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Abstract

In 2016, the Frank R. Lautenberg Chemical Safety for the 21st Century Act became the first US 

legislation to advance chemical safety evaluations by utilizing novel testing approaches that reduce 

the testing of vertebrate animals. Central to this mission is the advancement of computational 

toxicology and artificial intelligence approaches to implementing innovative testing methods. In 

the current big data era, the terms volume (amount of data), velocity (growth of data), and variety 

(the diversity of sources) have been used to characterize the currently available chemical, in vitro, 

and in vivo data for toxicity modeling purposes. Furthermore, as suggested by various scientists, 

the variability (internal consistency or lack thereof) of publicly available data pools, such as 

PubChem, also presents significant computational challenges. The development of novel artificial 

intelligence approaches based on public massive toxicity data is urgently needed to generate new 

predictive models for chemical toxicity evaluations and make the developed models applicable as 

alternatives for evaluating untested compounds. In this procedure, traditional approaches (e.g., 

QSAR) purely based on chemical structures have been replaced by newly designed data-driven 

and mechanism-driven modeling. The resulting models realize the concept of adverse outcome 

pathway (AOP), which can not only directly evaluate toxicity potentials of new compounds, but 

also illustrate relevant toxicity mechanisms. The recent advancement of computational toxicology 

in the big data era has paved the road to future toxicity testing, which will significantly impact on 

the public health.

INTRODUCTION

Traditional experimental testing procedures, both in vitro and in vivo, to identify compounds 

that can induce chemical toxicity are generally expensive and time-consuming.1,2 

Computational modeling is a promising alternative method for chemical toxicity evaluations. 

Existing computational models for risk assessment, such as quantitative structure–activity 
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relationship (QSAR) models for various toxicity end points, can be used to quickly predict 

large numbers of new compounds in the risk assessment process and prioritize potential 

toxic compounds for experimental testing. However, critical issues of previous 

computational toxicology modeling studies, such as the small size of the data sets often 

being used in model development inducing coverage of a limited chemical space,3 activity 

cliffs,4 and overfitting,5 limit the applicability of existing models (e.g., QSAR models). The 

primary hypothesis of QSAR modeling (e.g., similar compounds will have similar activities) 

sometimes proves to be flawed and is the primary reason for activity cliffs.6,7

Despite these limitations, regulatory acceptance of computational models remains an urgent 

demand in modern toxicology.8,9 In 2016, the Frank R. Lautenberg Chemical Safety for the 

21st Century Act (LCSA) became the first legislation since the Toxic Substances Control 

Act of 1976 (TSCA) to progress chemical risk assessment.10,11 An essential component of 

the LCSA is a call for applicable computational approaches and associated predictive 

models for safety evaluation purposes.10 In the past decade, the development of new 

experimental protocols, especially high-throughput screening (HTS) assays, and the progress 

of combinatorial chemistry generated various biological data for millions of compounds.12 

Data sharing projects, such as PubChem,13,14 have made chemical ”big data” publically 

available, which advanced modern toxicology studies into a big data era.1,2,15,16 The 

available massive public data bring urgent requests for the development of innovative 

modeling approaches, driven by the recent progress of artificial intelligence, which can 

fulfill the current needs of chemical risk assessment.

On the basis of the Organization of Economic Co-operation and Development (OECD) 

guidance of QSAR model development for chemical toxicity, the predictions of 

computational models for new compounds need to be mechanistically explainable.17 

However, the recently popular neural network approach to deal with big data typically 

performs as a “black box” algorithm,18,19 which brings an uncertain future to computational 

toxicology.12 Many HTS assays utilize human cells and tissues and have quantitative results 

that allow for mechanistic interpretation.12 This data landscape enables researchers to create 

in silico models that incorporate the concept of the adverse outcome pathway (AOP)20 with 

publically available big data, resulting in mechanism-driven modeling studies.1,15,21 The 

resulting models of these studies can not only predict the toxicity of new compounds, but 

also illustrate toxicity mechanisms of importance in humans and animals, thereby filling the 

gap created by speculation about a possible lack of concordance between animal and human 

test data.22 The urgent need for advanced computational methods, availability of abundant 

HTS big data, and opportunity for incorporation of mechanistic analysis introduce new 

challenges and prospects to the modern computational toxicology area.

BIG DATA IN CHEMICAL TOXICOLOGY

The term “big data” refers to data sets, structured or unstructured, that multiply quickly and 

are so large and multifaceted that they are impossible to treat using personal computers and 

traditional computational approaches.23 Data sets with big data require advanced tools such 

as heterogeneous and cloud computing24 that have capabilities beyond those of conventional 

data processing and handling techniques as well as dynamic data curation and sharing using 
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algorithms such as those used to handle data streams.25,26 These advanced techniques allow 

for rapid identification of target entities in these massive data sets in ways that manual data 

compilation and curation could never efficiently match, which has radical implications for 

the improvement of traditional computational toxicology modeling techniques like read-

across.15,16

Recent HTS programs and their associated data sharing efforts have revolutionized the 

landscape in many health fields, highlighted by the Big Data to Knowledge (BD2K) 

initiative by the National Institutes of Health (NIH), which emphasizes the usefulness of big 

data in biomedical research and critical need to capitalize on the amount of data available in 

the health field.27,28 A significant HTS effort in toxicology is the United States 

Environmental Protection Agency (US EPA) research program called Toxicity Forecaster 

(ToxCast), which employed in vitro HTS tests and toxicogenomics techniques to quickly 

evaluate the toxicity of compounds and prioritize compounds for experimental testing.29–31 

Phase I of this project evaluated 300 unique compounds, mostly of agricultural interest (i.e., 

pesticides), using about 500 HTS assays.30 Phase II evaluated an additional 767 compounds, 

including some failed pharmaceutical compounds, using about 700 HTS assays.31 Recently, 

the ToxCast initiative advanced to the Tox21 collaboration between the US EPA Office of 

Research and Development/National Center for Computational Toxicology (NCCT), NIH/

National Institute of Environmental Health Sciences (NIEHS)/National Toxicology Program 

(NTP), and the NIH/National Chemical Genomics Center (NCGC), now part of the National 

Center for Advancing Translational Sciences (NCATS).32–35 Phase I of Tox21 used 75 HTS 

assays, which were selected and refined from ToxCast assays, to screen an initial set of 

about 2800 compounds.32 Phase II began in 2010 to screen a more extensive set of 

approximately 10 000 environmental compounds.32,34,35 As of 2018, the Tox21 program 

generated over 120 million data points for approximately 8500 chemicals.33

Publicly available databases store much of the data obtained from the toxicology 

community, including data from HTS programs such as the ToxCast and Tox21 programs.
29–31,36 Table 1 describes a selection of significant sources representing publically available 

big data in the toxicology field. Among them, Aggregated Computational Toxicology 

Resource (ACToR),37,38 Registration, Evaluation, Authorization, and Restriction of 

Chemicals (REACH),16,39–42 RepDose,43 Safety Evaluation Ultimately Replacing Animal 

Testing (SEURAT),44 and Toxicology Data Network (ToxNET)45 were specifically 

developed to share toxicity data. Chemical Effects in Biological Systems (CEBS),46 

ChEMBL,47 Connectivity Map,48,49 Comparative Toxicogenomics Database (CTD),50 

DrugMatrix,51 Gene Expression Omnibus (GEO),52,53 and PubChem13,14 share general 

biological data, including toxicity data. Most of these data portals are being updated 

frequently, and the total number of available data is increasing quickly with the above-

mentioned HTS programs. In 2013, the total toxicity data pool contained over 70 million 

compounds and around 1 million assays.54 Figure 1 shows the increase of the numbers of 

compound and bioassay records in PubChem since 2008.54–64 From 2008 to 2018, the 

number of compounds in PubChem increased over three-fold from 25.6 million54 to 96.5 

million.56 Similarly, the number of bioassay records increased from approximately 150054 to 

over 1 million.56
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MODELING CHALLENGES CREATED BY BIG DATA: THE FOUR “V”S

The available big data for chemical toxicity brings new challenges to the future 

computational toxicology studies.36,65 As the “big data” concept suggests, the volume of 

data is a critical characteristic. The nature of data that is relevant to various toxicity end 

points creates a large data volume.1,15,65 These data stem from information obtained from 

compounds and original testing protocols including chemical information,13,14 

physicochemical properties, in vitro data,16,36–42 in vivo data,16,37–45,47 and various–omics 

data46–53 (Table 1). For example, the current PubChem bioassay database has around 240 

million bioactivities as 30 gigabytes of Extensive Markup Language (XML) files. It is not 

feasible to apply traditional computational approaches or even Personal Computers (PCs) to 

deal with data with this kind of volume for modeling purposes. The recent progress of 

computer hardware, especially the application of Graphics Processing Unit (GPU),67 makes 

it possible to deal with toxicity data with significant volume.

The progress of testing technology determines the velocity of big data. In the 1990s, 

combinatorial chemistry began to progress rapidly, creating large chemical libraries for 

screening in drug discovery.68 The advancement of HTS protocols in the past decades makes 

the screening of these large chemical libraries (i.e., over one million compounds) feasible.
69,70 Automatic data analysis and the application of robots to replace humans in the testing 

procedures considerably lower the cost of testing a compound and rapidly grow the current 

big data sources.32 As a result, a substantial number of compounds have been tested against 

many assays. Table 2 shows the 20 compounds obtained from the Tox21 program with the 

most active responses in the PubChem bioassay database14 (accessed December 2018). For 

example, doxorubicin (CAS 25316–40–9), a drug that is used to treat cancer by killing 

cancer cells, showed 4452 active responses (Table 2). Vorinostat (CAS 149647–78–9), 

which is used to treat T-cell lymphoma that persists after treatment with other drugs, showed 

4278 active responses (Table 2). Other well-characterized compounds, such as drugs and 

well-known pesticides, have similarly prolific response information available.

Traditional modeling studies, usually using small in-house data sets for modeling purposes, 

often had a risk of overfitting and made poor predictions to new compounds.2 The modeling 

community expected models to improve with more available data used for modeling 

purposes, thereby increasing knowledge about activity cliffs71 and decreasing the chance of 

overfitting.72 However, when using large data sets for modeling purposes, traditional 

machine learning approaches usually have flaws such as extended computational time and 

memory requirements that require adaptation of commonly used algorithms.73 As a potential 

solution, deep learning with neural networks using GPUs might be more suitable for big data 

processing.74

Additionally, the variety of big data brings new challenges to modeling procedures. 

Traditional modeling studies only deal with one object (i.e., a toxicity end point) using one 

type of attributes (i.e., chemical descriptors). However, existing big data repositories (e.g., 

PubChem) contain a diverse variety of information for compounds of interest, such as 

quantitative data obtained directly from assays and qualitative data as the screening read-out, 
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which requires different data processing techniques. Integrating and curating data with high 

variety requires advanced artificial intelligent approaches.75

Each source of big data contains a certain degree of data variability. PubChem, for example, 

contains data deposited by different sources including academia, pharmaceutical companies, 

government agencies, chemical vendors, screening centers, and journal publishers.13–15,70,76 

The information obtained from each of these data sources is not consistent across assays or 

compounds, which creates an inherent variability that creates challenges in the following 

modeling procedure. For example, data generated from a Tox21 quantitative HTS (qHTS) 

assay to measure genotoxicity induced by small molecules in human embryonic kidney 

cells77 exists in PubChem twice as (1) original data (AID 651632) and (2) conclusions by 

counting cytotoxicity (AID 720516). Under this condition, automatic data mining tools need 

to be able to distinguish this difference.

Furthermore, inconsistencies may also arise due to inaccurate chemical structures16,78–80 

and inherent experimental errors1,80,81 resulting from data quality control (QC) issues of 

various experimental across sources. When aggregating data from multiple sources, it is 

common to encounter different representations to represent the same compounds (e.g., 

implicit versus explicit hydrogens and tautomeric forms). The quality of experimental data is 

also likely to vary across sources due to differences in protocols, compound purities, and 

other experimental errors. For example, Luechtefeld et al. reported that animal toxicity data 

obtained from various sources for the same compounds have consistency ranging from 70% 

to 90%, depending on the nature of testing protocols.39,42 Therefore, the data curation of 

both chemical structures and experimental data is critical before using big data for the 

computational modeling procedure.79,80,82,83 Because of the size of public data sets, 

automated curation workflows, such as those described in previous publications,79,80,82,84 

are necessary prior to modeling.

Another data variability issue is due to the complex, disorganized nature of public data and 

unbalanced distribution of HTS testing results (i.e., many more inactive results than actives). 

Although a wealth of data exists, there are many data gaps for compounds of interest since 

no compound has been tested against all assays, and many tests returned inconclusive 

results. For most existing data, a bias exists toward inactive responses due to the nature of 

HTS assays. For example, searching the recent PubChem database for 8367 Tox21 

compounds yielded 812 assays that have at least 25 active results within these compounds 

including assays carried out by the Tox21 program and other sources (accessed in November 

2018) (Figure 2). There are approximately 6.8 million data points in this bioprofile. 

However, the ratio of active versus inactive results is 1:11 (2% vs 22%) and the remaining 

data (76%) represent results from which no conclusion can be made(i.e., either 

“inconclusive” or “untested”). It is understandable that inactive results are much less 

informative than active results to determine chemical toxicity. In this situation, novel 

modeling approaches are needed to deal with missing data such as the method described by 

Zhang et al.6 and biased data,including cost-sensitive learning,85 under-sampling,85 and 

oversampling86,87 algorithms.
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DATA-DRIVEN COMPUTATIONAL TOXICOLOGY MODELING

Despite the challenges posed by big data in computational toxicological modeling, the 

advancement of data-driven technology and development of computational tools to 

overcome the challenges of the four “V”s create new opportunities for existing model 

improvement and novel model development (Figure 3). For example, some early developed 

data mining tools, such as Chem2BioRDF88 and HTS Navigator,89 can link various public 

data sources to target compounds. Additionally, some data sharing portals have relevant data 

mining tools, such as rpubchem90 and ToxCast pipeline (“tcpl”),91 which exist to simplify 

and optimize the parsing and collection of data from PubChem90 and the ToxCast database,
91 respectively. The recently developed online tools REACHacross2,16 and the Chemical In 
Vitro–In Vivo Profiling portal (CIIPro)92 provide new methods to extract data from the 

REACH and PubChem databases automatically. Additionally, online tools such as 

Chembench93 and the Chemistry at Harvard Macromolecular Mechanics web-user interface 

(CHARM-Ming)94 are available to streamline the development and distribution of curated 

toxicity data and QSAR models.

In 2014, the National Center for Advancing Translational Sciences (NCATS) launched a 

challenge for the development of computational models of nuclear receptor and stress 

response pathways using HTS data generated by the Tox21 program.95 This challenge 

inspired the creation of around 400 models using a variety of different modeling techniques 

based on 8043 compounds, which have been tested against 12 HTS assays.95 All the models 

were used to predict an external test set of 296 new compounds, which were experimentally 

tested using the same protocols but kept aside until all models were submitted to NCATS. 

The top model, which has the best prediction accuracy of these new compounds, employed a 

neural network approach.96 The high performance of the resulting ensemble model 

demonstrates the potential of neural networks for the improvement of big data models. In 

2017, another similar initiative of big toxicity data modeling was organized by the National 

Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological 

Methods (NICEATM) and the Interagency Coordinating Committee on the Validation of 

Alternative Methods (ICCVAM).97 Thirty-two international research groups submitted 

models using deep learning, classic QSAR, and cluster-based methods. These models were 

developed based on 8994 compound training set tested in rodent studies for acute toxicity. 

Consensus predictions were made for a large set of 40 000 compounds of environmental 

interest as a resource for the toxicology community.

In recent studies, neural networks, as a popular artificial intelligent approach, showed 

advantages to deal with large data sets. In 2017, Xu et al. reported three neural network 

models developed to predict acute oral toxicity end points based on a training set of 8080 

compounds.98 All three models (i.e., a regression model for LD50 values, a 

multiclassification model for US EPA hazard categories, and a multitask model to 

simultaneously predict both of these end points) simultaneously outperformed previously 

reported models for these end points. Wen et al. also reported a deep learning model 

developed to predict interactions between drugs and their biological targets based on 15 524 

drug–target pairs obtained from the DrugBank database.99 This model employed a 

pretraining feature extraction step to predict whether specific drug-target pairs will interact 
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and overall outperformed classic QSAR approaches. The high performance of these models 

demonstrates not only the advantages of using neural networks to model large data sets, but 

also to advance feature selections. On the other hand, there is a study that showed that neural 

network models are not better than traditional models using machine learning approaches.100 

Currently, there is still no universal criterion to select modeling approaches for big data sets.

Read-across was initially introduced as a technique to fill toxicity data gaps by making 

predictions based on similar compounds.101 Traditionally, read-across relied only on 

chemical similarity calculations. In some recent studies, extra parameters, such as 

physicochemical properties, biological interactions (e.g., metabolism potential), including 

QSAR predictions, were also used to identify similar compounds.102,103 However, in the big 

data era, the inclusion of comprehensive toxicity data in the read-across study may improve 

model quality.15,16,104,105 Luechtefeld et al. recently described a method for automating the 

read-across process using read-across structure–activity relationship (RASAR) models.105 

The RASAR models developed in this study were based on the REACH database consisting 

of over 10 000 unique compounds with various toxicity end points, making use of hazard 

classifications rather than the raw data from in vivo tests. According to this study, due to the 

integration of large collections of toxicity data and the application associated with new 

modeling approaches, such as automatic feature selection, the resulted RASAR models 

showed better average sensitivity than the reproducibility of experimental animal tests, 

which indicated potential abilities to overcome experimental errors and data inconsistencies 

by computational modeling approaches.

PREDICTIONS AND INTERPRETATIONS OF NEW TOXICANTS BY 

MECHANISM-DRIVEN MODELING

In 2007, the National Research Council (NRC) laid out the framework for risk assessment 

using modern techniques, urgently calling for mechanistic rather than empirical 

interpretation.12 Traditional QSAR models often perform as “black boxes”, which provide 

toxicity predictions without clear mechanistic interpretations.19 Although the neural network 

modeling showed certain advantages when dealing with big toxicity data, the resulted neural 

network models still cannot resolve the above challenge. In vitro assays often investigate 

mechanistically relevant information on toxicants. However, one or few assays cannot 

represent the complexity of whole organisms, and the results obtained from in vitro and in 
vivo tests always have obscure relationships, making in vitro–in vivo extrapolation (IVIVE) 

challenging.106

Mechanism-driven modeling, initiated and advanced by the concept of the adverse outcome 

pathway (AOP), allows for mechanistic extrapolation of toxicity evaluations of new 

compounds, filling a critical need of applying alternatives for regulatory toxicology studies.
20 An AOP starts with a molecular feature (e.g., a chemical fragment), which indicates 

potential interactions with biomolecules such as receptors. This molecular initiating event 

(MIE) that triggers a cascade of measurable key events at the cellular level, and lead to 

tissue, organ, and eventually in vivo organism level adverse outcomes20 (Figure 3). The 

identification and organization of MIEs and key events in a pathway that leads to an adverse 
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outcome define the associated toxicity mechanisms of interest for risk assessments. 

Mechanism-based assays outcomes can be used within this pathway to systematically assess 

whether a compound is likely to induce the target adverse outcome.107 Currently, AOPs are 

being developed for various types of toxicities such as acute inhalation toxicity,108 

neurotoxicity,109–111 skin sensitization,112–114 estrogen receptor bindings,115,116 

forestomach tumors not induced by genotoxic events,117 and drug-induced cholestatic liver 

injury.118

One of the major research goals of toxicology HTS programs, such as ToxCast and Tox21, is 

to perform mechanism-driven computational toxicology modeling, which presents a 

practical way to increase the quality of IVIVE by employing comprehensive testing batteries 

consisting of associated in vitro assays related to animal toxicity end points.1 These 

programs generate a large amount of mechanistic data that paves the way for AOP modeling 

that are more interpretable than traditional computational toxicology studies, which are 

always questioned as “black boxes.” Carefully considering the biological relevance of the 

experimental data selected, including associated biological pathway information, for 

modeling (i.e., HTS assay measurements and readouts) the target animal toxicity end point 

of interest is to integrate the AOP concept into the development of computational models 

with both high prediction accuracy and a meaningful biological interpretations. Therefore, 

the current critical features of resulting AOP models are (1) biological relevance of data to 

target toxicity; (2) computational approaches to identify/organize mechanistic assays; and 

(3) both predictive and interpretable pathway models.

The current literature also documents the results from profiling of ToxCast and Tox21 assay 

data using computational clustering techniques to elucidate previously unknown compound–

receptor interactions, pathway perturbations, and toxicity mechanisms.119–123 One such 

profiling effort was described by Sipes et al. in 2013.119 This study clustered 976 

compounds from 330 ToxCast Phase I and II bioassays based on chemical structure and 

bioassay responses, which led to the identification of possible modes of action of 

compounds. For example, a pharmaceutical compound Anthralin (CAS 1143–38–0) that has 

a therapeutic use for the treatment of psoriasis with unknown mechanism of action was 

identified to show active responses in the same assays as a known inhibitor of inflammation, 

tannic acid. This connection gives insight into the possible mode of action of Anthralin and 

demonstrates the value of data generated from the ToxCast program in identifying 

previously unknown mechanistic information for target compounds.

The ToxCast initiative and Tox21 program have also inspired the creation of mechanistic 

models for developmental toxicity,124,125 estrogen receptor activity,126–128 and acute oral 

toxicity129 that incorporate mechanistically relevant HTS assay data by computational 

models into pathways leading to adverse outcomes. For example, Browne et al. developed a 

computational model that incorporates HTS data from 18 ToxCast assays that comprise an 

adverse outcome pathway leading to endocrine disruption.127 The authors of this study also 

demonstrated a generalizable performance-based validation procedure to evaluate the 

robustness of a computational AOP model for regulatory use. To be considered as a viable 

alternative for regulatory evaluation purposes, computational models must perform 

equivalently or better than the existing approved protocols. This computational endocrine 
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disruption AOP model was validated by predicting a set of in vitro reference chemicals 

identified by ICCVAM and in vivo reference chemicals curated through literature review.75 

The computational model pre-dictions of the 42 in vivo reference chemicals with at least two 

independent concordant results (active or inactive) from guideline-like uterotrophic studies 

showed 84% accuracy. A comparison of the computational predictions with the results from 

in vivo protocols identified false negative, which showed activity in multiple independent in 
vivo tests but inactivity in the 18 ToxCast assays, potentially due to its volatility.

The strong potential for computational approaches to support risk assessment grounded in 

mechanistic interpretation has inspired the creation of other mechanism-based studies. These 

studies, similar to AOP models developed by using mechanistic ToxCast and Tox21 assays, 

can predict chemical toxicity by interpretable results. However, instead of manually selected 

assays to be integrated into pathways, these studies relied on computational approaches to 

prioritize useful biological data, which are suitable for big data modeling. For example, 

Virtual AOP (vAOP) models were developed by using the currently available big data for 

hepatotoxicity.130 In this study, an automatic profiling tool that can extract bioassay data 

from PubChem was used to identify assays relevant to hepatotoxicity and oxidative stress.
92,130 Data from several PubChem assays can be combined to predict hepatotoxicity for 

compounds with specific structural alerts. The resulting vAOP models provided insight into 

possible new mechanisms leading to hepatotoxicity.130 The identified vAOP contained two 

chemical fragments as MIEs and four PubChem assays (AIDs 686978, 743067, 743140, and 

743202), which are all relevant to oxidative stress, such that if a new compound contains one 

of these MIEs and has an active response in at least one of the four assays, it is predicted to 

be hepatotoxic by inducing oxidative stress.

Luechtefeld et al. reported a procedure for the recursive importance-based elimination of 

chemical and biological features that are irrelevant to target toxicity.131 The application of 

this technique involves ranking features based on relative importance to identify the assays 

and chemical fragments that contribute the most critical information to a resulting model of 

an in vivo toxicity end point. In this study, they identified in vitro assays and chemical 

fragments of mechanistic significance to skin sensitization and then used this information to 

train models that incorporate dose–response data, which showed an advantage when 

compared to models trained without these data. The success of this modeling process was 

validated by better predictivity and mechanism interpretations.

Computational techniques and models based on chemical structures, such as structural alerts, 

also could advance traditional QSAR studies by predicting toxicity mechanisms for large 

data sets.107,132 For example, recently, there have been reports of modeling studies to predict 

MIEs relevant to hepatic steatosis.133,134 Mellor et al. evaluated binding interactions of 12 

713 compounds in the ChEMBL database with nuclear receptor structure files in Protein 

Data Bank to develop a basic alert-based workflow to identify compounds that may bind to 

nuclear receptors and induce hepatic steatosis.133 Another study by Gadaleta et al. involved 

the development of QSAR models to predict compound activity in ToxCast assays that are 

relevant to MIEs that lead to hepatic steatosis.134
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OTHER AREAS OF COMPUTATIONAL TOXICOLOGY IN THE BIG DATA ERA

A critical aspect of mechanism-based toxicity evaluation is the incorporation of 

toxicokinetic information on compounds of interest to predict dose-dependent Effects of 

compounds. For example, Bhhatarai et al. recently reported a modeling study of acute 

toxicity, which incorporated simulations of absorption and metabolism into the modeling 

process.129 Strope et al. also reported a modeling study that resulted in an ionization 

constant (pKa) model for a set of 32 413 chemicals.135 The applicability of this model was 

evaluated by using the pKa predictions to estimate distribution ratio into tissues for 22 

compounds with steady-state volume of distribution data. Modeling studies that incorporate 

toxicokinetic information are becoming applicable with tools such as the High-Throughput 

Toxicokinetics (“httk”) package in R that was designed to make use of the data from 

programs such as ToxCast and Tox21.136

Toxicogenomics uses techniques such as proteomics, metabolomics, and genetic sequencing 

to study the toxicity of compounds and provides insight into how cells exposed to a toxic 

chemical express genes, proteins, and metabolites, which yields critical information for 

elucidating and understanding toxicity pathways.17,137 The toxicogenomics data 

complement the results of in vitro assays that focus on interactions with and activation of 

nuclear receptors and specific cellular stress responses.138 In the current big data era, the 

toxicogenomics data landscape continues to grow. For example, in 2008, the CTD contained 

116 067 compound–gene interactions.66 By 2016, this number increased more than 10-fold 

to 1 379 105 compound–gene interactions.50 A collaboration among Agilent, Inc., Brown 

University, Georgetown University, the Hamner Institute, the Johns Hopkins Center for 

Alternatives to Animal Testing (CAAT), and the US EPA led the Human Toxome project 

that also aims to generate omics data, with an end goal of developing a process to map and 

evaluate the specific molecular mechanisms that underlie AOPs.139 As toxicogenomics 

technologies continue to progress and molecular mechanisms become well-understood, it 

will become feasible to assess differences in chemical toxicity pathways that may arise due 

to the genetic variation that is inherent among individuals.

CONCLUSIONS

Computational modeling is a promising alternative method to replace, reduce, and refine 

traditional animal models for chemical toxicity evaluations, especially in the current big data 

era. As big data repositories continue to grow at rapid velocity and new techniques to deal 

with big data sets are being developed, computational models become applicable to large 

chemical space analysis, diverse biological data optimization, and complex mechanism 

studies. This innovative movement will allow not only for the predictions of new 

compounds, but also for toxicity mechanism illustrations of potential toxicants. This 

currently growing big toxicity data landscape and the advancements in modeling technique 

developments to handle the wealth of toxicity information available together create a new 

direction that is optimal for the integration of computational models into the mechanism-

based chemical risk assessments, which are urgently required by regulatory agencies.
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Figure 1. 
Increase of the number of (a) compound and (b) bioassay records in PubChem in the recent 

ten year period (from September 2008 to September 2018).
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Figure 2. 
Bioprofile of 8367 Tox21 compounds represented by data from 812 PubChem assays. Active 

results (1) were represented by red; inactive results (−1) were represented by blue; and 

inconclusives or untested results (0) were represented by gray.
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Figure 3. 
General workflow for construction of data-driven and mechanism-driven models for 

chemical toxicity.

Ciallella and Zhu Page 23

Chem Res Toxicol. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ciallella and Zhu Page 24

Ta
b

le
 1

.

Se
le

ct
ed

 P
ub

lic
al

ly
 A

va
ila

bl
e 

B
ig

 D
at

a 
R

ep
os

ito
ri

es

da
ta

ba
se

si
ze

a
da

ta
 t

yp
e

w
eb

 a
cc

es
s

A
C

To
R

37
,3

8
ov

er
 8

00
 0

00
 c

om
po

un
ds

 a
nd

 5
00

 0
00

 a
ss

ay
s

to
xi

ci
ty

 d
at

a 
(i

n 
vi

tr
o 

an
d 

in
 v

iv
o)

ht
tp

s:
//a

ct
or

.e
pa

.g
ov

/

C
E

B
S46

ov
er

 1
1 

00
0 

co
m

po
un

ds
 a

nd
 8

00
0 

st
ud

ie
s

ge
ne

 e
xp

re
ss

io
n 

da
ta

ht
tp

s:
//w

w
w

.n
ie

hs
.n

ih
.g

ov
/r

es
ea

rc
h/

re
so

ur
ce

s/
da

ta
ba

se
s/

in
de

x.
cf

m

C
hE

M
B

L
47

1.
1 

m
ill

io
n 

bi
oa

ss
ay

s,
 1

.8
 m

ill
io

n 
co

m
po

un
ds

, o
ve

r 
15

 m
ill

io
n 

ac
tiv

iti
es

lit
er

at
ur

e 
da

ta
 f

or
 b

in
di

ng
, f

un
ct

io
n,

 a
nd

 to
xi

ci
ty

 o
f 

dr
ug

s 
an

d 
dr

ug
-l

ik
e 

co
m

po
un

ds
ht

tp
s:

//w
w

w
.e

bi
.a

c.
uk

/c
he

m
bl

/

C
on

ne
ct

iv
ity

 M
ap

48
,4

9
ab

ou
t 1

30
0 

co
m

po
un

ds
 a

nd
 7

00
0 

ge
ne

s
ge

ne
 e

xp
re

ss
io

n 
da

ta
ht

tp
s:

//p
or

ta
ls

.b
ro

ad
in

st
itu

te
.o

rg
/c

m
ap

/

C
T

D
50

ov
er

 1
4 

00
0 

co
m

po
un

ds
, 4

2 
00

0 
ge

ne
s,

 6
00

0 
di

se
as

es
re

la
tio

ns
hi

ps
 a

m
on

g 
co

m
po

un
ds

, g
en

es
, a

nd
 d

is
ea

se
s

ht
tp

s:
//c

td
ba

se
.o

rg
/

D
ru

gM
at

ri
x51

ab
ou

t 6
00

 d
ru

g 
m

ol
ec

ul
es

 a
nd

 1
0 

00
0 

ge
ne

s
ge

ne
 e

xp
re

ss
io

n 
da

ta
ht

tp
s:

//n
tp

.n
ie

hs
.n

ih
.g

ov
/r

es
ul

ts
/to

xf
x/

in
de

x.
ht

m
l

G
E

O
52

,5
3

ov
er

 4
30

0 
su

bd
at

a 
se

ts
m

ic
ro

ar
ra

y,
 n

ex
t-

ge
ne

ra
tio

n 
se

qu
en

ci
ng

 a
nd

 o
th

er
 

fo
rm

s 
of

 h
ig

h-
th

ro
ug

hp
ut

 f
un

ct
io

na
l g

en
om

ic
s 

da
ta

ht
tp

s:
//w

w
w

.n
cb

i.n
lm

.n
ih

.g
ov

/g
eo

/

Pu
bC

he
m

13
,1

4,
76

ov
er

 9
6 

m
ill

io
n 

co
m

po
un

ds
, 1

 m
ill

io
n 

bi
oa

ss
ay

s,
 a

nd
 1

3 
bi

lli
on

 
da

ta
 p

oi
nt

s
to

xi
co

lo
gy

, g
en

om
ic

s,
 p

ha
rm

ac
ol

og
y,

 a
nd

 li
te

ra
tu

re
 

da
ta

ht
tp

s:
//p

ub
ch

em
.n

cb
i.n

lm
.n

ih
.g

ov
/

R
E

A
C

H
16

,3
9–

42
21

 4
05

 u
ni

qu
e 

su
bs

ta
nc

es
 w

ith
 in

fo
rm

at
io

n 
fr

om
 8

9 
90

5 
do

ss
ie

rs
da

ta
 s

ub
m

itt
ed

 in
 e

ur
op

ea
n 

un
io

n 
ch

em
ic

al
 le

gi
sl

at
io

n
ht

tp
s:

//e
ch

a.
eu

ro
pa

.e
u/

in
fo

rm
at

io
n-

on
-

ch
em

ic
al

s/
re

gi
st

er
ed

-s
ub

st
an

ce
s/

R
ep

D
os

e43
36

4 
ch

em
ic

al
s 

in
ve

st
ig

at
ed

 in
 1

01
7 

st
ud

ie
s,

 w
hi

ch
 r

es
ul

te
d 

in
 6

00
2 

sp
ec

if
ic

 e
ff

ec
ts

re
pe

at
-d

os
e 

st
ud

y 
da

ta
 f

or
 d

og
, m

ou
se

, a
nd

 r
at

ht
tp

s:
//r

ep
do

se
.it

em
.f

ra
un

ho
fe

r.d
e/

SE
U

R
A

T
44

ov
er

 5
50

0 
co

sm
et

ic
-t

yp
e 

co
m

po
un

ds
 in

 th
e 

cu
rr

en
t C

O
SM

O
S 

da
ta

ba
se

 w
eb

 p
or

ta
l

an
im

al
 to

xi
ci

ty
 d

at
a

ht
tp

://
w

w
w

.s
eu

ra
t-

1.
eu

/

To
xN

E
T

45
ov

er
 5

0 
00

0 
en

vi
ro

nm
en

ta
l c

om
po

un
ds

 f
ro

m
 1

6 
di

ff
er

en
t r

es
ou

rc
es

to
xi

ci
ty

 d
at

a 
(i

n 
vi

tr
o 

an
d 

in
 v

iv
o)

ht
tp

s:
//t

ox
ne

t.n
lm

.n
ih

.g
ov

/

a O
n 

th
e 

ba
si

s 
of

 li
ve

 w
eb

 c
ou

nt
s 

or
 m

os
t r

ec
en

t l
ite

ra
tu

re
 a

rt
ic

le
s 

as
 o

f 
O

ct
ob

er
 2

01
8;

 A
C

To
R

, A
gg

re
ga

te
d 

C
om

pu
ta

tio
na

l T
ox

ic
ol

og
y 

R
es

ou
rc

e;
 C

T
D

, C
om

pa
ra

tiv
e 

To
xi

co
ge

no
m

ic
s 

D
at

ab
as

e;
 C

E
B

S,
 

C
he

m
ic

al
 E

ff
ec

ts
 in

 B
io

lo
gi

ca
l S

ys
te

m
s;

 G
E

O
, G

en
e 

E
xp

re
ss

io
n 

O
m

ni
bu

s;
 R

E
A

C
H

, R
eg

is
tr

at
io

n,
 E

va
lu

at
io

n,
 A

ut
ho

ri
za

tio
n,

 a
nd

 R
es

tr
ic

tio
n 

of
 C

he
m

ic
al

s;
 S

E
U

R
A

T,
 S

af
et

y 
E

va
lu

at
io

n 
U

lti
m

at
el

y 
R

ep
la

ci
ng

 A
ni

m
al

 T
es

tin
g;

 T
ox

N
E

T,
 T

ox
ic

ol
og

y 
D

at
a 

N
et

w
or

k.

Chem Res Toxicol. Author manuscript; available in PMC 2019 August 09.

https://actor.epa.gov/
https://www.niehs.nih.gov/research/resources/databases/index.cfm
https://www.niehs.nih.gov/research/resources/databases/index.cfm
https://www.ebi.ac.uk/chembl/
https://portals.broadinstitute.org/cmap/
https://ctdbase.org/
https://ntp.niehs.nih.gov/results/toxfx/index.html
https://ntp.niehs.nih.gov/results/toxfx/index.html
https://www.ncbi.nlm.nih.gov/geo/
https://pubchem.ncbi.nlm.nih.gov/
https://echa.europa.eu/information-on-chemicals/registered-substances/
https://echa.europa.eu/information-on-chemicals/registered-substances/
https://repdose.item.fraunhofer.de/
http://www.seurat-1.eu/
https://toxnet.nlm.nih.gov/


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ciallella and Zhu Page 25

Table 2.

Twenty Tox21 Compounds with the Most Active Responses in PubChem Bioassays

chemical CAS number of active responses number of inactive responses

Doxorubicin 25316-40-9 4452 119

Vorinostat 149647-78-9 4278 760

Paclitaxel 33069-62-4 3043 801

Colchicine 64-86-8 2043 1581

Etoposide 33419-42-0 1907 525

Fluorouracil 51-21-8 1804 1887

Acetazolamide 59-66-5 1794 2091

Sunitinib 341031-54-7 1702 138

Methotrexate 59-05-2 1687 1120

Lestaurtinib 111358-88-4 1414 35

Gefitinib 184475-35-2 1379 661

Diazepam 439-14-5 1320 628

Haloperidol 52-86-8 1309 1820

Bortezomib 179324-69-7 1276 212

Zidovudine 30516-87-1 1251 1964

Clozapine 5786-21-0 1204 1687

Efavirenz 154598-52-4 1184 537

Dasatinib 302962-49-8 1078 380

Mitomycin 50-07-7 1048 664

Nicotine 54-11-5 983 1283
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