL-8, IL-6

  • Increases SOD expression

  • Reduces LPO

Fish oil Zhuang et al. (2016)
H. pylori-associated gastric cancer
Fat-1 mouse
  • Reduces mucosal thickening

  • Reduces inflammatory cell infiltration

  • Reduces gastric inflammation

  • Reduces inflammatory COX-2, IL-1β

  • Reduces inflammatory IL-6, IL-8, IFNγ

  • Decreases angiogenic growth factors VEGF, PGDF

  • Reduces atrophic gastritis and tumorogenesis

  • Decreases gastric cancer

  • Preserves 15-PGDH expression

Endogenous conversion of ω6- into ω3-PUFAs Han et al. (2016)

ALPI, alkaline phosphatase; ATL, aspirin-triggered lipoxins; AT-Rv, aspirin-triggered resolving; Bax, Bcl-2 associated X protein; Bcl-2, B-cell lymphoma 2; CAC, colitis-associated cancer; COX-2, cyclooxygenase 2; CXCL1/KC, keratinocyte-derived chemokine; DSS, dextran sodium sulfate; FAP, familial adenomatous polyposis; GPx, glutathione peroxidase; GR, glutathione reductase; GST, glutathione-S transferase; HDHA, hydroxy docosahexaenoic acid; HDPAn-6, hydroxy-docosahexaenoic acid; HETE, hydroxyeicosatetraenoic acid; ICAM-1, intercellular adhesion molecule 1; IFNγ, interferon gamma; IL, interleukin; iNOS, inducible nitric oxide synthase; LFA-1, lymphocyte function associated antigen-1; LPO, lipid peroxidation; LX, lipoxin; MaR, maresin; MIP-2, macrophage inflammatory protein 2; MyD88, myeloid differentiation primary response gene 88; NF-κB, nuclear factor kappa B; NMU, N-methyl-N-nitrosurea; NPD, neuroprotection; PG, prostaglandin; PGDF, platelet-derived growth factor 15-PGDH, 15-hydroxyprostaglandin dehydrogenase; PD, protectin; PMN, polymorphonuclear leukocyte; ROS, reactive oxygen species; Rv, resolving; TNBS, trinitrobenzenesulphonic acid; SOD, superoxide dismutase; TFF3, trefoil factor 3; TGFβ, transforming growth factor beta; TNFα, tumor necrosis factor-α; TX, thromboxane; VCAM1, vascular cell adhesion protein 1; VEGF, vascular endothelial growth factor.