Skip to main content
. 2019 Aug 9;4:21. doi: 10.1186/s41256-019-0112-4

Table 3.

Dynamic System GMM Regression Model (Post-Global Financial Crisis)

VARIABLES (1) (2) (3) (4) (5) (6)
ln PHEit-1 0.621*** 0.575*** 0.568*** 0.553*** 0.610*** 0.610***
(0.007) (0.011) (0.006) (0.016) (0.015) (0.013)
ln TRit −0.035 0.016
(0.025) (0.012)
ln DTit 0.020*** 0.004
(0.007) (0.009)
ln ITit − 0.024* −0.069***
(0.013) (0.007)
FBit −0.011*** −0.011*** − 0.011***
(0.0001) (0.0001) (0.0002)
ln DEBTit −0.008** −0.015*** − 0.010***
(0.003) (0.001) (0.002)
ln PCGDPit −0.013*** − 0.016*** 0.010*** −0.009*** 0.005 −0.009
(0.0007) (0.002) (0.003) (0.002) (0.006) (0.008)
ln AGINGit 0.065 0.267*** 0.091*** 0.248*** 0.012 0.214***
(0.063) (0.032) (0.033) (0.048) (0.026) (0.038)
ln IMRit −0.150*** −0.027** −0.011 −0.010 − 0.111*** −0.044*
(0.013) (0.011) (0.014) (0.022) (0.011) (0.024)
Constant 0.973*** 0.249*** 0.229** 0.178 0.641*** 0.476***
(0.140) (0.067) (0.101) (0.156) (0.100) (0.167)
AB test AR(2) (p -level) 0.103 0.086 0.086 0.086 0.104 0.089
Sargan test (p -level) 1.000 1.000 1.000 1.000 1.000 1.000
Observations 303 303 303 303 303 303
No. of Country 77 77 77 77 77 77

Note: Post-Global Financial Crisis includes the sample of countries of period 2009–2013. Standard errors in parentheses; ***, **, * denotes the level of significance at 1, 5, and 10% respectively; ln = natural logarithm

Source: Author’s estimation