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Abstract

The Reference Dose (RfD) and Reference Concentration (RfC) are human health reference values 

(RfVs) representing exposure concentrations at or below which there is presumed to be little risk 

of adverse effects in the general human population. The 2009 National Research Council report 

Science and Decisions recommended redefining RfVs as “a risk-specific dose (for example, the 

dose associated with a 1 in 100,000 risk of a particular end point).” Distributions representing 

variability in human response to environmental contaminant exposures are critical for deriving 

risk-specific doses. Existing distributions estimating the extent of human toxicokinetic and 

toxicodynamic variability are based largely on controlled human exposure studies of 

pharmaceuticals. New data and methods have been developed that are designed to improve 

estimation of the quantitative variability in human response to environmental chemical exposures. 

Categories of research with potential to provide new database useful for developing updated 
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human variability distributions include controlled human experiments, human epidemiology, 

animal models of genetic variability, in vitro estimates of toxicodynamic variability, and in vitro-
based models of toxicokinetic variability. In vitro approaches, with further development including 

studies of different cell types and endpoints, and approaches to incorporate non-genetic sources of 

variability, appear to provide the greatest opportunity for substantial near-term advances.
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Introduction

For characterizing noncancer risks from chronic exposures to toxic substances, U.S. 

Environmental Protection Agency (USEPA) risk assessments commonly use the oral 

Reference Dose (RfD) and inhalation Reference Concentration (RfC), route-specific 

exposure levels (oral or inhalation) at or below which it is presumed there is little risk of 

adverse effects in the general human population (U.S. EPA 2002, 2018). The main steps in 

deriving these human health reference values (RfVs) are 1) determination of a point of 

departure (POD), a dose at the lower end of the range at which adverse effects have been 

observed in a toxicological or epidemiological study of a chemical; and 2) adjustment of the 

POD by a set of factors that reflect relevant uncertainties or scientific judgments for a given 

data set in extrapolating to a suitable human population exposure level. This set of factors 

includes a default factor of 10 that has traditionally been applied in RfV derivation to 

represent human variability of response to a toxic substance exposure when chemical-

specific population variability information is unavailable (U.S. EPA 2002).

The National Research Council’s (NRC) report Science and Decisions (NRC 2009) 

observed that “The current formulation of the RfD is problematic because of its application 

as a determinant of risk vs. no risk of regulatory importance, and it lacks a quantitative 

description of the risk at different doses.” The NRC recommended that USEPA adopt a 

“unified approach to dose-response assessment that will result in risk estimates for both 

cancer and noncancer end points” (NRC 2009). This approach would involve redefining 

RfVs for noncancer endpoints as “a risk-specific dose (e.g., the dose associated with a 1 in 

100,000 risk of a particular end point), and the risk could be estimated at doses above and 

below the RfD” (NRC 2009). The NRC illustrated this approach through the application of 

statistical distributions to represent uncertainty and variability, in place of point estimate 

uncertainty factors currently used in RfV development.

The methods recommended by the NRC were extended by the International Programme on 

Chemical Safety (IPCS) (WHO 2014). Both the NRC and IPCS considered the application 

of distributions to depict the variability of human response to environmental contaminant 

exposures to be a critical element for deriving a risk-specific dose. That is, expressing the 

human variability factor as a distribution enables extrapolation from a dose estimated to 

result in, for example, 10% incidence of an effect to lower risk levels (e.g., a dose estimated 

to result in a 1% or 0.1% incidence). The NRC observed that “Default distributions that 
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characterize [human] variability... will be needed as starting points that can be improved as 

the research advances” (NRC 2009). The IPCS advanced this approach with a set of default 

“preliminary distributions,” derived primarily from a set of controlled human exposure 

studies of pharmaceuticals, along with some human epidemiological data (WHO 2014).

In recent years, new data and new methods have been developed that may enable improved 

estimation of the quantitative variability in human response to chemical exposures (Abdo et 

al. 2015b; Harrill and McAllister 2017; Wetmore et al. 2014; Zeise et al. 2013). To advance 

development of dose-response assessment concepts recommended in Science and Decisions, 

this paper reviews several types of data that could be utilized to improve upon the existing 

estimated distributions of human variability, including data from human, animal, and in vitro 
studies.

To provide context, we begin with a review the current approaches used by USEPA to 

address human variability in RfV derivation. We then further describe the recommendations 

of the NRC and the IPCS concerning human variability that have motivated this review. 

Finally, we consider several types of data that may be useful for further refining estimates of 

human variability.

Human variability in USEPA reference values

USEPA defines an RfV as “An estimate (with uncertainty spanning perhaps an order of 

magnitude) of an exposure to the human population (including sensitive subgroups) that is 

likely to be without an appreciable risk of deleterious effects during a lifetime” (U.S. EPA 

2018). Derivation of an RfV begins with determination of a POD, which may be a no-

observed-adverse-effect level (NOAEL), lowest-observed adverse effect level (LOAEL), or 

the lower confidence limit on a benchmark dose (BMDL). The RfV is then derived by 

dividing the POD by a set of uncertainty or adjustment factors that reflect limitations of the 

data underlying the POD. These factors are intended to account for up to five areas of 

extrapolation (interspecies differences, human variability, LOAEL-to-NOAEL, subchronic-

to-chronic, and database uncertainty) (U.S. EPA 2002).

In USEPA RfV derivations, the human variability (or intraspecies uncertainty) factor 

accounts for “variations in susceptibility within the human population (interhuman 

variability) and the possibility (given a lack of relevant data) that the database available is 

not representative of the dose/exposure-response relationships in the subgroups of the human 

population that are most sensitive to the health hazards of the chemical being assessed” 

(U.S. EPA 2002).

In lieu of information to support an alternative, USEPA’s traditional default value for the 

human variability factor has been 10-fold (U.S. EPA 2002). Lehman and Fitzhugh (1954) 

first applied an overall safety factor of 100 to the maximum safe dosage identified in long-

term animal experiments, identifying interspecies and intraspecies variation as the 

components of this factor. They reported anecdotally that “a sick individual may be as much 

as 10 times more susceptible to toxic substances than an individual in good health,” 

consistent with a 10-fold range of human response variability. Initial data analysis efforts to 
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evaluate the extent of human variability supported the continued use of the 10-fold default 

factor for human variability (Dourson et al. 1996; Dourson and Stara 1983; Hattis et al. 

1987).

Subsequent investigations evaluated variability among a variety of populations and 

lifestages, generally relying on human experimental data for pharmaceuticals. Many of these 

investigations divided overall human variability into toxicokinetic and toxicody-namic 

components. Toxicokinetic (TK) variability may be defined as “differences among people in 

the external dose required to produce a similar systemic internal dose,” and results from 

variability in absorption, distribution, metabolism and excretion of a chemical. 

Toxicodynamic (TD) variability may be defined as “differences among people in the internal 

dose required to produce an effect of defined degree or severity” (WHO 2014). Renwick and 

Lazarus (1998) evaluated TK and TD variability for populations exposed to pharmaceuticals, 

including adult Caucasians, children, non-Caucasian ethnic groups, and those with 

polymorphic metabolisms. They concluded that a 10-fold factor from the population mean 

would cover 99.9% of the general population and noted that in some circumstances this 10-

fold factor might be too low, such as certain situations involving very young children. Other 

studies have observed greater sensitivity among the elderly than among mature adults 

(Abdel-Megeed et al. 2001; Skowronski and Abdel-Rahman 2001). Hattis et al. (2002), also 

based on studying TK and TD among individuals exposed to pharmaceuticals, concluded 

that the use of the traditional 10-fold factor would be underprotective for children. Dorne 

(2007) evaluated human variability in hepatic and renal elimination and found that the TK 

portion of the factor “would not cover neonates, the elderly for most elimination routes and 

any subgroup of the population for compounds metabolized by polymorphic isozymes (such 

as CYP2C19 and CYP2D6).”

When sufficient chemical-specific data on human variability are available, USEPA has 

supported the development and use of data-derived extrapolation factors in place of the 

default 10-fold human variability factor (U.S. EPA 2014). For example, USEPA has used 

chemical-specific data in place of the default human TK variability factor in developing 

reference values for boron (U.S. EPA 2004), methylmercury (U.S. EPA 2001), dichloro-

methane (U.S. EPA 2011a), and trichloroethylene (U.S. EPA 2011b). In particular, for the 

reference value for boron, USEPA used data on glomerular filtration rate in pregnant women 

to adjust the intraspecies uncertainty factor (U.S. EPA 2004).

Probabilistic methods using human variability distributions

Distributions of values to represent human variability have been explored most extensively 

in the context of proposed probabilistic methods for deriving reference values (Evans et al. 

2001; Hattis et al. 2002; Swartout et al. 1998). The Hattis et al. (2002) publication, A Straw 
Man Proposal for a Quantitative Definition of the RfD, has been particularly influential and 

frequently cited. Hattis et al. proposed a quantitative definition for the RfD as “The daily 

dose rate that is expected (with 95% confidence) to produce less than 1/100,000 excess 

incidence over background of a minimally adverse response in a standard general 

population.” They also outlined probabilistic methods by which an RfD satisfying the 
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proposed quantitative definition could be derived. In brief, the approach for deriving such a 

value from an animal study of a quantal/dichotomous endpoint would involve:

1. Deriving an animal ED50 (dose associated with effects in the median member of the 

exposed group) with an uncertainty distribution, and applying adjustments as appropriate 

(e.g., for interspecies extrapolation) to derive an estimated human ED50 with an uncertainty 

distribution; and

2. Extrapolating from the estimated human ED50 to lower doses and response rates by 

“assuming a lognormal distribution of human susceptibilities, with uncertainty in the spread 

of human susceptibility drawn from an expanded database of human inter-individual 

variability observations.”

Thus, the human variability distribution plays a critical role in probabilistic methods by 

enabling extrapolation from doses associated with a relatively high population response rate 

to estimate doses associated with lower population response rates. Hattis and colleagues also 

derived distributions of human TK and TD variability (Hattis et al. 2002; Hattis and Lynch 

2007a) suitable for use in probabilistic modeling.

In Science and Decisions, the NRC applied these methods, including use of the Hattis 

human variability distributions, in its recommendations for a unified approach to dose-

response assessment (NRC 2009). More recently, the IPCS (WHO 2014) elaborated on and 

extended the Hattis et al. (2002) approach, with specification of explicit procedures for 

addressing continuous endpoints, along with detail on implementation and standardized 

terminology and notation. The IPCS also reviewed the literature on derivation of human 

variability distributions and presented preliminary distributions for TK and TD.

The underlying concept from the literature concerning estimation of human variability in 

response to chemical exposures in general is to first obtain estimates of human variability 

from individual chemicals with appropriate data in existing studies, then characterizing the 

distribution of such estimates across those chemicals, and then applying that distribution to 

chemicals with inadequate data. The geometric standard deviation (GSD) is convenient for 

summarizing the population variability, where a larger GSD indicates greater variation in the 

population. For example, assume we have data on human TK variability for a subset of 

chemicals (while we lack such data for other chemicals), and the data for each chemical are 

summarized by a GSD. These chemical-specific TK GSDs themselves follow a distribution, 

as within a set of chemicals there will be lesser variability in response (smaller GSD) for 

some chemicals and greater variability (larger GSD) for other chemicals. Finally, assume 

that the distribution of GSDs for the subset of chemicals with TK variability data is 

reasonably representative of what we might expect as the distribution of GSDs for those 

chemicals that lack chemical-specific TK data. Thus, the median GSD among the chemicals 

with data can serve as a median estimate of the TK variability for chemicals lacking data, 

and the 95th percentile GSD of the chemicals with data can serve as the 95th percentile 

estimate of TK variability for chemicals lacking data. A corresponding approach can be 

taken to derive a distribution to represent TD variability for chemicals lacking TD data. 

These TK and TD distributions, based on subsets of chemicals with relevant data and 
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assumed to be applicable to the universe of chemicals of interest lacking chemical-specific 

data, are referred to as “generic” human variability distributions.

The IPCS preliminary generic distributions for human variability (see Table 1) were derived 

from past work to determine such GSDs for multiple chemicals by Hattis and colleagues 

(Hattis 2013; Hattis et al. 2002; Hattis and Lynch 2007a). Most, but not all, GSDs used to 

develop these generic distributions were obtained from controlled human exposure studies, 

primarily in adults and primarily of pharmaceuticals.

The IPCS noted the following limitations of the preliminary human variability distributions. 

First, measurement errors in the underlying studies would likely result in overstatement of 

the extent of human variability. Second, the human subjects in the underlying studies, 

primarily healthy adults, are expected to be much less diverse than the general human 

population—potentially resulting in understatement of the extent of human variability. 

Third, the underlying studies were primarily studies of pharmaceuticals, as controlled 

exposure studies of most environmental contaminants are rarely if ever conducted, due to 

ethical constraints. Pharmaceuticals may differ from environmental chemicals in key 

properties relevant to variability in response (WHO 2014). Drugs generally have been 

developed against specific molecular targets and administered in doses that minimize 

interactions with other macromolecules. They also generally fall within a class of 

physicochemical properties that provide appropriate absorption/distribution/elimination 

properties to allow administration as oral drugs (WHO 2014). Environmental chemicals, on 

the other hand, are not typically developed for bioactivity (at least not for humans), may 

require biotransformation to toxic metabolites, and have a much broader range of 

physicochemical properties. Thus, there may be a much higher degree of potential 

interacting factors modulating toxicity in vivo and more opportunity for influence by human 

variability factors.

A further consideration is that the available estimates of human variability rely on data from 

relatively small sets of compounds. These data sets are quite small relative to the universe of 

controlled human exposure studies; one major reason for this is that studies were selected 

for inclusion only if they included individual observations as opposed to only summary 

statistics (Hattis and Lynch 2007a). In addition, Hattis completed assembly of his data set in 

2007, and the date of publication for the included studies ranged from 1977 to 2000 (Hattis 

and Lynch 2007b).

Data representing TK and TD variability across larger and more diverse sets of compounds 

would increase confidence in the assumption that distributions derived from compounds 

with data are representative of what we would expect for compounds lacking data. It is also 

important to recognize that the identified limitations of these distributions are equally 

applicable to the studies described above that evaluated the suitability of the default 10-fold 

factor used to represent human variability in RfV derivation.
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Sources of information on human toxicokinetic and toxicodynamic 

variability

Given the limitations of the currently available TK and TD human variability distributions 

for probabilistic dose-response assessment, it is critical to explore additional data that could 

improve distribution estimates. A conceptually comprehensive characterization of inter-

individual variability in susceptibility to environmental exposures, considering all of the 

various underlying determinants of variability, could require data: to identify potentially 

susceptible populations and lifestages; to define their unique characteristics based on 

physiology, behavior and co-exposures; and to describe how exposure can affect these 

groups differently from the general population. Variation in response among population 

groups could be due to many characteristics, including age, sex, genetics, race/ethnicity, 

lifestyle, preexisting disease status, microbiome, chemical co-exposures, and nutritional 

status. The combination of these factors can be instrumental in either promoting 

susceptibility to, or protecting from, certain disease outcomes, and their combined effect 

may depend on the lifestage when the exposures occur. Although characterizing all 

determinants of variability, accounting for their prevalence, magnitude and interactions, is 

not feasible, such an extensive characterization may not be necessary to develop reasonable 

estimates of the extent of variability in the population and how it differs across 

environmental contaminants. Instead, there are approaches available that may provide 

estimates of variability that integrate across many determinants.

The various types of data considered here, including data from controlled human exposure, 

epidemiologic, animal toxicology, and in vitro studies, may each provide a means for 

estimating human TK and/or TD variability overall, or for major components and 

determinants of that variability. They may, however, differ in the extent to which they reflect 

various sources of human variability (e.g., genetic vs. non-genetic sources).

Controlled human exposure studies

Controlled human exposure studies are experiments in which human participants are 

exposed to known doses of a given substance, with specified responses (e.g., measures of 

internal dose or some biological response) compared with those for a control exposure. 

Controlled human studies are often conducted for pharmaceuticals. Controlled human 

studies are also conducted for low doses of air pollutants (NASEM 2017), but are generally 

conducted infrequently for other environmental contaminants due to ethical constraints 

(NRC 2004).

Relative to other types of studies under consideration, the advantages of controlled human 

exposure studies are their experimental design with known exposure levels, and that they are 

conducted in humans (i.e., the species of interest for human health risk assessments). As 

described above, the existing estimates of human variability identified by the IPCS are 

largely based on controlled human exposure studies of pharmaceuticals (Hattis and Lynch 

2007a; WHO 2014). An expanded and updated database of controlled human exposure 

studies could be compiled and used to develop updated distributions of TK and TD 

variability. Although such a database would likely have many of the same limitations as the 
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existing estimates, it would likely also provide an improved basis for estimating TK and TD 

variability by incorporating a broader selection of studies, more recent observations, as well 

as more current research methods. If enough studies are found with sufficient information on 

chemicals that are not pharmaceuticals, there would be an opportunity to derive estimates 

that are more directly relevant to the universe of substances assessed by USEPA, and an 

opportunity to compare human variability data for pharmaceuticals to non-pharmaceuticals 

to assess the extent to which there are differences. In addition, a larger database might 

provide an opportunity to develop estimates specific to routes of exposure (e.g., inhalation, 

ingestion) or target organs, and perhaps an opportunity to assess the contributions to 

variability for specific factors (e.g., lifestyle, genetics), rather than only developing generic 

estimates for use in all risk assessments.

Although there would be many benefits to using data from controlled human exposure 

studies to inform TK and TD variability distributions, the use of data from these studies 

comes with a number of caveats. As noted in the IPCS comments on the Hattis data set, 

controlled human exposure studies typically involve the use of relatively healthy adults, and 

for ethical reasons likely do not include the most sensitive individuals. As a result, data from 

these studies are likely to underestimate the extent of variability in the general population. In 

addition, controlled human exposure studies are probably most informative for acute health 

effects given that these studies almost always consist of short-term exposures. While these 

are certainly limitations that would need to be considered, data obtained from these 

experiments should still be informative in developing updated variability distributions.

Epidemiological studies

Epidemiology is the study of the distribution and determinants of health in specified 

populations. Epidemiological studies of environmental exposures are usually observational, 

in that the research is conducted in populations as they are exposed to pollutants or other 

stressors on the job, in their communities and/or in their homes, rather than controlled 

experiments with specifically administered exposure levels. However, epidemiological 

studies are usually designed to estimate a mean effect in an exposed population, and less 

commonly assess the variability (i.e., heterogeneity) of response in that population.

In general, epidemiological studies that characterize human variability in susceptibility 

primarily have focused on particular disease states and demographic variables such as age, 

sex, race/ethnicity, and socioeconomic status, rather than the full range of factors that may 

influence a variability of response within the population. For example, epidemiological 

studies have associated particulate air pollution with higher mortality rates in diabetics 

(Bateson and Schwartz 2004), and higher morbidity and mortality in the elderly (Bell et al. 

2013; Simoni et al. 2015) relative to the effect of particulates in the general adult population. 

These large studies with detailed exposure data are important in identifying specific 

populations and lifestages with a greater risk of disease from air pollutants.

However, epidemiological studies that might assess variability of response in the population 

and characteristics associated with variability are often restricted to predefined individual, or 

group-level, characteristics available from central databases (e.g., census data) and are not 

designed to gain specific knowledge about human variation in response. Standard 
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epidemiological study designs may limit characterization of human variability in exposure, 

often assuming, for example, that individuals with the same group-level exposure 

characterization are homogeneous with respect to exposure—even when there is a range of 

exposures within each exposure group (Loomis and Kromhout 2004). That is, 

epidemiological studies in general usually recruit a randomly-selected study population to 

avoid selection bias, and exposure groups and responses are usually described using 

measures of central tendency (Morimoto et al. 2003). In contrast, the assessment of 

interindividual variability generally involves analyzing which population groups are most 

and least responsive and thus expressing effects at the tails of the study response distribution 

where the data are sparser and effect estimates are less certain. Once a sensitive subgroup or 

suspected subgroup is identified (e.g., diabetics), additional studies may focus on that 

sensitive subgroup and how it differs from the broader population (Dubowsky et al. 2006).

Epidemiologic studies are more likely to detect any existing differences in response between 

different population groups when uncertainties from study limitations are minimized (Burns 

et al. 2014). Several recent advances in how epidemiological studies are designed and 

conducted are increasing their potential for informing quantitative characterization of human 

variability in response. These include improved exposure characterization (e.g., better 

measures of personal exposure—including biomarkers) in conjunction with improved 

characterization of genetic variability and other characterizations of personal susceptibility, 

and analyses using newer statistical approaches specifically aimed at characterizing 

variability in response (Burns et al. 2014; Schwartz et al. 2011).

For an epidemiological study to characterize human variability in response depends not only 

on study design characteristics (e.g., size and diversity of cohort, nature of exposure 

assessment, epidemiologic study design, information collected on potential confounders or 

effect modifiers), but also on the type of analysis applied. Regression models are usually 

used to test the influence of effect modifiers when studying differential susceptibility 

(Schwartz et al. 2011). With sufficient information on confounders or effect modifiers, 

standard regression models provide an estimated change in the mean response relative to a 

change in exposure and support characterization of response at different exposure levels. 

Other types of statistical analyses, however, might be more useful in describing variability of 

outcomes within a study population. Statistical techniques that could be used to estimate 

differences in response among individuals, or among groups within a cohort, include the 

following:

1. Estimation of individual effect estimates (slopes) for each subject in longitudinal studies 

can help determine whether subject-specific slopes vary in only a few susceptible individuals 

or in all subjects in the study (Naumova et al. 2001; Schwartz et al. 2005).

2. Case-crossover analysis, a version of a case-control study where the case also serves as 

the control (Maclure 1991), is used to estimate acute responses and can identify 

susceptibility factors by identifying effect modifiers because the same subject is exposed to 

the control and the experimental condition. For example, individuals who have diabetes are 

at increased risk to air pollution relative to those who have not (Bateson and Schwartz 2004). 

This differential risk could be examined by comparing the case-versus-control effect of air 
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pollution in this population to the case-versus-control effect in the rest of the population 

(Schwartz et al. 2005).

3. Other models that have been suggested for studying human variability include: marginal 

structural models (causal models incorporating inverse probability of treatment weighting in 

order to account for the effect of time-dependent and previous treatment-or-exposure-

dependent covariates), hierarchical mixed models (general or generalized linear models that 

account for group-specific correlations, such as the unique effects and interactions in certain 

populations or lifestages), and systems analysis (a method of examining higher-dimensional 

interactions) (Schwartz et al. 2011).

4. Quantile regression, which provides separate estimates of effects at various percentiles in 

the distribution and an unbiased estimate of the median, rather than the mean (Bind et al. 

2015). Mean regression analyses may not capture associations that occur primarily in the 

tails of the outcome distribution, and quantile regression can be used to focus on individuals 

that have extreme responses to an exposure (more susceptible). Quantile regression applied 

to causal mediation analyses can identify the effect of an exposure on an outcome by a set of 

mediators, with different percentiles of the distribution of the outcome (Richiardi et al. 

2013). Quantile causal mediation effects, the difference between the medians of two 

outcomes, have been suggested to study the more susceptible individuals in a cohort (Imai et 

al. 2010).

5. Genome-wide association studies have been suggested to identify effects on individual 

genotypes that also might be affected by environmental exposures. The use of this 

methodology to identify candidate genotypes can be statistically hampered by adjustments to 

the significance levels that account for multiple comparisons. Using interaction terms in 

gene-wide association/interaction studies to evaluate specific pathways can be a more 

statistically powerful approach to detect gene-environment interactions (Schwartz 2015). 

The interaction terms—which are a multiplicative factor of the gene (or a set of genes in a 

specific pathway) and the environmental exposure—can be used to quantify the differences 

in exposure effect sizes between the genotypically susceptible and non-susceptible 

populations.

The advantage of epidemiological studies for characterizing human variability is that they 

represent actual exposure patterns and circumstances in humans. These studies can provide 

integrated measures of variability that may represent the influence of genetic and non-

genetic factors, including, for example, the impacts of exposures to other environmental 

contaminants, nutrition and stress. However, as noted above, various aspects of study design 

may limit the ability to detect human variability in response in any particular study (e.g., 

assuming all individuals within a certain radius of a pollution monitor have the same level of 

exposure). Furthermore, given the lack of similarly designed epidemiological studies of the 

same exposures and the same outcomes measured with the same level of specificity, it may 

be difficult to obtain comparable estimates of human variability across a number of 

chemicals to inform generic human variability distributions. There is, however, the potential 

for a wealth of information on variability (susceptibility) for the criteria air pollutants: 
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particulate matter (U.S. EPA 2009), ozone (U.S. EPA 2013b), sulfur dioxide (U.S. EPA 

2017), nitrogen dioxide (U.S. EPA 2016a), and lead (U.S. EPA 2013a).

Animal models of genetic variability

Laboratory animal toxicology experiments have not traditionally been a source of 

information on the extent of human variability. However, several recent research efforts have 

developed population-based rodent models of genetic diversity. While direct quantitative 

inferences about human variability from rodent variability is problematic, rodent models 

may still provide mechanistic insight into the impact of human genetic diversity on the 

variability in response to chemical exposures

In animal-based toxicological research, there is a balance between the types of animal 

models used: those that are efficient, reproducible and sensitive, versus those that provide 

insight into varying population sensitivities. The first type of model leads to the use of 

inbred animals, while the second requires models having much broader genetic diversity. 

The use of inbred animals became popular because of their fixed and known genetics and 

because replicate animals with known phenotypic patterns of biology and disease are readily 

generated. Because inbred mice share the same genome, response to chemical exposure is 

much less variable, allowing fewer animals to achieve an appropriately powered study for a 

given endpoint. Rats and mice more generally, however, have broad genetic diversity, and 

genetic polymorphisms can significantly affect the responses to chemical toxicity (Rusyn et 

al. 2010). Studies using animal models of population variability with broader genetic 

diversity require more animals (i.e., are less efficient) because, for most endpoints of 

concern, there is larger variability in the controls (Harrill et al. 2017).

Approaches to examining variability in response across animal strains have focused on the 

mouse, probably due to the history of mouse breeding and the hundreds of mouse strains 

commercially available. Mouse panels are groups of inbred animals or recombinant crosses 

for which the genotype and phenotypes are well characterized and which represent a broad-

based genetic diversity. One example is a series of studies that examined toxicity response to 

acetaminophen of priority strains in the Mouse Phenome Project. Harrill et al. (2009a) were 

able to identify biomarkers of response and identify a polymorphism in CD44 that 

contributes to increased susceptibility to acetaminophen toxicity, and Harrill et al. (2009b) 

demonstrated that this polymorphism is also involved in human susceptibility.

The Collaborative Cross (CC) was designed to address the limitations of using small sets of 

inbred lines as genetic reference populations. The CC line was developed starting with eight 

founder strains representing both classical inbred strains and wild-derived strains. These 

animals were randomly bred for three generations and then inbred starting with the fourth 

generation (Threadgill and Churchill 2012; Threadgill et al. 2011). While this breeding 

scheme initially led to over 400 unique mouse lines, most of these lines became extinct and 

presently only about 74 CC lines remain available (Shorter et al. 2017; UNC Systems 

Genetics 2018). The eight founder strains have more genetic diversity than existing 

recombinant inbred panels, their genetic variation is more uniformly distributed throughout 

the genome compared with other inbred panels, and all founder strains in the CC have been 

sequenced (Threadgill and Churchill 2012; Threadgill et al. 2011). These mice provide a 
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more complete randomization of genotypes than is available in other mouse reference 

populations, allowing for greater power and accuracy in genetic mapping and phenotype 

correlation analyses (Bogue et al. 2015).

While the CC mice have not yet been used to evaluate chemical toxicity, the CC founder 

strains have been used to evaluate inter-strain variability in responsiveness to chemical 

exposure because they represent the genetic diversity present in the three main subspecies of 

house mouse and their genomes have been fully sequenced (Koturbash et al. 2011). Yoo and 

colleagues have evaluated altered sensitivity to trichloroethylene using the CC founder 

strains and concluded that the difference in hepatotoxicity and nephrotoxicity could be 

explained in large part by observed inter-strain TK variability, specifically variations in TCE 

metabolite concentrations in the target tissues (Yoo et al. 2015a, 2015b). A study using the 

CC founder strains found that pulmonary toxicity of quantum dots was dependent on inter-

strain differences in inflammatory response (Scoville et al. 2015).

A second new mouse model is the Diversity Outbred (DO), in which each mouse has a 

unique genotype (Church et al. 2015; French et al. 2015). The animals were derived from 

144 partially inbred CC mice between generations F4 and F12 in the inbreeding scheme. 

Genetic variation is uniformly distributed with multiple allelic variants, making the DO a 

powerful tool for correlating genotype with phenotype and for high-resolution genetic 

mapping.

DO mice have been used to evaluate differential sensitivity in two studies. French et al. 

(2015) evaluated benzene-induced genotoxicity, as measured by micronucleated 

reticulocytes, in a 28-day inhalation study using the DO. This study used three dose levels 

and a control with two blocks of 75 mice/treatment group. French et al. derived a benchmark 

dose (BMD) for benzene in the DO mice that was 10 times lower than the BMD for the 

same endpoint from a study using male B6C3F1 mice.

The DO study of epigallocatechin gallate, a constituent of green tea, demonstrates both the 

possibilities and limitations of this model. Church et al. (2015) identified a subset of DO 

mice that was extremely sensitive to the hepatotoxic effects of epigallocatechin gallate and 

found a 9Mb region on chromosome 4 that contained 49 genes that might be related to 

enhanced sensitivity to the chemical. The authors translated this finding to human clinical 

studies and found that three of the proposed genes were associated with increased risk of 

hepatotoxicity in humans (Church et al. 2015). Because only two dose levels were used due 

to cost, the study provides no insight into how much more sensitive the susceptible 

population is with respect to dose. Therefore, although this study did identify a susceptible 

subpopulation based on genetic background, it provides no information on the magnitude of 

variability.

These new rodent models should provide improved approaches to understand and predict 

human population variability in response to chemical exposures as compared to use of 

inbred strains. The studies by French et al. (2015) and Church et al. (2015) demonstrate the 

models’ strength in identifying genetic polymorphisms that influence chemical toxicity. 

Directly translating identified polymorphisms from these rodent models to humans is 
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challenging because not all mouse genes have human orthologues (French et al. 2015). 

Experience using these models to evaluate variability in chemical sensitivity is limited, and 

these studies have focused on identifying genetic polymorphisms involved in altered 

susceptibility. Another challenge is the large number of animals necessary to identify genetic 

polymorphisms in these experiments. Churchill et al. (2012) estimated that, depending on 

the phenotype studied, between 200 and 800 mice per treatment group are required to 

identify any polymorphism related to the variance in response with sufficient confidence. As 

it stands, the use of mouse models to efficiently identify polymorphisms and quantify 

population variability in response to chemical exposure requires further optimization of 

study designs.

In addition, the DO model may not work well for certain outcomes of high interest; for 

example, to have the same statistical power of a guideline 90-day subchronic study using 10 

B6C3F1 mice per dose group, it would require 27 DO mice per dose group to detect 

differences in body weight changes and 150 DO mice per dose group to detect changes in 

sperm count (Harrill et al. 2017). Changes in hormones may require over a 1000 DO mice 

per dose group to attain the same statistical power as 10 B6C3F1 mice per dose group 

(Harrill et al. 2017). For developmental toxicity studies, the limited historical data in 

breeding and developmental milestones in the DO mice make an appropriately powered 

study design uncertain. These mouse models also can account only for variability due to 

genetic differences, and do not represent other sources of human TK and TD variability, 

such as diversity in background exposure to other environmental contaminants.

To provide support for estimation of generic distributions of human variability applicable in 

situations where chemical-specific data are lacking, studies of response variability across 

multiple chemicals will likely be needed—an objective that will be resource intensive for 

both cost and time. In the interim, targeted studies on chemicals of interest may be useful for 

informing human genetic variability distributions in assessments of those specific chemicals, 

and ultimately a compilation of many such studies could be used to develop generic 

distributions. The use of these rodent models of genetic diversity in understanding 

population variability to chemical exposure will require concerted collaboration among the 

experimenters who generate the data and risk assessors who use these findings.

In vitro-based estimates of toxicodynamic variability

In vitro toxicity testing has been touted as the future of toxicology: a tool for high-

throughput, relatively low-cost, and quick toxicity assessment. The use of modern in vitro 
systems allows testing of chemicals in cell-based or cell-free assays with sufficient 

throughput to test hundreds to thousands of chemicals against specific molecular endpoints 

quickly and inexpensively. Such efficiency is beginning to be applied towards informing 

estimates of variability in human response.

In vitro assays used for toxicity testing have traditionally used immortalized, transformed 

cell lines maintained in culture (Carmichael et al. 1987; Vichai and Kirtikara 2006). These 

genetically homogeneous cell lines were derived from individuals without regard to genetic 

background, sex, age, or other parameters known to affect human variability. Furthermore, 

many such cell lines have undergone an adaptation to growth under highly artificial in vitro 
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conditions with both genetic and epigenetic changes occurring relative to the originally 

isolated cell (Hartung and Daston 2009). These changes and the lack of genetic 

characterization likely make these cell lines poor choices for assessing variability in the 

human population.

Several in vitro studies have been conducted with the specific goal of estimating 

toxicodynamic variability in response due to human genetic differences using more relevant 

cell types. Choy et al. (2008) examined a panel of 269 human lymphoblastoid cell lines 

(LCLs) from the International HapMap Project to determine variability in response to 7 

anticancer agents with different mechanisms of action. The LCLs were developed using a 

standardized immortalization protocol making comparison across individual lines more 

robust, and also provided extensive publicly available genotypic sequencing data. Although 

these authors demonstrated variability in response to the drugs, they were unable to 

demonstrate linkages with genetic variation and could not rule out spurious associations. 

O’Shea et al. (2011) also used HapMap lines and found that responses varied for some, but 

not all, of 14 chemicals tested in 85 cell lines for cell viability and in 83 cell lines for 

caspase activity. They too could not completely rule out influences beyond genetic 

differences and had limited success mapping SNPs to variable responses. A follow-up study 

extended the testing to 240 chemicals and 81 cell lines, again measuring cytotoxicity and 

caspase activity but with more extensive concentration-response testing (Lock et al. 2012). 

Toxicodynamic variability across cell lines for both assay endpoints ranged up to three 

orders of magnitude for some chemicals; however, for the majority of the chemicals, TD 

variability across cell lines fell within a 10-fold range in difference between most sensitive 

and most resistant. While the larger observed differences were greater than the 10-fold 

default value currently used for human variability in risk assessment, more research is 

needed to ensure these were not experimental outliers and that the response is relevant to 

human genetic variability.

Abdo et al. (2015b) measured induced cytotoxicity, using 179 chemicals and 1086 human 

LCLs from the 1000 Genomes Project. These cell lines represented nine populations from 

five continents. The authors reported a median difference of 3-fold between the most 

sensitive 1% of cell lines compared with the median value across all cell lines, depending on 

the chemical. Extremes up to a 30-fold difference between the most sensitive and the median 

were noted using shrunken estimates that accounted for sample testing variability. 

Limitations of the study include replicates performed on the same day and no assessment of 

confounding factors such as individual cell-line growth rate. Nevertheless, the large study 

size study provides a useful overview of the general range of variability expected, although 

outliers deserve more careful study.

In a related study, Abdo et al. (2015a) measured variability in response to exposure to two 

defined pesticide mixtures across 146 human LCLs representing four ancestrally and 

geographically diverse populations. They found an inter-individual TD variability ratio 

between the median and 95th percentile cell lines of around 3-fold for each mixture. For 

further applications of this general approach, Chiu et al. (2017) noted the impracticality of 

screening thousands of cell lines against individual toxicity targets to derive TD ranges. 

They proposed a tiered experimental strategy of fewer, representative cell lines coupled with 
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a Bayesian analysis method to flag chemicals with greater-than-default variability for more 

extensive characterization for population-wide responses.

A caveat to the approach of these human-based LCL studies is the reliance on only a single 

type of endpoint, cell viability (along with caspase activity, a related endpoint) for 

determining the range of variability in response. While this covers a broad range of potential 

toxicity mechanisms of action, there are many other important endpoints that would not 

necessarily affect cell viability and, thus, the effect of genetic variation would not be 

observed and the range of variability may differ. Furthermore, the existing research using 

cell line panels derived from diverse human populations has relied on the LCLs of the 

HapMap and 1000 Genomes projects rather than on primary cells derived from other tissues. 

Hence, there may be a lack of sensitivity to detecting organ-or other tissue-specific 

toxicities.

One technique that may provide somewhat more relevant information is the use of induced 

pluripotent stem cells (iPSCs). Derived from relatively easily accessible adult somatic cells, 

iPSCs could be sampled for a diverse human population (Takahashi et al. 2007; Yu et al. 

2007). Various induction protocols are available that can reprogram these cells in to liver, 

brain, heart, and pancreas cell lineages (Brennand et al. 2011; Huangfu et al. 2008; Si-Tayeb 

et al. 2010; Zhang et al. 2009). Induction of iPSC liver cells may be particularly useful as 

these cells have xenobiotic metabolism activity that could be greatly influenced by genetic 

variability and, hence, diversity in the types and quantities of metabolites generated as in 

human liver (Evans and Relling 1999; Mann 2015). The iPSC-derived liver cells display a 

partial fetal phenotype, however, and are not yet fully capable of representing adult donor 

variability.

In addition to providing information on variability in response due to genetic differences, in 
vitro approaches could be considered to gain a better understanding of chemical response 

variability due to sex, lifestage, and non-chemical-stressors. With respect to sex, responses 

between male-derived versus female-derived cells could be compared. However, 

transformed, immortalized cell lines could have lost true differences in sex-linked patterns of 

response and so should be carefully genotyped and phenotyped before use for such purposes 

(Park et al. 2006). Use of primary cells or perhaps iPSCs, combined with a focus on 

endpoints expected to have other potential sex-linked responses, could prove useful. A major 

limitation to these models is lack of a true endocrine regulation function with current in vitro 
approaches, which may result in an underestimate of differences by sex.

Incorporating different lifestages is a major challenge for in vitro approaches. Early 

development is a special case where much effort has been devoted to developing useful 

models of chemical sensitivity, typically using human or mouse embryonic stem cells 

(Kameoka et al. 2014; Scholz et al. 1999; West et al. 2010). Alternatively, model organisms 

such as zebrafish have been employed during their development phase (5 days for zebrafish) 

(Hill et al. 2005). By comparing lowest effect levels in these systems to those from non-

embryonic developmental models, it may be possible to identify chemicals of most concern 

to the fetus and begin to understand the range of differences in sensitivity. Other lifestages, 

such as childhood and old age, are not readily distinguishable with in vitro systems like cell 
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culture models. Lapasset et al. (2011) found human iPSCs generated from senescent and 

centenarian cells have reset much of their cellular physiology to earlier stages and are 

indistinguishable from human embryonic stem cells. In contrast, Kang et al. (2016) showed 

mitochondrial DNA defects increased with age and were maintained in iPSCs derived from 

older donors. While it may be technically possible to develop cell models derived from 

specific subsets of the population with respect to lifestage through iPSC technology or use of 

primary cells, extensive validation will be required (Studer et al. 2015).

Finally, the effects of exposure to multiple chemical and non-chemical stressors in 

combination are known to influence response variability. For example, various types of 

stress, such as inflammation or poor nutrition; co-exposure to other environmental 

chemicals; or influence of the microbiome all vary between individuals and can alter the TK 

or TD response to the chemical of interest (NASEM 2018; Sexton and Hattis 2007; Van de 

Wiele et al. 2005). The effect of chemical mixtures in particular might be conducive to 

investigation with in vitro methods. Although measuring interactions of chemicals in all 

combinations that humans are exposed to is a large-scale problem that even high-throughput 

approaches have not yet addressed, alternative strategies might be valuable. For example, 

determining the effects of single chemicals in the context of their presence in complex 

environmentally relevant mixtures could identify those chemicals most likely to have 

significant interactions with other commonly occurring chemicals. This strategy could help 

identify chemicals for which the response at the cellular level is most likely to vary with the 

presence of other chemicals.

In vitro toxicity testing approaches can produce estimates of TD variability by testing 

hundreds to thousands of chemicals quickly and inexpensively in large numbers of cell lines 

representative of human genetic diversity. Toxicity responses in cell-based assays can show 

variability both across cell lines (due to underlying genetic and epigenetic variability) and 

within cells from the same line (due to variability in assay design and stochastic differences 

in response among individual cells). The cell types used in these studies to date may not be 

broadly representative, but advances in technology (new types of cell lines) should improve 

the relevance and applicability of in vitro data to estimation of human variability.

Although in vitro systems might be able to model many aspects of human individual 

variability manifested at the molecular or cellular level adequately, they cannot fully reflect 

systems-level effects at tissue and higher levels of biological integration. In particular, in 
vitro systems are not able to capture the compensatory biological responses that may occur 

in the whole organism, as well as the interactions (e.g., limited compensation) with 

background biological processes such as the initiation of disease. Furthermore, in vitro 
systems to date have had limited capability to represent non-genetic factors (such as co-

exposure to other environmental chemicals) that also influence variability.

Assessment of kinetic variability with generic toxicokinetic models and in vitro methods

Another application of in vitro data for estimation of human variability is in the use of 

generic TK models to estimate variability of internal dose resulting from a given 

administered dose (Ring et al. 2017; Rotroff et al. 2010; Wetmore et al. 2014). Population 

variability in factors that affect TK of a chemical, such as differences in physiology and 
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metabolism, mean that for a homogeneous exposure, the relevant internal dose can be 

expected to vary across members of a population. In vitro testing can generate data used to 

represent key parameters (and their variability) in generic TK models.

Directly relating important aspects of TK variability that can be measured, such as activity 

of clearance enzymes, rates of absorption and physiological parameters such as body mass 

index, to variability of internal dose is often not straightforward (Lipscomb et al. 2003), but 

requires the application of TK models. TK models translate an oral, inhalation, or dermal 

dose into a target tissue dose (or a blood concentration, which often serves as a surrogate for 

target tissue dose). They are constructed as systems of differential equations describing the 

behavior of chemical concentrations in connected compartments. Such models range in 

complexity from simple one- and two-compartment models that primarily predict the time 

course of blood concentrations, to much more complex, physiologically based toxicokinetic 

(PBTK) models. In PBTK models, the compartments correspond to individual tissues 

connected by flowing arterial and venous blood and the models predict concentrations in all 

compartments included (Thompson et al. 2008). In one-compartment models, the parameters 

have intuitive interpretations: a parameter quantifying the volume of the body in which the 

chemical is assumed to be evenly distributed, a parameter that governs the rate at which the 

chemical is cleared from the body through metabolism and glomerular filtration, and a 

parameter that quantifies absorption unless dosing is intravenous. In contrast, parameters of 

PBTK models reflect more detailed physiological characteristics, such as blood flows and 

tissue volumes, and chemical-specific characteristics such as constants describing the 

partitioning of the chemical between blood and tissues or metabolic rates; parameters 

governing the rate of absorption across the possible routes of entry (i.e., oral, dermal, or 

inhalation); parameters that quantify the degree of binding of chemicals to proteins; and 

parameters that quantify active transport of the chemical across various barriers (Thompson 

et al. 2008).

Conventionally, PBTK models have been constructed for individual chemicals or groups of 

structurally and functionally similar chemicals, using in vivo animal data comprising 

concentration time courses in multiple tissues at multiple doses. Such models can be 

extrapolated to estimate internal dose in humans, and can incorporate chemical-specific 

aspects of absorption and metabolism (Tan et al. 2018; Thompson et al. 2008). However, 

they are expensive and time-consuming to construct. A variety of generic TK models has 

been produced that are consistent with known physiology and, while typically less accurate 

than models built specifically for particular chemicals, are still useful for characterizing 

variability of tissue dose resulting from a given administered dose.

Generic TK models are used for chemicals for which little or no in vivo TK data are 

available. Examples of such models include Simcyp (see www.certara.com), PopGen 

(McNally et al. 2014), and the R package httk (https://cran.r-project.org/web/packages/httk/

index.html) (Ring et al. 2017). Rotroff et al. (2010) and Wetmore et al. (2012, 2014) 

describe use of Simcyp to convert in vitro concentrations in ToxCast™ (Kavlock et al. 2012) 

assays to an equivalent steady-state dose rate. Estimates of population variability in TK 

parameters were used as inputs in a model to predict the likely range of such steady-state 

doses. A useful metric in this computation is the concentration at steady-state (Css), the 

Axelrad et al. Page 17

Hum Ecol Risk Assess. Author manuscript; available in PMC 2020 November 06.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

http://www.certara.com
https://cran.r-project.org/web/packages/httk/index.html
https://cran.r-project.org/web/packages/httk/index.html


plasma concentration that would result from a repeat daily dose of, for example, 1 μg/kg/

day. Wetmore et al. (2014) estimated the Css for various demographic groups using 

measured in vitro clearance rates for nine chemicals, catalyzed by 13 human cytochrome 

P-450 enzymes and five 5′-diphospho-glucuronosyltransferase enzymes. By combining the 

chemical-specific in vitro clearance data with information about the variability of enzyme 

activity and physiology among demographic groups and among individuals within groups, 

the authors were able to calculate Css ratios between the median healthy adult and median 

and 95th percentile of the most sensitive demographic group considered. The ratios of 

overall median to sensitive group median across nine chemicals ranged from 1.3 to 4.3, and 

the ratio of overall median to sensitive group 95th percentile ranged from 3.1 to 13.1. For 

seven of the nine chemicals, the 0 to 0.5 year old age group was the most sensitive, while 

patients with renal failure were projected to be the most sensitive for the other two 

chemicals. This approach illustrates how the use of chemical-specific in vitro assays, along 

with generic models and information that is not chemical-specific, can be used to estimate 

the magnitude of human TK variability of environmental chemicals.

Conclusions

Reports from the NRC and the IPCS have recommended methods for estimating a risk-

specific dose and described the advantages of this type of estimate relative to traditional 

RfVs that are not associated with any specified level of risk (NRC 2009; WHO 2014). 

Advantages of a risk-specific dose include: 1) the underlying methods could be used to 

estimate risk at any level of exposure to a substance, and 2) the methods provide an estimate 

of statistical confidence in those risk estimates. Estimates of human variability in response to 

chemical exposures, expressed as probabilistic distributions, are a critical input to these 

methods. The preliminary distributions for human TK and TD variability identified by the 

IPCS are based on data compiled from an array of historical studies, and could be used in 

risk assessments with perhaps as much confidence as standard default uncertainty factors. 

However, there is potential for improving on those preliminary distributions with further 

mining of data from existing experimental and epidemiologic studies in humans, as well as 

by incorporating newly emerging data from animal and in vitro studies.

Each type of data discussed in this paper offers different advantages and limitations for 

development of human variability distributions. Controlled human exposure studies offer the 

advantages of experimental design and human subjects; key limitations of these studies are 

that the study populations are generally small and homogeneous, not representative of the 

diversity of the human population, and the ethical constraints on conducting these studies 

with most environmental contaminants. Human epidemiological studies, especially those 

conducted in large general population samples, have the potential to provide the most direct 

and relevant representation of human diversity, incorporating genetic and non-genetic 

sources of variability; but their ability to discern variability may be limited by potential 

confounding, exposure misclassification and lack of data for key variables that are sources of 

variability. Toxicological studies conducted in diverse strains of mice have potential as a 

model of human variability associated with genetic differences; but experience with these 

models to date is quite limited (only two substances tested), and they may not represent 

important non-genetic sources of variability. In vitro studies of the influence of genetic 
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diversity on TD variability in response have been conducted with large numbers of 

environmentally-relevant chemicals and in large numbers of cell lines; but endpoints and cell 

types used have been limited (primarily cytotoxicity in lymphoblastoid cell lines) and thus, 

may not be broadly representative. In vitro data, in conjunction with generic TK models, 

have also been used to characterize TK variability, but in only a limited number of 

substances to date.

Each approach described in this paper has varying potential for providing substantial new 

data for quantifying human variability over the next several years; further development of in 
vitro approaches, including studies of different cell types and endpoints, as well as 

approaches to incorporate non-genetic sources of variability, appears to provide the greatest 

opportunity for substantial near-term advances. In vitro studies can be conducted relatively 

quickly; the science is advancing rapidly; high-throughput in vitro studies routinely generate 

data for large numbers of environmental chemicals, and are able to incorporate extensive 

genetic variability in studies using existing cell lines. Ultimately, however, the best approach 

to estimating human variability distributions may draw on information from multiple areas 

of research, drawing on the strengths of one study design to overcome the limitations of 

another, and integrating results to incorporate both genetic and non-genetic sources of 

variability. In addition, there may be ways in which the different types of research can be 

combined; for example, in vitro study designs might be applied to cells obtained from 

genetically diverse mice, and in vitro studies may inform selection of priorities and 

approaches for human and animal studies.

Despite the focus here on deriving probabilistic estimates of human variability from existing 

data, it is also important to note that the approaches and data types considered for 

developing updated human variability distributions could also directly support data-derived 

human variability factors for RfVs, depending on the needs of the analysis or assessment 

under consideration. One outcome could be the development of refined categories of human 

variability estimates (e.g., target-organ-specific human variability estimates), with the result 

being greater flexibility for the risk assessor and analyses that better estimate the risk 

associated with chemical exposure. Thus, within these data types exists the potential for a 

suite of approaches by which to improve variability and uncertainty characterization, 

through the development of probabilistic or improved point estimates of human variability.

Researchers conducting studies focused on a particular substance (or mixtures of substances) 

in any of the disciplines noted above may not usually consider the use of their data in 

constructing distributions of human variability. Awareness of these applications, and 

communication with risk assessors, may help researchers identify opportunities to provide 

useful information with relatively minor enhancements to their study designs, statistical 

techniques and results reporting. The recent increase in requirements from journals and 

research funders for open access to data (AAAS 2018; U.S. EPA 2016b), along with data 

already in public repositories (NIH 2018), may also lead to a rapid increase in opportunities 

for secondary analysis of research data to assess human variability across numerous 

environmental contaminants in multiple types of studies, accounting for multiple sources of 

variability.
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Table 1.

IPCS preliminary distributions for human toxicokinetic and toxicodynamic variability.

Parameter

Median estimate 
across

data sets of variation
between 95th and 50th
percentile individuals

95th percentile estimate
across data sets of

variation between 95th
and 50th percentile

individuals Source

Toxicokinetic (TK) 
Variability

~2-fold ~4.5-fold Based on variability in area under the curve from oral 
exposures in 37 data sets (Hattis and Lynch 2007a).

Toxicodynamic (TD) 
Variability

~2.5-fold ~10-fold Based on observations of systemic, non-immune-mediated, 
continuous physiological parameter changes or quantal 
biological response in relation to internal measures of 
systemic exposures in 34 data sets (Hattis and Lynch 2007a).

Combined TK and TD ~3.5-fold ~14-fold Based on Monte Carlo simulation combining the TK and TD 
distributions, assuming they are independent and lognormal.

Adapted from IPCS Tables 4.4 and A4.1 (WHO 2014)

Hum Ecol Risk Assess. Author manuscript; available in PMC 2020 November 06.


	Abstract
	Introduction
	Human variability in USEPA reference values
	Probabilistic methods using human variability distributions
	Sources of information on human toxicokinetic and toxicodynamic variability
	Controlled human exposure studies
	Epidemiological studies
	Animal models of genetic variability
	In vitro-based estimates of toxicodynamic variability
	Assessment of kinetic variability with generic toxicokinetic models and in vitro methods

	Conclusions
	References
	Table 1.

