Table 2.
Author | Method | Dataset/number | Task | Performance metric/s (value/s) | Code availability |
Mohamed et al [70] | CNNa (AlexNet; transfer learning) | Private, University of Pittsburgh/200,00 DMb (multiview) | Breast density estimation | AUCc (0.9882) | —d |
Ahn et al [71] | CNN (transfer learning) | Private, Seoul University Hospital/397 DM (multiview) | Breast density estimation | Correlation coefficient (0.96) | — |
Xu et al [73] | CNN (scratch based) | Public, INbreast dataset/410 DM (multiview) | Breast density estimation | Accuracy (92.63%) | — |
Wu et al [72] | CNN (transfer learning) | Private, New York University School of Medicine/201,179 cases (multiview) | Breast density estimation | Mean AUC (0.934) | [77] |
Kallenberg et al [74] | Conventional sparse autoencoder, ie, CNN+stacked autoencoder | Private, Dutch Breast Cancer Screening Program and Mayo Mammography, Minnesota/493+668 images (multiview) | Breast density estimation and risk scoring | Mammographic texture (0.91) and AUC (0.61) | — |
Ionescu et al [75] | CNN | Private dataset/67,520 DM (multiview) | Breast density estimation and risk scoring | Average match concordance index of (0.6) | — |
Geras et al [76] | Multiview deep neural network | Private, New York University/886,000 image (multiview) | Breast density estimation and risk score | Mean AUC (0.735) | — |
aCNN: convolutional neural network.
bDM: digital mammogram.
cAUC: area under the curve.
dNot available.