Table 3.
Model 1 |
Model 2* |
Model 3† |
|||||
---|---|---|---|---|---|---|---|
IRR | p value | IRR | p value | IRR | p value | ||
Demographic variables | |||||||
Age (years) | |||||||
0 to <5 | Ref | .. | Ref | .. | Ref | .. | |
≥5 to <10 | 2·82 (2·55–3·12) | <0·001 | 2·70 (2·44–2·98) | <0·001 | 2·71 (2·45–3·00) | <0·001 | |
≥10 to <15 | 3·34 (2·94–3·80) | <0·001 | 3·28 (2·89–3·73) | <0·001 | 3·33 (2·92–3·80) | <0·001 | |
Sex | |||||||
Female | Ref | .. | Ref | .. | Ref | .. | |
Male | 0·98 (0·90–1·07) | 0·61 | 0·98 (0·90–1·06) | 0·57 | 0·98 (0·89–1·06) | 0·58 | |
Distal variables | |||||||
Region of family home | |||||||
South | Ref | .. | .. | .. | .. | .. | |
Southeast | 5·44 (2·91–10·16) | <0·001 | .. | .. | .. | .. | |
Northeast | 24·18 (13·08–44·74) | <0·001 | .. | .. | .. | .. | |
North | 33·58 (18·12–62·24) | <0·001 | .. | .. | .. | .. | |
Central-west | 26·02 (13·94–48·56) | <0·001 | .. | .. | .. | .. | |
Location of family home | |||||||
Rural | Ref | .. | .. | .. | .. | .. | |
Urban | 1·45 (1·29–1·63) | <0·001 | .. | .. | .. | .. | |
Intermediate variables | |||||||
Race or ethnicity | |||||||
“Branco” (ie, white) | .. | .. | Ref | .. | .. | .. | |
“Preto” (ie, black) | .. | .. | 1·92 (1·52–2·42) | <0·001 | .. | .. | |
“Pardo” (ie, mixed race) | .. | .. | 1·60 (1·38–1·85) | <0·001 | .. | .. | |
Asian | .. | .. | 1·92 (0·91–4·07) | 0·09 | .. | .. | |
Indigenous | .. | .. | 0·35 (0·17–0·75) | 0·007 | .. | .. | |
Highest level of education (head of family) | |||||||
Higher education | .. | .. | Ref | .. | .. | .. | |
Year 10–12 | .. | .. | 1·49 (0·61–3·62) | 0·38 | .. | .. | |
Year 6–9 | .. | .. | 2·12 (0·88–5·10) | 0·10 | .. | .. | |
Year 1–5 | .. | .. | 2·14 (0·89–5·17) | 0·09 | .. | .. | |
Preschool or no education or illiterate | .. | .. | 2·66 (1·10–6·49) | 0·03 | .. | .. | |
Employment (head of family) | |||||||
Currently employed | .. | .. | Ref | .. | .. | .. | |
Unemployed student | .. | .. | 1·08 (0·96–1·21) | 0·38 | .. | .. | |
Unemployed (not student) | .. | .. | 0·70 (0·59–0·82) | <0·001 | .. | .. | |
Income per capita | |||||||
>1 minimum wage | .. | .. | Ref | .. | .. | .. | |
>0·5–1 minimum wage | .. | .. | 2·61 (0·35–19·17) | 0·35 | .. | .. | |
>0·25–0·5 minimum wage | .. | .. | 3·44 (0·48–24·56) | 0·22 | .. | .. | |
0–0·25 minimum wage | .. | .. | 4·31 (0·61–30·58) | 0·14 | .. | .. | |
No income | .. | .. | 4·01 (0·56–28·60) | 0·17 | .. | .. | |
Proximal variables | |||||||
Housing material | |||||||
Brick or cement | .. | .. | .. | .. | Ref | .. | |
Taipa, wood, or other | .. | .. | .. | .. | 1·26 (1·11–1·43) | <0·001 | |
Household water supply | |||||||
Public network | .. | .. | .. | .. | Ref | ||
Well, natural source, cistern, or other | .. | .. | .. | .. | 0·95 (0·84–1·08) | 0·44 | |
Sewage disposal system | |||||||
Public network | .. | .. | .. | .. | Ref | .. | |
Septic tank, ditch, or other | .. | .. | .. | .. | 1·55 (1·37–1·75) | <0·001 | |
Electricity in family home | |||||||
Home meter | .. | .. | .. | .. | Ref | .. | |
Community meter | .. | .. | .. | .. | 0·90 (0·71–1·15) | 0·41 | |
Illegal electricity, gas lighting, candlelight, or other | .. | .. | .. | .. | 1·19 (1·05–1·35) | 0·01 | |
Waste collection system | |||||||
Public collection system | .. | .. | .. | .. | Ref | .. | |
Burned, buried, outdoor disposal, or other | .. | .. | .. | .. | 0·79 (0·68–0·93) | 0·004 | |
Density (individuals per room) | |||||||
≤0·5 | .. | .. | .. | .. | Ref | .. | |
>0·5–0·75 | .. | .. | .. | .. | 1·22 (1·01–1·46) | 0·04 | |
>0·75–1·00 | .. | .. | .. | .. | 1·15 (0·96–1·38) | 0·22 | |
>1·00 | .. | .. | .. | .. | 1·21 (1·01–1·44) | 0·04 |
IRRs for leprosy new case detection were obtained using generalised linear Poisson models with clustered SEs to account for clustering by family. A complete-case analysis approach was used excluding from all models individuals with missing data in any of the three models. Follow-up time was censored when individuals turned 15 or were diagnosed with leprosy, whichever event occurred first. IRR=incidence rate ratio.
Covariates in model 2 were adjusted for covariates from model 1 with p<0·1 (ie, model 2 was adjusted for region and location of family home).
Covariates in model 3 are adjusted for covariates from model 1 and model 2 with p<0·1 (ie, model 3 was adjusted for region, location of family home, ethnicity, education, and employment; model 3 was also adjusted for income per capita despite p>0·1 because it was considered a relevant confounder).