Skip to main content
. Author manuscript; available in PMC: 2019 Aug 9.
Published in final edited form as: J Mach Learn Res. 2014 Aug;15:2629–2652.

Table 3:

Number of successful discoveries (100 trials)

Sample size
50 100 200

Number of latent confounders Q = 0:
 Our approach (t-distributed individual-specific effects) 88 (3.25) 91 (2.86) 86 (3.47)
 Our approach (Gaussian individual-specific effects) 91 (2.86) 87 (3.36) 91 (2.86)
 LvLiNGAM (1 latent confounder) 73 (4.44) 83 (3.76) 83 (3.76)
 LvLiNGAM (4 latent confounders) 52 (5.00) 68 (4.66) 66 (4.74)
 SLIM (1 latent confounder) 29 (4.54) 30 (4.58) 25 (4.33)
 SLIM (4 latent confounders) 34 (4.74) 31 (4.62) 36 (4.80)
 SLIM (10 latent confounders) 30 (4.58) 29 (4.54) 30 (4.58)
 LiNGAM-GC-UK 33 (4.70) 28 (4.49) 35 (4.77)
 ICA-LiNGAM 93 (2.55) 93 (2.55) 96 (i.96)
 DirectLiNGAM 87 (3.36) 95 (2.18) 97 (1.71)
 Pairwise LiNGAM 89 (3.13) 95 (2.18) 95 (2.18)
 Post-nonlinear causal model 74 (4.39) 71 (4.54) 75 (4.33)

Number of latent confounders Q = 1:
 Our approach t-distributed individual-specific effects) 83 (3.76) 80 (4.00) 80 (4.00)
 Our approach Gaussian individual-specific effects) 79 (4.07) 87 (3.36) 69 (4.62)
 LvLiNGAM (1 latent confounder) 66 (4.74) 71 (4.54) 73 (4.44)
 LvLiNGAM 4 latent confounders) 63 (4.83) 58 (4.94) 67 (4.70)
 SLIM (1 latent confounder) 40 (4.90) 47 (4.99) 25 (4.33)
 SLIM 4 latent confounders) 40 (4.90) 34 (4.74) 44 (4.96)
 SLIM (10 latent confounders) 47 (4.99) 39 (4.88) 41 (4.92)
 LiNGAM-GC-UK 24 (4.27) 32 (4.66) 32 (4.66)
 ICA-LiNGAM 74 (4.39) 71 (4.54) 67 (4.70)
 DirectLiNGAM 48 (5.00) 52 (5.00) 54 (4.98)
 Pairwise LiNGAM 54 (4.98) 58 (4.94) 61 (4.88)
 Post-nonlinear causal model 55 (4.97) 58 (4.94) 57 (4.95)

Number of latent confounders Q = 6:
 Our approach t-distributed individual-specific effects) 88 (3.25) 81 (3.92) 87 (3.36)
 Our approach Gaussian individual-specific effects) 84 (3.67) 85 (3.57) 87 (3.36)
 LvLiNGAM (1 latent confounder) 58 (4.94) 70 (4.58) 70 (4.58)
 LvLiNGAM 4 latent confounders) 64 (4.80) 61 (4.88) 63 (4.83)
 SLIM (1 latent confounder) 50 (5.00) 63 (4.83) 47 (4.99)
 SLIM 4 latent confounders) 45 (4.97) 47 (4.99) 43 (4.95)
 SLIM (10 latent confounders) 58 (4.94) 48 (5.00) 58 (4.94)
 LiNGAM-GC-UK 29 (4.54) 28 (4.49) 21 (4.07)
 ICA-LiNGAM 74 (4.39) 72 (4.49) 47 (4.99)
 DirectLiNGAM 37 (4.83) 48 (5.00) 39 (4.88)
 Pairwise LiNGAM 48 (5.00) 51 (5.00) 37 (4.83)
 Post-nonlinear causal model 55 (4.97) 42 (4.94) 46 (4.98)

Number of latent confounders Q = 12:
 Our approach t-distributed individual-specific effects) 88 (3.25) 86 (3.47) 89 (3.13)
 Our approach Gaussian individual-specific effects) 91 (2.86) 89 (3.13) 91 (2.86)
 LvLiNGAM (1 latent confounder) 52 (5.00) 55 (4.97) 65 (4.77)
 LvLiNGAM 4 latent confounders) 65 (4.77) 58 (4.94) 64 (4.80)
 SLIM (1 latent confounder) 51 (5.00) 55 (4.97) 60 (4.90)
 SLIM 4 latent confounders) 45 (4.97) 51 (5.00) 63 (4.83)
 SLIM 10 latent confounders) 61 (4.88) 54 (4.98) 54 (4.98)
 LiNGAM-GC-UK 21 (4.07) 25 (4.33) 29 (4.54)
 ICA-LiNGAM 68 (4.66) 72 (4.49) 72 (4.49)
 DirectLiNGAM 37 (4.83) 39 (4.88) 38 (4.85)
 Pairwise LiNGAM 56 (4.96) 42 (4.94) 43 (4.95)
 Post-nonlinear causal model 51 (5.00) 43 (4.95) 46 (4.98)

Largest numbers of successful discoveries were underlined.

Standard errors are shown in parentheses, which are computed assuming that the number of successes follow a binomial distribution.