Skip to main content
. 2019 Jul 26;21(7):e14464. doi: 10.2196/14464

Table 2.

Summary of convolutional neural network–based methods for breast density estimation.

Author Method Dataset/number Task Performance metric/s (value/s) Code availability
Mohamed et al [70] CNNa (AlexNet; transfer learning) Private, University of Pittsburgh/200,00 DMb (multiview) Breast density estimation AUCc (0.9882) d
Ahn et al [71] CNN (transfer learning) Private, Seoul University Hospital/397 DM (multiview) Breast density estimation Correlation coefficient (0.96)
Xu et al [73] CNN (scratch based) Public, INbreast dataset/410 DM (multiview) Breast density estimation Accuracy (92.63%)
Wu et al [72] CNN (transfer learning) Private, New York University School of Medicine/201,179 cases (multiview) Breast density estimation Mean AUC (0.934) [77]
Kallenberg et al [74] Conventional sparse autoencoder, ie, CNN+stacked autoencoder Private, Dutch Breast Cancer Screening Program and Mayo Mammography, Minnesota/493+668 images (multiview) Breast density estimation and risk scoring Mammographic texture (0.91) and AUC (0.61)
Ionescu et al [75] CNN Private dataset/67,520 DM (multiview) Breast density estimation and risk scoring Average match concordance index of (0.6)
Geras et al [76] Multiview deep neural network Private, New York University/886,000 image (multiview) Breast density estimation and risk score Mean AUC (0.735)

aCNN: convolutional neural network.

bDM: digital mammogram.

cAUC: area under the curve.

dNot available.