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Abstract

In the redundant signals task, two target stimuli are associated with the same response. If both 

targets are presented together, redundancy gains are observed, as compared with single-target 

presentation. Different models explain these redundancy gains, including race and coactivation 

models (e.g., the Wiener diffusion superposition model, Schwarz, 1994, Journal of Mathematical 

Psychology, and the Ornstein Uhlenbeck diffusion superposition model, Diederich, 1995, Journal 

of Mathematical Psychology). In the present study, two monkeys performed a simple detection 

task with auditory, visual and audiovisual stimuli of different intensities and onset asynchronies. In 

its basic form, a Wiener diffusion superposition model provided only a poor description of the 

observed data, especially of the detection rate (i.e., accuracy or hit rate) for low stimulus intensity. 

We expanded the model in two ways, by (A) adding a temporal deadline, that is, restricting the 

evidence accumulation process to a stopping time, and (B) adding a second “nogo” barrier 

representing target absence. We present closed-form solutions for the mean absorption times and 

absorption probabilities for a Wiener diffusion process with a drift towards a single barrier in the 

presence of a temporal deadline (A), and numerically improved solutions for the two-barrier 

model (B). The best description of the data was obtained from the deadline model and 

substantially outperformed the two-barrier approach.
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Background

Integrating information from different senses improves perception and action, speeds up 

response time (RT), enhances detection and discrimination accuracy, and facilitates goal-

directed arm movements (Cluff, Crevecoeur, & Scott, 2015; Crevecoeur, Munoz, & Scott, 
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2016; Diederich & Colonius, 2004b; Miller, 1982, 1986; Nickerson, 1973; Sakata, 

Yamamori, & Sakurai, 2004; Seilheimer, Rosenberg, & Angelaki, 2014; Stein & Stanford, 

2008; Van Atteveldt, Murray, Thut, & Schroeder, 2014). Despite this extensive research, 

many questions about how the behavioral benefits of multisensory integration emerge 

remain unanswered (Chandrasekaran, 2017; Cluff et al., 2015; Crevecoeur et al., 2016).

The goal of this study was to further describe and understand how the behavioral benefits of 

multisensory integration on detection rate (i.e., accuracy or alternatively hit rate) and RT in 

two monkeys during simple detection of redundant audiovisual signals depend on both the 

intensity as well as the stimulus onset asynchrony (SOA). Several past studies have 

investigated how behavioral benefits of multisensory integration depend on intensity, SOA 

or the combination of the two (Crevecoeur et al., 2016; Diederich & Colonius, 2004b; Dixon 

& Spitz, 1980; Holmes, 2009; Stein, Meredith, Huneycutt, & McDade, 1989; Todd, 1912; 

van Wassenhove, Grant, & Poeppel, 2007). The typical pattern observed when studies 

manipulate sensory intensity is that multisensory benefits increase as sensory intensities 

decrease. This phenomenon is termed “inverse effectiveness” and is considered a hallmark 

of multisensory integration (Stein & Stanford, 2008). Similarly, SOA manipulations also 

exert effects on behavioral benefits. When sensory intensities are matched, maximal 

multisensory benefits are observed when the sensory cues occur near simultaneously, that is 

in “physiological synchrony” (Hershenson, 1962; Meredith, Nemitz, & Stein, 1987). When 

both intensity and SOA are manipulated, the interaction between these factors is often 

nonlinear and complex (Diederich & Colonius, 2004a). For instance, strong stimuli are 

integrated only when presented in near-synchrony, whereas for weaker stimuli, the time 

window of integration is larger (Diederich & Colonius, 2004b).

The majority of the studies described above focused on describing the behavioral benefits 

and rarely used formal models of multisensory integration to describe the behavior. A few 

studies have addressed this gap and modeled multisensory benefits depending on both 

sensory intensity and SOA (e.g., Diederich, 1995; Gondan, Götze, & Greenlee, 2010). These 

studies used the redundant signals task, in which participants are asked to respond in the 

same way to stimuli of different sources. If both stimuli are presented at the same time or 

with small stimulus onset asynchrony (SOA), redundancy gains are observed that typically 

exceed those from probability summation of the inputs (Miller, 1982, 1986). Because 

accuracy was at ceiling in most conditions, the studies by Diederich (1995) and Gondan et 

al. (2010) mainly focused on response time and placed relatively less emphasis on accuracy.

As a starting point to describe both the accuracy and RTs in a redundant signals task, we 

used the Wiener diffusion superposition model (Schwarz, 1989, 1994) that assumes 

additivity of visual and auditory inputs and accumulation to a bound (“absorbing barrier”). 

As currently implemented, the model assumes that evidence accumulation continues for 

infinite time (Figure 1A). For the Wiener process drifting to a single absorbing barrier, this 

implies that the observer will always detect the stimulus. Thereby, the model provides an 

approximate description of the RTs in many experiments, but it cannot account for detection 

accuracy, which was non-perfect for the two monkeys in the present study.
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We extended the basic model in two ways: In most experiments, there is a finite window to 

respond to a sensory input or participants may internally choose to restrict their decision 

process to a time interval (Figure 1B). In line with this notion, some response time models 

for simple responses and choice tasks assume an internal deadline (“fixed stopping time”) 

for accumulation of sensory evidence (Busemeyer & Diederich, 2002; Diederich, 2008; 

Diederich & Oswald, 2016; Ratcliff, 2006; Ratcliff & Rouder, 2000; Ruthruff, 1996; 

Swensson, 1972). After the deadline, the response is omitted, or a guess is made (Yellott, 

1971). We hypothesized that the incorporation of such a response deadline could explain 

both the RTs and accuracy of observers performing multisensory detection tasks. We, 

therefore, expanded on the single-barrier Wiener diffusion superposition model by 

incorporating a deadline for accumulation, and we derived closed-form expressions for the 

mean latencies and the probability of responses to synchronous and asynchronous stimuli in 

such a deadline model (Appendix A).

As a second extension, we adopted a second absorbing barrier representing omitted 

responses (Figure 1C, “nogo” barrier, see Gomez, Ratcliff, & Perea, 2007). This extension 

results in a two-barrier model, similar to Ratcliff’s diffusion decision model for two 

alternatives (Ratcliff, 1978; Ratcliff & McKoon, 2008). In this architecture, sensory 

evidence is accumulated until one of two absorbing barriers is reached: if the positive barrier 

is reached first, a response is initiated; whereas if the negative barrier is reached first, the 

response is withheld. Two-barrier diffusion models have been used to describe response 

times and accuracy in many two-choice tasks (Laming, 1968; Palmer, Huk, & Shadlen, 

2005; Ratcliff & McKoon, 2008; Ratcliff, Smith, Brown, & McKoon, 2016; Ratcliff, Thapar, 

& McKoon, 2003; Smith & Ratcliff, 2004), Go-/Nogo tasks (Gomez et al., 2007), and in a 

redundant signals task with two alternatives (Blurton, Greenlee, & Gondan, 2014).

In the present study, Monkeys detected visual, auditory, and audiovisual vocalizations with 

delays between the stimulus components (Miller, 1986) in a background of noise 

(Chandrasekaran, Lemus, & Ghazanfar, 2013; Chandrasekaran, Lemus, Trubanova, Gondan, 

& Ghazanfar, 2011). The behavioral benefits accrued by monkeys when detecting 

audiovisual stimuli are a systematic function of both the intensities and the delay between 

sensory stimuli (Ulrich & Miller, 1997). We tested the three models, the basic single barrier 

Wiener diffusion model (Schwarz, 1989, 1994), a single barrier Wiener diffusion model with 

a temporal deadline, and the two-barrier Wiener diffusion model, using the mean RTs and hit 

rates of two monkeys performing the detection task at different signal to noise ratios (SNRs) 

and SOAs. It turned out that the expansion of the diffusion superposition model with a 

deadline greatly improved the model fit. In contrast, a two-barrier model (Gomez et al., 

2007) performed rather poorly.

The manuscript is organized as follows. We first provide a compact summary of the 

redundant signals detection task and the Wiener diffusion superposition model, as 

implemented by Schwarz (1994). We then describe the detection task used in monkeys and 

show that the simple model fits poorly to the accuracy and response times. Our contribution 

is to show that extending the model by incorporating a deadline for accumulation provides a 

better account of the observed behavior compared to the two-barrier Wiener diffusion model.
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Redundant signals task

The redundant signals task is a simple and powerful experimental paradigm for investigating 

multisensory perception. In this task, subjects are asked to respond in the same way to 

stimuli of two sensory modalities, for example, auditory and visual stimuli (A, V, 

Hershenson, 1962; Todd, 1912). The typical finding is that if signals from both modalities 

are present (redundant signals, AV), average responses are faster than from any single 

sensory modality (Diederich & Colonius, 2004a; Miller, 1982, 1986; Raab, 1962).

Such redundant signals effects, by themselves, are not necessarily indicative of any special 

mechanism that integrates the information of the different channels. For example, 

redundancy gains may arise from a race between the channel-specific detection processes 

(“race model,” Miller, 1982; Raab, 1962) for redundant stimuli but not in the single stimuli. 

When two racers are present, the slowest response times are removed and thus the mean 

response time is faster. In audiovisual detection tasks, however, redundancy gains are 

typically larger than predicted by race models. These redundancy gains are thought to be 

better explained by “coactivation models” that assume some integration of the information 

provided by the two sensory systems (Diederich, 1995; Diederich & Colonius, 2004b; 

Miller, 1986, Eq.3; Schwarz, 1989, 1994). One such model is the Wiener diffusion 

superposition model, which we summarize below (see also Figure 1).

Wiener diffusion superposition model

The Wiener diffusion superposition model is a coactivation model that describes redundancy 

gains assuming additive superposition of channel-specific Wiener diffusion processes 

(Schwarz, 1994; see Diederich, 1992, 1995, for a model with superposition of Ornstein-

Uhlenbeck processes). Schwarz’s model assumes that the presentation of a stimulus leads to 

a buildup of evidence that is described by a Wiener diffusion process X t  with drift μ and 

variance σ2 > 0 (Ratcliff, 1978; Ratcliff & McKoon, 2008; Ratcliff et al., 2016; Smith & 

Ratcliff, 2004). In a model with a single criterion (“absorbing barrier”), the stimulus is 

‘detected’ when an evidence criterion c > 0 is met for the first time. The density f IG t  and 

the distribution FIG t  of the first-passage times D are then inverse Gaussian (Cox & Miller, 

1965),

f IG t c, μ, σ2 = c
2πσ2t3

⋅ exp − c − μt 2

2σ2t
(1)

FIG t | c, μ, σ2 = Φ μt | c,  σ2t + exp 2cμ
σ2 Φ −μt | c,  σ2t (2)
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with Φ x   |   m, s2  denoting the Normal distribution function with mean m and variance s2. 

The expected detection time E D  is obtained by 0
∞t ⋅ f IG t   |   c,   μ, σ2 dt, which simplifies 

to

E D = c/μ (3)

Predictions for the detection times for unimodal stimuli A and V are, therefore, easily 

obtained, c/μA and c/μV, respectively. When two stimuli are presented simultaneously, 

coactivation occurs. The model assumes that the two modality-specific processes 

superimpose linearly, XAV t = XA t + XV t . The new process XAV is again a Wiener 

diffusion process with drift μAV = μA + μV and variance σAV
2 = σA

2 + σV
2 + 2ρAVσAσV (under 

the assumption that XA and XV are uncorrelated, the covariance term is zero). Since the drift 

parameters add up, XAV reaches the response criterion earlier than any of its single 

constituents, resulting in faster responses to redundant stimuli,

E DAV = c/ μA + μV

What happens in stimuli presented with onset asynchrony (SOA, e.g., V100A, i.e., V is 

presented at t = 0, and A follows   τ = 100 ms later)? During the first τ ms, sensory evidence 

is accumulated by the visual channel alone. If the criterion is reached within this interval, the 

stimulus is detected, and a response is initiated. This happens with probability 

P DV τ A ≤ τ = FIG τ c, μV, σV
2  given by Equation 2.

On average, this occurs within

E DV τ A DV τ A ≤ τ = 1
P DV τ A ≤ τ

 
0

τ
t ⋅ f IG t c, μV, σV

2   dt (4)

The solution for the integral is given by Schwarz (1994, Eq. 6). In the other case, the process 

has attained a subthreshold activation level X τ = x < c, with density described by

wIG x, τ c, μV, σV
2 = ϕ x μVτ, σV

2 τ − exp
2cμV
σV

2 ⋅ ϕ x 2c + μVτ, σV
2 τ , (5)

(e.g., Schwarz, 1994, Eq. 7), and ϕ denoting the Normal density. Because activation x has 

already been attained at time τ, the remaining activation needed to achieve the criterion is 

c − x. After time τ, both channels accumulate evidence, resulting in a process drifting with 

μAV:
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E DV τ A X τ = x = τ + c − x
μAV

(6)

This expectation must be integrated for all possible levels of activation x < c, weighted by 

the density (5) that level x has been reached by time t = τ:

E DV τ A DV τ A > τ =
−∞

c
wIG x, τ c, μV, σV

2 ⋅ E DV τ A X τ = x dx (7)

An analytic solution for the expectation of DV τ A is given in Schwarz (1994, Eq. 10).

The diffusion process only describes the ‘detection’ latency D, or processing time. To derive 

a prediction for the observed response time T, an additional variable M is typically 

introduced that summarizes everything not described by the diffusion process (e.g., motor 

execution), such that T = D + M. Therefore, the prediction for the mean response time is

E T = E D + μM (8)

Where the additional parameter denotes the expectation of M. Schwarz (1994) demonstrated 

that such a model of additive superposition quite accurately describes the RTs reported for 

Participant B.D. from Miller (1986) in a speeded response task with 13 different SOAs.

The present experiment

We trained monkeys to detect visual, auditory and audiovisual vocal signals in a constant 

background of auditory noise (Chandrasekaran et al., 2011). We chose a free response 

paradigm (without explicit trial markers, Egan, Greenberg, & Schulman, 1961; Shub & 

Richards, 2009) because it mimics natural audiovisual communication—faces are usually 

continuously visible and move during vocal production. The task was a typical redundant 

signals task (Miller, 1982, 1986). The stimuli were chosen to approximate natural face-to-

face vocal communication. The task of the monkeys was to detect the visual motion of the 

mouth of an avatar making a coo vocalization or the onset of the auditory component of a 

coo vocalization. Audiovisual stimuli were presented either in synchrony or at ten different 

SOAs.

Methods

Subjects

Nonhuman primate subjects were two adult male macaques (1 and 2, Macaca fascicularis). 

The monkeys were born in captivity and housed socially. The monkeys underwent sterile 

surgery for the implantation of a painless head restraint (see Chandrasekaran, Turesson, 

Brown, & Ghazanfar, 2010). All experiments and surgical procedures were performed in 
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compliance with the guidelines of the Princeton University Institutional Animal Care and 

Use Committee.

Procedure

Experiments were conducted in a sound attenuating radio frequency enclosure. The monkey 

sat in a primate chair fixed 74 cm opposite a 19-inch CRT color monitor with a 1280 × 1024 

screen resolution and 75 Hz refresh rate. The screen subtended a visual angle of 25° 

horizontally and 20° vertically. All stimuli were centrally located on the screen and occupied 

a total area (including blank regions) of 640 × 653 pixels. For every session, the monkeys 

were placed in a restraint chair and head-posted. A depressible lever (ENV-610M, Med 

Associates) was located at the center-front of the chair. Both monkeys spontaneously used 

their left hand for responses. Presentation (Neurobehavioral Systems) was used for stimulus 

presentation and data collection.

Stimuli

The stimuli for the behavioral task were inspired by the observation that besides providing 

benefits for discrimination of speech sounds (Besle, Fort, Delpuech, & Giard, 2004; Grant, 

Walden, & Seitz, 1998), visual speech enhances the detection of auditory speech (Grant, 

2001; Grant & Seitz, 2000; Schwartz, Berthommier, & Savariaux, 2004). In such settings, 

the vocal components of the communication signals are degraded by environmental noise. 

The motion of the face, on the other hand, is usually perceived clearly. In the task, monkeys 

detected the onset of ‘coo’ calls. These coo calls are affiliative vocalizations commonly 

produced by macaque monkeys in a variety of contexts (Hauser & Marler, 1993; Rowell & 

Hinde, 1962).

Auditory Stimuli: We used coo calls from two macaques as the auditory components of 

vocalizations; these were recorded from individuals that were unknown to the monkey 

subjects. Vocalizations could be one of three levels of sound intensity (85 dB, 68 dB, 53 dB) 

and were embedded in a constant background noise of 63 dB SPL. We therefore had 

auditory stimuli at three signal to noise ratios, SNRs, of High: +22 dB, Medium: +5 dB and 

low: –10 dB The vocalizations were resized to a constant duration of 400 ms using a phase 

vocoder (Flanagan & Golden, 1966) and normalized in amplitude (Figure 2A).

Visual Stimuli.—The visual components of the vocalizations were 400 ms long videos of 

synthetic monkey agents making a coo vocalization. The size of the mouth opening was in 

accordance with the intensity of the associated vocalization: greater sound intensity was 

coupled to larger mouth openings by the dynamic face. For the three auditory SNRs, we had 

three corresponding mouth opening sizes. The animated stimuli were generated using 3D 

Studio Max 8 (Autodesk) and Poser Pro (Smith Micro), and were extensively modified from 

a stock model made available by DAZ Productions (Silver key 3D monkey, Figures. 2B, C). 

Further details of the generation of these visual avatars are available in a prior study 

(Chandrasekaran et al., 2011).

Audiovisual Stimuli.—The audiovisual stimuli were generated by presenting both the 

visual and auditory components either in synchrony or at 10 different SOAs. Audition could 
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precede vision by 240, 160, 120, 80 or 40 ms and vice versa. For audiovisual stimuli the 

intensities were always paired; that is, the weak auditory stimulus was always paired with a 

small mouth opening (AhighVhigh, AmediumVmedium, AlowVlow). We, therefore, had 3 

matched audiovisual intensities and 11 asynchronies (10 SOA plus synchrony), which 

resulted in 33 AV conditions in total. Each block also had 3 auditory intensities and 3 visual 

intensities. Catch trials (C) were used to discourage from spontaneous responses and to 

control for fast guesses in the RT analysis (Eriksen, 1988).

Task

During the task (Figure 2D), an avatar face (e.g., Avatar 1) was continuously present on the 

screen; the background noise was also continuous. In the visual-only condition (V), Avatar 1 

moved its mouth without any corresponding auditory component. In the auditory-only 

condition (A), the vocalization paired with Avatar 2 was presented with the static face of 

Avatar 1. Finally, in the audiovisual condition (AV), Avatar 1 moved its mouth accompanied 

by the corresponding vocalization of Avatar 1 and in accordance with its intensity. We, 

therefore, had two AV stimuli (A1V1 and A2V2). In the even blocks, the avatar face was the 

still frame of V1, A2 was the auditory sound played, and A1V1 was the audiovisual 

stimulus. The other block had the opposite configuration. This task design avoids the 

conflict between hearing a vocalization with the corresponding avatar face not moving 

(Fournier & Eriksen, 1990).

Stimuli of each condition (V, A, AV, C) were presented after a variable inter stimulus 

interval between 1 and 3 seconds (drawn from a shifted and truncated exponential 

distribution). Monkeys indicated the detection of a V, A or AV event by pressing the lever 

within 2 seconds following the onset of the stimulus. In the case of hits, the ISI was started 

immediately following a juice reward. In the case of misses, the ISI began after the two 

second response window.

After every block of 126 trials (33 AV stimuli + 3 A, 3 V, 3 catch stimuli, each stimulus 

condition repeated 3 times), a brief pause (~10 to 12 seconds) was imposed. Then, a new 

block was started in which, the avatar face, and the identity of the coo sound used for the 

auditory stimuli was switched. Within a block, all the conditions were randomly interleaved 

with one another.

In the behavioral dataset we analyzed here, we pooled the data across sessions. We analyzed 

7477 trials from Monkey 1 and 8969 trials from Monkey 2, including hits and misses. We 

had approximately 191 trials per condition for Monkey 1 and about 229 trials per condition 

for Monkey 2.

Training

Monkeys were initially trained over many sessions to detect the coo vocalization events in 

visual, auditory or audiovisual conditions while withholding responses when no stimuli were 

presented. A press of the lever within a window starting 150 ms after onset of the 

vocalization event and within two seconds led to a juice reward and was defined as a hit. An 

omitted response in this two-second window was classified as a miss similar to the studies of 

free response tasks (without explicit trial markers , Egan et al., 1961; Shub & Richards, 
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2009). Lever presses to catch trials were defined as false alarms. In addition, the random 

presses during the inter-stimulus interval (ISI) were discouraged by enforcing a timeout 

where no stimuli were presented. The timeout was chosen randomly from a uniform 

distribution between 3.0 and 5.5 s. The monkeys had to wait for the entire duration of this 

timeout period before a new stimulus was presented. Any lever press during the timeout 

period led to a renewal of the timeout with the duration again randomly drawn from the 

same distribution. Monkeys were trained until the erroneous presses in this ISI period were 

below 10% of trials in any given session.

Statistical analysis of behavioral performance

We define accuracy in this detection task context as the hit rate, that is, ratio of successful 

detections (“hits”) performed by the participant over the sum of both successful and 

unsuccessful detections (“misses”). Unsuccessful detections occur when the presented 

stimulus is close to the detection threshold with participants often omitting responses. The 

false alarm rate (i.e., presses to the catch stimuli) was defined as the number of false alarms 

divided by the total number of catch trials. False alarms were very rare. Mean RTs and SDs 

were computed for the correct responses; confidence intervals were obtained by resampling 

the observed RTs (including omitted responses and false alarms) 1000 times and estimating 

the standard deviation of the mean of the resampled data.

Test of the race model inequality

An important model class for redundant signals effects in detection tasks is the so-called 

race model, or separate activation model (Colonius & Diederich, 2006; Gondan & Minakata, 

2016; Miller, 1982, 1986; Raab, 1962). According to the race model, redundancy benefits 

are not due to an actual integration of visual and auditory signals but because of parallel 

processing of both signals. In the bimodal stimulus, the two channels engage in a race-like 

manner (“parallel first-terminating model,” Townsend & Ashby, 1983), so that the 

probability for fast responses is increased because slow processing times are canceled out by 

the other channel. The redundancy gains are limited, however, and a test of whether this 

mechanism can explain the observed RTs is the well-known race model inequality (Miller, 

1982), stating that the RT distribution for redundant stimuli FAV t  never exceeds the sum of 

the RT distributions for the unisensory stimuli FA t ,   FV t ,

FAV t ≤ FA t + FV t , for all t . (9)

Eriksen (1988) demonstrated that this inequality could be refined by taking into account 

anticipatory responses to catch trials (C) (see also Gondan & Heckel, 2008),

FAV t + FC t ≤ FA t + FV t , for all t . (10)

For redundant targets presented with SOA τ, the inequality generalizes to (Miller, 1986)
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FV τ A t + FC t − τ ≤ FV t + FA t − τ , for all t . (11)

If this inequality is violated in a given data set, then parallel self-terminating processing 

cannot account for the benefits observed for multisensory stimuli, suggesting an explanation 

based on the integration of the signals (e.g., the superposition model described above; see 

also, Luce, 1986; Miller, 2016).

For each condition, we determined the empirical cumulative distribution functions (eCDFs) 

and then computed the maximum violation, that is, the maximum difference between the 

left-hand side and the right-hand side of Inequality 11. A bootstrap technique was used to 

assess the statistical significance of the observed violations of the race model inequality 

(Miller, 1986).

Test of the wiener diffusion superposition model

We fit the predictions of the Wiener diffusion superposition model to the mean RTs from the 

two monkeys using Equation 8. For each monkey, an approximate χ26
2  goodness-of-fit 

statistic was given by the sum of the squared standardized deviations of the predicted and the 

observed average response times (e.g., Schwarz, 2006). The 26 degrees of freedom are given 

by the difference between the number of conditions (3 intensities, 11 SOAs plus the 

unisensory conditions) minus the number of model parameters: 12 parameters are due to the 

drift and variance for each visual and auditory SNR (3 SNRs × 2 modalities × 2 parameters). 

The thirteenth parameter is the average residual non-decision time (Eq. 8). Similar statistics 

were computed for the other models and the parameters appropriately adjusted.

Results

By and large, the behavior of the monkeys in the detection task was consistent with previous 

reports of human observers performing redundant signals detection tasks that involve 

variations in both SNR and SOA (Blurton et al., 2014; Diederich, 1995; Gondan et al., 2010; 

Todd, 1912). However, there were some important differences. The monkeys omitted 

responses to the lowest auditory SNRs, and thus the detection accuracy rates showed lawful 

decreases with changes in SNR for the auditory components of vocalizations. For example, 

both monkeys only had 55% accuracy with the low SNR auditory stimuli, and only about 

90% accuracy for the medium SNR auditory stimuli. In contrast, changes in mouth opening 

size for the visual component of the vocalizations, which were meant to be a visual correlate 

of SNR, had only a minimal impact on accuracy (~90% for all SNRs).

In both monkeys, statistically significant violations of the upper bound of the race model 

inequality for RTs (Inequality 11) occurred for a large range of SOAs, indicating that the 

observed redundancy gains were inconsistent with a race model. For Monkey 1, statistically 

significant violations of Equation 11 (at the criterion of P < .05) were observed in 28 out of 

the 33 audiovisual conditions, for Monkey 2, this was observed in all 33 conditions.
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The mean RTs showed the wing-shaped pattern observed in redundant signals tasks with 

SOA manipulation (Miller, 1986; Ulrich & Miller, 1997), with minimal RTs when auditory 

and visual cues were presented simultaneously, and roughly monotonically increasing mean 

RT for the asynchronous stimuli.

We next examined if the single-barrier Wiener diffusion superposition model could describe 

the behavior of the monkeys during this task. The fitted model showed a pattern that was 

consistent with the mean RTs of the monkeys (Figures 3A, B). However, the overall fit was 

unsatisfactory and appears poor for the lowest auditory-only SNRs (Monkey 1: χ26
2 = 49.2, 

P = 0.004; Monkey 2: χ26
2 = 53.9, P = 0.001).

As noted above, the monkeys omitted a substantial proportion of responses to the lowest and 

medium SNR auditory stimuli and thus had imperfect accuracy. By design, this is not 

accounted for by the single-barrier Wiener diffusion model. The integral in Equation 3 

ranges from 0 to infinity, such that, absorption at the upper barrier is a certain event given 

enough time. Thus, the Wiener diffusion superposition model always predicts ceiling level 

accuracies for all intensities, which is obviously inconsistent with the observed behavioral 

results. A similar argument holds for superposition models based on Ornstein-Uhlenbeck 

processes (Diederich, 1992, 1995)

Extension 1: The diffusion superposition model with a deadline

An unrealistic assumption of the model described above is that accumulation will always 

complete, which in the single-barrier Wiener diffusion model implies that the monkeys have 

100% detection accuracy (or hit rate). Given enough time, a Wiener diffusion process with 

drift μ > 0 will almost certainly reach the criterion. From an experimental perspective, this 

has several implications: The intensity of the stimulus components must be sufficiently high 

to ensure detection rates of 100%, and the temporal window for responding must be 

infinitely long to guarantee that all responses are collected.

However, if stimulus detection is limited by a deadline d (we assume that the deadline is 

above the SOA, d > τ) the proportion of correct responses is given by the distribution of the 

detection times at t = d. For unimodal and synchronous audiovisual stimuli, this probability 

corresponds to the inverse Gaussian distribution at time d, P Di ≤ d = FIG d c, μi, σi
2 , with i

depending on the modality, i = A, V, AV. The expected detection time, conditional on 

stimulus detection before d, is obtained by integration of t ⋅ f IG t  from t = 0 to d (see Eq. 4), 

with the solution for the integral given in Schwarz (1994, Eq. 6).

In bimodal stimuli with onset asynchrony 0 < τ < d [say, without loss of generality, V τ A], it 

is necessary to distinguish the intervals 0…τ  and τ…d  during which the drift (and the 

variance) of the diffusion process amount to μV (σV
2 ) and μAV (σAV

2 ), respectively. The 

probability for correct detections amounts to the sum of the detections within 0…τ  in which 

only the first stimulus contributes to the buildup of evidence; and the detections within 

τ…d  in which both stimuli are active.
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P DV τ A ≤ d = P DV τ A ≤ τ +   P τ < DV τ A ≤ d

= P DV ≤ τ +
−∞

c
P X τ = x ⋅ P DAV ≤ d − τ X τ = x   dx

= FIG τ c, μV, σV
2 +

−∞

c
wIG x, τ c, μV, σV

2 ⋅ FIG d − τ c − x, μAV, σAV
2   dx

(12)

with P X τ = x = wIG x, τ ⋯  denoting the density of the activation of the processes not yet 

absorbed at t = τ (Eq. 5). The integrand decomposes into a sum of four terms ϕ x ⋅ Φ x m, s2

that are integrated using a bivariate Normal distribution (Owen, 1980, Eq. 10,010.1, see 

Appendix A). For the accuracy, an approximate χ26
2  statistic is obtained by the squared 

difference between the predicted and observed proportion of responses, divided by the 

variance π 1 − π /N, with π = P D ≤ d  denoting the binomial probabilities for correct 

detections (e.g., Schwarz, 2006). To avoid numerical problems close to zero or one, π was 

bounded within 0.01,   0.99 .

The expected detection time, conditional on detection before the deadline, amounts to

E DV τ A DV τ A ≤ d

= 1
P DV τ A ≤ d

× P DV τ A ≤ τ ⋅ E DV τ A DV τ A ≤ τ +   P τ < DV τ A ≤ d

⋅ E DV τ A τ < DV τ A ≤ d ,

(13)

with P DV τ A ≤ d  given by Equation 12. The first term in the brackets is given by Equation 

4,

P DV τ A ≤ τ ⋅ E DV τ A DV τ A ≤ τ

= P DV ≤ τ ⋅ E DV DV ≤ τ

=
0

τ
t ⋅ f IG t c, μV, σV

2 dt .

(14)

The second term is more complicated,
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P τ < DV τ A ≤ d ⋅ E DV τ A τ < DV τ A ≤ d

=
−∞

c
P X τ = x ⋅ P DAV ≤ d − τ X τ = x

⋅ τ + E DAV X τ = x, DAV ≤ d − τ   dx

=
−∞

c
wIG x, τ c, μV, σV

2 ⋅ FIG d − τ c − x, μAV, σAV
2   dx ⋅ τ

+
−∞

c
wIG x, τ c, μV, σV

2 ⋅
0

d − τ
t ⋅ f IG t c − x, μAV, σAV

2 dt   dx .

(15)

The w ⋅ G term corresponds to Equation 12, multiplied by τ. The double integral decomposes 

into four −∞
y ϕ x m1, s1

2 ⋅ Φ x m2, s2
2   dx terms (Owen, 1980, Eq. 10,010.1, see Eq. 12 above) 

and another four terms of the form −∞
y x ⋅ ϕ x m1, s1

2 ⋅ Φ x m2, s2
2   dx that match with Owen 

(1980, Eqs: 10,010.1 and 10,011.1).

For the observable mean RT, we assume again an SOA invariant mean residual μM,

E T = E D + μM (16)

Details are given in Appendix A, with R code (R Core Team, 2017) in the online 

supplement. For each monkey, an approximate χ25
2  goodness-of-fit statistic was determined 

by the squared standardized deviations of the predicted and the observed average response 

times. Compared to the model without a deadline, one degree of freedom is lost because the 

deadline is adjusted to the data. The χ2 for mean RT and accuracy are not independent, 

however. We therefore did not add them up but instead transformed them into P-values and 

maximized the minimum of the P-values as a conservative fitting criterion.

Results for the deadline model

Figure 4 shows the results for a Wiener diffusion superposition model with a deadline, fitted 

to the behavioral performance of the monkeys (accuracy and mean RTs). The deadline 

parameter improves the model fits and provides a very good description of both accuracy 

and RTs of the monkeys. For Monkey 1 the model provided an excellent fit to the data 

(Accuracy: χ26
2 = 34.2; mean RT: χ25

2 = 33.0,   Pmin = 0.131). In Monkey 2, the fit was less 

convincing (Accuracy: χ26
2 = 64.6; mean RT: χ25

2 = 63.1,     Pmin < 0.001), but acceptable 

given the conservative fitting procedure where we tried to jointly fit both the RTs and hit 

rates of the monkeys. Unlike the standard Schwarz (1994) implementation, we found that the 

Wiener model with a deadline can predict the RT better even for the lowest SNRs.

The best fitting parameter estimates are shown in Table 1. Drift rates increased with stimulus 

intensity (most visible for auditory stimuli), and variances roughly followed this pattern. The 
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deadline was below 1 s, which is consistent with the temporal structure of the task. A 

substantial residual movement time, μM, indicates that the model describes about 2/3 of the 

processing time of a simple response task such as the one used in this study. Taken together, 

the deadline model provides a good fit to both the accuracy and response time of monkeys 

performing the detection task. We next compared the fits from the deadline to a two-barrier 

Wiener diffusion superposition model.

Extension 2: Wiener diffusion superposition model with two barriers

In diffusion models for two-choice tasks, evidence accumulation is often described by a 

Wiener process that evolves between two evidence barriers. As soon as one of these barriers 

is reached, the respective response is elicited. In the go/no-go task, only one barrier is 

associated with a response; the other barrier is thought to represent the non-target decision, 

and the response is withheld. Two-barrier Wiener diffusion models have been quite 

successful in describing the response times and accuracy rates in choice tasks with two 

alternatives (Laming, 1968; Luce, 1986; Smith & Ratcliff, 2004; Townsend & Ashby, 1983). 

Gomez et al. (2007) demonstrated that such a model could successfully describe the 

response times, false alarms and omission rates in go/no-go tasks with lexical and 

numerosity decisions. The model was also used to describe the mean RTs and variances in a 

redundant signals task with go/no-go responses (Blurton et al., 2014).

From a technical perspective, a simple response task with hits, misses, and catch trials like 

the one used in the present experiment shares similarities with a go/no-go task. We, 

therefore, evaluated if such a two-barrier diffusion model can account for the observed 

behavior of the two monkeys. The technical details of such two-barrier models have already 

been explicated elsewhere (Navarro & Fuss, 2009; Ratcliff et al., 2016; Vandekerckhove & 

Tuerlinckx, 2008; Wagenmakers, Van Der Maas, & Grasman, 2007). Here, we provide just a 

summary, focusing on the issues related to the superposition of evidence accumulation in 

synchronous and asynchronous redundant stimuli.

For single stimuli, evidence accumulation follows a time-homogeneous Wiener process with 

drift μA > 0, μV > 0 and variance σA
2 > 0, σV

2 > 0. We assume that the process starts at 

X 0 = 0 and then evolves in time between two constant absorbing barriers u > 0 and −ℓ < 0. 

If the upper barrier u is reached first, a response is elicited; if the lower barrier −ℓ is reached 

first, the response is withheld. The barrier-specific first-passage time densities f u t , 

distributions Fu t , mean absorption times Eu and overall absorption probabilities Pu are 

described in Cox and Miller (1965), Grasman, Wagenmakers, and van der Maas (2009), and 

Horrocks and Thompson (2004). Efficient numerical implementations for the infinite series 

for f u t  and distributions Fu t  are given by Navarro and Fuss (2009), Blurton, Kesselmeier, 

and Gondan (2012) and Voss and Voss (2007) for both small and large t (see also Appendix 

B for further simplifications and optimizations of the calculation).

For synchronously presented redundant stimuli presented, coactivation occurs, resulting in a 

new Wiener process with drift μAV = μA + μV and variance σAV
2 = σA

2 + σV
2  (see Eqs. 3 and 4 
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above). For asynchronous stimuli with onset asynchrony τ [e.g., V τ A], evidence 

accumulates with drift μV and variance σV
2  within the first τ milliseconds. During this 

interval, an absorption occurs with a probability of Fu τ u,   ℓ,   μV, σV
2 , given by the “small 

time series” because τ ≪ ∞ (see Gondan, Blurton, & Kesselmeier, 2014, Eq. 3). The 

expected conditional absorption time Eu D D ≤ τ  is given by 0
τ t ⋅ f u τ u,   ℓ,   μV, σV

2 dt, 

weighted by Fu τ . Because for small t, the series f u is an absolutely decreasing, alternating 

series of weighted inverse Gaussian distributions (see Appendix B), and the second 

antiderivative of the inverse Gaussian distribution is known (e.g., Schwarz, 1994, Appendix 

A), the integral can be determined analytically by integrating the components of the series. 

At time τ, the onset of the second stimulus component, X τ  ranges somewhere between −ℓ
and u, which is described by the (defective) density w x,   τ  (Cox & Miller, 1965, p. 222). 

As in the single-barrier model (see above Eq. 7), Pu and Eu (both conditional on D > τ) are 

then given by the compound of Pu − x and τ + Eu − x for drift μAV and variance σAV
2 , weighted 

by w x,   τ , and integrated over all x ∈ −ℓ, u . An analytical solution for 

−ℓ
u w x, τ ⋅ Pu − x dx is given in Appendix B; the integral for Eu D D > τ  must be determined 

numerically. Absorption probabilities for the lower barrier are obtained by a change of 

parameters, u,   ℓ, μ, σ2 ℓ,   u, − μ, σ2 .

As before, we allowed one more parameter, μM, describing the average duration of the 

residual processes, unrelated to the go/nogo decision. Again, the upper barrier was fixed at 

u = 100, and the lower barrier was treated as a free parameter. The pseudo-χ2 goodness-of-fit 

statistic was again given by the worst of χ2 for the mean RTs and the χ2 for the accuracy.

Results for the two-barrier model

Figure 5 shows the results from fitting the diffusion model with two barriers to the 

behavioral performance of the monkeys (accuracy and mean RTs) as a function of SNR and 

SOAs (see also Table 2). In both monkeys, the qualitative fits from the two-barrier model to 

the data were worse than for the deadline model. For instance, both accuracy and response 

time for the auditory-only SNRs are poorly described, and the model inflates the mean RT 

for the lowest auditory SNR.

These qualitative observations are in close agreement with the quantitative analysis. For both 

monkeys, the two barrier model provided a rather poor fit to the data (Monkey 1: Accuracy: 

χ26
2 = 105.2; mean RT: χ25

2 = 103.3,     Pmin <   0.001; Monkey 2: Accuracy: χ26
2 = 111.0; 

mean RT: χ25
2 = 109.1,     Pmin <   0.001). These fits were considerably poorer (i.e., larger 

goodness of fit statistics) than the DSM model with a deadline.

Discussion

The goal of this study was to further describe and understand how the behavioral benefits of 

multisensory integration during a detection task depended on the intensities of and delays 
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between sensory stimuli. Consistent with many earlier results in bimodal divided attention 

(Diederich & Colonius, 2004a; Molholm et al., 2002; Murray et al., 2005), separate 

activation (a.k.a. “race”) models were insufficient to explain the behavioral patterns we 

observed (Miller, 1982, 1986). We used many SOA conditions, and thus the majority of the 

stimuli used in the present study were audiovisual in nature. Enrichment of audiovisual 

conditions rules out effects of trial history and modality shift effects as the exclusive driving 

force for coactivation effects (Gondan, Lange, Rösler, & Röder, 2004; Miller, 1986; Otto, 

Dassy, & Mamassian, 2013; Otto & Mamassian, 2012).

The intensity manipulation for the auditory modality was effective (Figure 4). The drift 

estimates for the deadline model monotonically increased with SNR (Table 1; the variance 

estimates showed a less regular pattern). In the visual modality, drift and variance estimates 

were more or less equal for the different intensities, which is consistent with the converging 

pattern of the mean RTs for positive SOAs (Figure 4). The residual μM was similar in the 

two animals, reflecting their overall response speed and the fact that stimulus detection is 

probably just out one of several stages of the overall response process.

Our objective was to evaluate simple models that describe how accuracy and response time 

of observers depend on these factors. We pursued two extensions of the single-barrier 

Wiener diffusion superposition model (Schwarz, 1989, 1994) to describe both accuracy and 

RTs of monkeys detecting audiovisual vocalizations of different intensities. A key finding 

from our study is that incorporating a stopping time for the Wiener diffusion process may 

help to better model behavior in multisensory detection when multiple SNRs and SOAs are 

involved. The idea of an internal stopping time or deadline has been put forth by several 

other authors (Diederich, 2008; Diederich & Oswald, 2016; Ratcliff & Rouder, 2000; 

Yellott, 1971) and for fixed- and variable-duration tasks (Ratcliff, 2006). These paradigms 

are often analyzed using deadline models (Busemeyer & Diederich, 2002). In our extension 

of Schwarz’s (1994) model, we assumed that the observers internally set the deadline (or 

“optional stopping time”) and therefore we considered it a free parameter and estimated it 

from the response time data. Addition of this deadline allowed the model to fit both RT and 

accuracy in the animals.

The deadline model outperformed a two-barrier model with additive superposition of Wiener 

diffusion processes (Blurton et al., 2014; Gomez et al., 2007). The two-barrier Wiener 

diffusion models (Ratcliff, 1978; Ratcliff et al., 2016; Smith & Ratcliff, 2004) have been 

remarkably successful in describing the choice behavior of observers in a large variety of 

tasks. The primary issue we found with the two-barrier model is that it over-predicted 

response times for the lower stimulus intensities, a problem recognized previously 

(Hawkins, Forstmann, Wagenmakers, Ratcliff, & Brown, 2015).

We have limited ourselves to describing and modeling the RT and response accuracy for a 

detection task across different SNRs and SOAs (Cluff et al., 2015; Crevecoeur et al., 2016; 

Dixon & Spitz, 1980; Holmes, 2009; Meredith et al., 1987; Stein et al., 1989; van 

Wassenhove et al., 2007). Some studies have investigated the effect of sensory reliability 

which shares some similarities to the sensory intensity manipulation we performed here on 

benefits of multisensory integration but did not modulate the delay between the sensory 
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stimuli (Drugowitsch, DeAngelis, Klier, Angelaki, & Pouget, 2014). Other studies have 

examined the dependence on sensory delays but not on sensory intensity (Crevecoeur et al., 

2016). Experiments that simultaneously vary stimulus intensity, stimulus reliability and SOA 

may help better understand the relative roles of these factors in multisensory detection and 

discrimination.

The present study focused on the description of mean RT and accuracy in the single-barrier 

Wiener diffusion superposition model (Schwarz, 1994). Our unique contribution in this 

paper was to expand on this model in two ways. We added a single additional parameter 

(either a deadline or a lower barrier), and to which we were able to provide mathematical or 

computational improvements (see Appendices A, B, and online supplement). A number of 

other extensions would be possible, for example, two-barrier models with deadlines and/or 

collapsing bounds (Diederich & Oswald, 2016; Hawkins et al., 2015). Urgency signals may 

also provide a better description of the multisensory detection behavior studied here 

(Ditterich, 2006). Another possible extension is the leaky competing accumulator model 

(Usher & McClelland, 2001). We anticipate future models will include combinations of 

these different features to better describe both RT and accuracy in simple and more complex 

response tasks.

We did not consider diffusion models based on Ornstein-Uhlenbeck processes. In the 

Ornstein-Uhlenbeck process, the drift is overlaid by a driving force towards a mean 

reversion level; this model has gained popularity in financial modeling and in neuroscience 

(Alili, Patie, & Pedersen, 2005; Ricciardi & Sacerdote, 1979; Zhang & Bogacz, 2010). The 

Ornstein-Uhlenbeck process is a generalization of the Wiener process; if the parameter that 

controls reversion to the mean set to zero, it specializes to the Wiener process. The process 

can model leakage or decay in information accumulation, primacy and recency effects in 

memory, and approach and avoidance effects in decision-making (Busemeyer & Townsend, 

1993; Diederich, 1997; Diederich & Busemeyer, 2003). Diederich (1992, 1995) presented a 

superposition model that assumes additive superposition of Ornstein-Uhlenbeck processes, 

including an efficient algorithm for approximating the densities and moments of the first 

passage times in a two-barrier model with absorbing and/or reflecting barriers (Diederich, 

1995, 1997; Diederich & Busemeyer, 2003; Smith, 1995, 2000). Similar to the Wiener 

process with drift, absorption at a single absorbing barrier is a sure event in the Ornstein-

Uhlenbeck model (Cox & Miller, 1965); thus, a shift to a more general Ornstein-Uhlenbeck 

process would not account for reduced accuracy we observed in our experiments. Stated 

differently, even for the Ornstein-Uhlenbeck process we believe either the extensions 

proposed here or other extensions described above will be needed to describe the detection 

accuracy and response times for our data. However, this is needs to be explicitly verified in 

future work.

We have shown that an accumulator, which integrates visual and auditory inputs to a bound, 

explained the behavioral benefits from multisensory integration. However, in our task 

design, no explicit trial onset information was provided to the animals. Instead, the stimulus 

arrived in a continuous ongoing stream. Our paradigm has several advantages because it 

mimics a natural flow of stimuli in the real world and avoids sharp transients in visual 

stimuli. However, it raises the important question of how an integrator knows when to begin 
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integrating the sensory evidence? One plausible solution is that a neural circuit resets the 

putative integrator after either the last behavioral action by the animal (false alarm/correct 

detection) or after some time has elapsed (Janssen & Shadlen, 2005). The fits may improve 

by incorporating previous ideas which propose to jointly model the inter stimulus interval as 

well as the responses to sensory stimuli.

The model considered here predicts RTs and accuracy of monkeys when they detect 

dynamic visual and auditory stimuli (vocalizations). In other contexts, generalized variants 

of these coactivation models have been used with dynamic stimuli (Drugowitsch et al., 

2014). The success of the Wiener diffusion superposition model and its generalized versions 

in explaining behavior for both static and dynamic multisensory stimuli suggests the 

possibility of common and not different mechanisms for the processing of static and 

dynamic multisensory stimuli (Raposo, Sheppard, Schrater, & Churchland, 2012). Raposo et 

al. (2012) showed that rats and humans performing a discrimination task derived behavioral 

benefits from integrating streams of auditory and visual events. They suggested that the 

mechanisms used for these pulsatile stimuli are not integrated by typical mechanisms of 

multisensory integration which they suggested involved close correspondence between 

auditory and visual inputs to lead to integration—akin to “physiological synchrony” 

(Meredith et al., 1987). However, the superposition model can process evidence appearing at 

random times and offset from one another. The superposition model will also show 

phenomenon such as physiological synchrony—when the intensities are roughly matched 

maximal benefits occur at or near synchrony (Ulrich & Miller, 1997).

The key contribution was to show that extension of a model with additive superposition of 

the channel-specific evidence explains the benefits of integrating faces and voices across a 

wide range of SOAs and SNRs. This class of coactivation models has previously been used 

to explain response times of human participants in auditory-visual detection tasks 

(Diederich, 1995; Schwarz, 1989, 1994). The emphasis of these additive coactivation models 

(or more general versions, e.g., Drugowitsch et al., 2014) is prima facie at odds with 

classical reports promoting superadditive multisensory interaction (Stein & Meredith, 1993). 

In these early studies, superadditivity, and other nonlinear mechanisms were considered 

fundamental for mediating benefits from multisensory integration. However, as a series of 

more recent studies have shown, the majority of neurons in classical multisensory brain 

regions often integrate their synaptic input in a linear manner for a range of stimulus 

intensities. Nonlinearities are observed only at some very low intensities (Dahl, Logothetis, 

& Kayser, 2010; Populin & Yin, 2002; Skaliora, Doubell, Holmes, Nodal, & King, 2004; 

Stanford, Quessy, & Stein, 2005; Stanford & Stein, 2007; Stein & Stanford, 2008)—additive 

combination is the norm. For conflicting stimuli (e.g., in temporal order judgment, where 

participants are asked to report which modality came first), linear summation may occur in 

the other direction, with the overall evidence corresponding to the difference between the 

channel-specific activations (Schwarz, 2006).

Besides linearity of multisensory integration in single neurons, studies increasingly 

demonstrate that ensembles of neurons (which might encode stimuli nonlinearly at the single 

neuron level) can perform linear computations (Ma, Beck, Latham, & Pouget, 2006). We 

believe that the abstract behavioral models presented here might be implemented by 
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adopting frameworks such as probabilistic population codes. Computationally, at the 

population level, linear summation of neural activation is possible and yields optimal 

solutions for a very general class of computational problems (Beck et al., 2008; Ma et al., 

2006). Extensions of this model showed that assuming Poisson-like distributions of spike 

counts allows biological networks to accumulate evidence while choosing the most likely 

action (Beck et al., 2008). We believe our description of behavioral data by a simple formal 

model will assist in relating neurophysiological and modeling studies of multisensory 

detection and broadly integration (Chandrasekaran, 2017; Fetsch, DeAngelis, & Angelaki, 

2013; Ma et al., 2006; Seilheimer et al., 2014).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A:: Deadline model

A.1 Probability of absorption

Here we derive the explicit expressions for the probability of absorption in bimodal stimuli 

with onset asynchrony 0 < τ < d (Eq. 12) in the Wiener diffusion model with deadline d, for 

the condition V τ A. Between t = 0 and t = τ, only the visual channel contributes to the 

evidence, so the probability of absorption within the interval 0, τ  is given by

P DV τ A ≤ τ = FIG τ c, μV, σV
2 (A.1)

with FIG denoting the inverse Gaussian distribution (Eq. 2). Later, within τ, d , the 

probability of absorption is a mixture of absorption probabilities of the processes still active 

at time τ, with the barrier depending on the activation X τ < c, weighted by their density:

P τ < DV τ A ≤ d =
−∞

c
wIG x, τ c, μV, σV

2 ⋅ FIG d′ c − x, μAV, σAV
2   dx, (A.2)

with d′ = d − τ, and wIG given by Equation 5. The integrand in (A.2) can be transformed into 

four integrals of the form q −∞
c exp rx ϕ x m1, s1

2 ⋅ Φ x m2, s2
2 dx:
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−∞
c

wIG x, τ c, μV, σV
2 ⋅ FIG d′ c − x, μAV, σAV

2   dx

= −∞
c

ϕ x μVτ, σV
2 τ  Φ x c − μAVd′, σAV

2 d′   dx

+exp
2cμAV
σAV

2
−∞

c
exp −

2μAV
σAV

2 x ϕ x μVτ, σV
2 τ Φ x c + μAVd′, σAV

2 d′   dx

−exp
2cμV
σV

2 −∞
c

ϕ x 2c + μVτ, σV
2 τ  Φ x c − μAVd′, σAV

2 d′   dx

−exp
2cμV
σV

2 +
2cμAV
σAV

2
−∞

c
exp −

2μAV
σAV

2 x ϕ x 2c + μVτ, σV
2 τ  Φ x c + μAVd′, σAV

2 d′   dx

By completing the square, we have exp rx ϕ x m1, s1
2 = exp rm1 + r2s1

2/2 ϕ x m1′ , s1
2 , with 

m1′ = m1 + rs1
2. This yields

−∞

c
ϕ x m1′ , s1

2 ⋅ Φ x m2, s2
2   dx =

−∞

c − m1′ /s1
ϕ z ⋅ Φ z

m2 − m1′
s1

,
s2
2

s1
2   dz

=
−∞

c − m1′ /s1
ϕ z ⋅ Φ

s1
s2

z +
m1′ − m2

s2
  du,

(A.3)

Let z =
x − m1′

s1
, or x = zs1 + m1′ . The result in A.3 matches Eq. 10,010.1 in Owen (1980) and is 

determined by the bivariate Normal distribution, 

−∞
y ϕ u ⋅ Φ a + bu du = ΦΦ a

1 + b2 , y ϱ = − b

1 + b2 .

A.2 Conditional mean response time

We now derive analytic expressions for the mean response time, conditional on absorption 

before the deadline (Eqs. 13–15 in the main text). Without loss of generality, we consider 

again the case V τ A. Between t = 0 and t = τ, only one channel contributes to the evidence, 

so the mean RT is given by Schwarz (1994, Equation A.2):
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P DV τ A ≤ τ ⋅ E DV τ A DV τ A ≤ τ

=
0

τ
t   f IG t c, μV, σV

2 dt

= c
μV

Φ μVτ c, σV
2 τ − exp

2cμV
σV

2 Φ −μVτ c, σV
2 τ

(A.4)

Within τ, d , the expected detection time is again a compound of expectations of the 

processes still active at time τ, weighted by the density of X τ . The drift and the variance 

(μAV, σAV
2 ) are increased, because both stimuli are shown, and the work to be done (i.e., the 

distance between the barrier and the state of the process at time τ) depends on X τ < c. 

Because since stimulus onset, τ ms have already passed, the time scale is shifted, d′ = d − τ.

P τ < DV τ A ≤ d ⋅ E DV τ A τ < DV τ A ≤ d

=
−∞

c
P X τ = x ⋅ P DAV ≤ d′ X τ = x ⋅ τ + E DAV X τ = x, DAV ≤ d′   dx

=
−∞

c
wIG x, τ c, μV, σV

2 ⋅ FIG d′ c − x, μAV, σAV
2   dx ⋅ τ

+
−∞

c
wIG x, τ c, μV, σV

2 ⋅
0

d′
t ⋅ f IG t c − x, μAV, σAV

2 dt   dx

(A.

5)

The first term corresponds exactly to (A.2), multiplied by the onset asynchrony τ. For the 

bounded integral 0
d′t ⋅ f IG t   |   c − x, μAV, σAV

2   dt, the solution is again found in the 

appendix in Schwarz (1994, Equation A.2).

The double integral in (A.5) is
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−∞

c

ϕ x μVτ, σV
2 τ − exp

2cμV
σV

2 ⋅ ϕ x 2c + μVτ, σV
2 τ

× c − x
μAV

⋅ Φ x c − μAVd′, σAV
2 d′ − exp

2 c − x μAV
σAV

2 Φ x c + μAVd′, σAV
2 d′   dx

= c
μAV −∞

c
ϕ x μVτ, σV

2 τ  Φ x c − μAVd′, σAV
2 d′   dx

− c
μAV

exp
2cμV
σV

2 −∞

c
ϕ x 2c + μVτ, σV

2 τ  Φ x c − μAVd′, σAV
2 d′   dx

− c
μAV

exp
2cμAV
σAV

2
−∞

c

exp −
2μAVx

σAV
2 ϕ x μVτ, σV

2 τ  Φ x c + μAVd′, σAV
2 d′   dx

+ c
μAV

exp
2cμV
σV

2 +
2cμAV
σAV

2
−∞

c

exp
−2μAVx

σAV
2 ϕ x 2c + μVτ, σV

2 τ Φ x c + μAVd′, σAV
2 d′

  dx

− 1
μAV −∞

c
x   ϕ x μVτ, σV

2 τ  Φ x c − μAVd′, σAV
2 d′   dx

+ 1
μAV

exp
2cμV
σV

2 −∞

c
x   ϕ x 2c + μVτ, σV

2 τ  Φ x c − μAVd′, σAV
2 d′   dx

+ 1
μAV

exp
2cμAV
σAV

2 −∞

c
x   exp −

2μAVx

σAV
2 ϕ x μVτ, σV

2 τ  Φ x c + μAVd′, σAV
2 d′   dx

− 1
μAV

exp
2cμV
σV

2 +
2cμAV
σAV

2 −∞

c
x   exp −

2μAVx

σAV
2 ϕ x|2c + μVτ, σV

2 τ Φ

x|c + μAVd′, σAV
2 d′   dx

(A.6)

The first four terms correspond to (A.3). By completing the square, we have 

exp rx ϕ x m1, s1
2 = exp rm1 + r2s1

2/2 ϕ x m1′ , s1
2 , with m1′ = m1 + rs1

2. Let u =
x − m1′

s1
, or 

x = m1′ + us1. Then,
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−∞

c
x ⋅ ϕ x m1′ , s1

2 ⋅ Φ x m2, s2
2   dx

=
−∞

c − m1′ /s1
m1′ + us1 ⋅ ϕ u 0,   1 ⋅ Φ u

m2 − m1′
s1

,
s2
2

s1
2   du

= m1′ ⋅
−∞

c − m1′ /s1
ϕ u 0,   1 ⋅ Φ

s1
s2

u +
m1′ − m2

s2
0,   1   du

+s1 ⋅
−∞

c − m1′ /s1
u ⋅ ϕ u 0,   1 ⋅ Φ

s1
s2

u +
m1′ − m2

s2
0,   1   du

(A.7)

The first term of (A.7) matches Eq. 10,010.1 in Owen (1980). The second term matches Eq. 

10,011.1, 

−∞

y
u ⋅ ϕ u ⋅ Φ a + bu   du = b

1 + b2 ⋅ ϕ b

1 + b2 ⋅ Φ y 1 + b2 + ab

1 + b2 − ϕ y ⋅ Φ a + bu .

Appendix B:: Two-Barrier Wiener diffusion model with two stages

In this appendix we provide solutions for detection accuracy and first-passage times in 

Wiener diffusion model (Navarro & Fuss, 2009; Ratcliff et al., 2016; Vandekerckhove & 

Tuerlinckx, 2008; Wagenmakers et al., 2007) with two processing stages. In the single-stage 

model, evidence accumulation is described by a time-homogeneous Wiener process with 

drift μ and variance σ2 > 0, starting at X 0 = 0 and then randomly moving between two 

constant absorbing barriers u > 0 and −ℓ < 0. Two representations exist, both infinite series 

(Cox & Miller, 1965), for the first-passage time densities f u t  and their distribution Fu t  at 

the upper barrier; the respective expressions for the lower barrier are obtained by a change of 

parameters, u,   ℓ, μ, σ2 ℓ,   u, − μ, σ2 . One representation (Feller, 1968, Ch. 14, Eq. 

6.15) converges best for large t, the other representation (Feller, 1968, Ch. 14, Problem 22) 

converges best for small t (Navarro & Fuss, 2009). For the purpose of the present study, 

f u τ , Fu τ , and 0
τ t ⋅ f u t   dt need to be determined for small times (i.e., the SOA, τ), so we 

will first focus on the small-time representation. The series typically refers to the “sub-

survivor” function (e.g., Ratcliff, 1978, A8 and A12), but can be restated as a weighted 

infinite sum of inverse Gaussian distributions,
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Fu t u,   − ℓ, μ, σ2

=
k = 0

∞
exp −

r2kμ

σ2 FIG t r2k + u, μ, σ2 − exp
−r2k + 1μ + 2uμ

σ2 FIG t r2k + 1 − u, μ, σ2

,

(B.1)

with r j = j u + ℓ , and FIG t c, μ, σ2  denoting the inverse Gaussian distribution function (e.g., 

Folks & Chhikara, 1978, Eq. 7). Expression B.1 is an alternating, absolutely decreasing 

series (Gondan et al., 2014), so it can be truncated at a fixed tolerance ε > 0 whenever an 

individual term is below ε. The density f u τ  is, thus, easily obtained by the derivative of the 

individual terms,

f u t u,   − ℓ, μ, σ2

=
k = 0

∞
exp −

r2kμ

σ2 f IG t r2k + u, μ, σ2 − exp
−r2k + 1μ + 2uμ

σ2 f IG t r2k + 1 − u, μ, σ2

(B.2)

At time τ, the density of the processes that have not yet been absorbed is described by the 

following series (Cox & Miller, 1965, Eq. 78),

w2B x, τ u, − ℓ, μ, σ2

=
k = − ∞

∞
exp

μr2k

σ2 ϕ x r2k + μτ, σ2τ − exp
μr2k′
σ2 ϕ x r2k′ + μτ, σ2τ ,

(B.3a)

with again r j = j u + ℓ  and r j′ = 2u − r j, and good convergence for large drift. The alternative 

representation (Cox & Miller, 1965, Eq. 81) shows good convergence for small drift,
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w2B x, τ u, − ℓ, μ, σ2

= exp μ
σ2 x

k = 1

∞
ak ⋅ exp −λkt sin bk x + ℓ ,

(B.3b)

with ak = 2
u + ℓ ⋅ sin kπℓ

u + ℓ ,   bk:= kπ
u + ℓ , λk = 1

2
μ2

σ2 + bk
2σ2 . Cox and Miller characterize both 

series as absolutely convergent. The antiderivative for the large-drift series is obtained by 

term-wise integration, it converges for positive drift (the value for negative drift is obtained 

by shift of parameters);

W2B x, τ u, − ℓ, μ, σ2 =

f x =

k = − ∞

∞
exp

μr2k

σ2 Φ x r2k + μτ, σ2τ − exp
μr2k′
σ2 Φ x r2k′ + μτ, σ2τ ,   for   μ ≫ 0

−W2B −x, τ ℓ, − u, − μ, σ2 ,                                                                                                                                                                 for   μ ≪ 0

(B.4a)

The series can be reordered and decomposed into two branches,

k = − ∞
∞ s k − s′ k = k = 0

∞ s k − s′ −k − k = 1
∞ s′ k − s −k ,

with s k = exp
μr2k

σ2 ⋅ Φ x r2k + μτ, σ2τ  and s′ k = exp
μr−2k′

σ2 ⋅ Φ x r−2k′ + μτ, σ2τ . The sub-

series are both absolutely decreasing, alternating series, that is, 

s k > s′ −k > s k + 1 > s′ − k + 1 > ⋯, and s′ k > s −k > s′ k + 1 > s − k + 1 > ⋯, so 

that evaluation of the series can stop as soon as the size of an individual term is below a 

specific truncation tolerance ε.

We illustrate it for s k > s′ −k ; the proofs for other the inequalities are very similar. 

Simplifications arithmetic transformations lead to a ratio of Normal integrals
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Φ x r2k + μτ, σ2τ

Φ x 2u + r2k + μτ, σ2τ
> exp 2μu

σ2 ,

which is above the criterion if the same criterion holds for the respective densities,

ϕ x r2k + μτ, σ2τ

ϕ x 2u + r2k + μτ, σ2τ
> exp 2μu

σ2 .

After taking the logarithm, simplifying and cancellation of double terms, the inequality 

reduces to r2k > x − u, which is fulfilled for all k (in the branches, k > 0) because −ℓ < x < u

by definition.

For small drift, integration of Expression B.3b yields

W2B x, τ u, − ℓ, μ, σ2 =

σ2 ⋅ exp μx
σ2 ⋅

k = 1

∞ ak ⋅ exp −λkτ

μ2 + bk
2σ4 ⋅ μ sin bk x + ℓ − bkσ2 ⋅ cos bk x + ℓ

(B.4b)

In order to decide which representation is used (e.g., for drifts close to zero), the number K
of required terms of the series can be estimated in advance for a desired truncation error 

ε > 0 (Navarro & Fuss, 2009), and then the series with least computational cost can be 

chosen. For the large-drift representation (B.4a), which is absolutely decreasing and 

alternating, we need K terms such that sk, s−k, sk′ , s−k′ < ε; this is established if 

exp −
μr2K

σ2 < ε, or K > − σ2 ⋅ logε
u + ℓ μ . For the small-drift expression (B.4b), K needs to fulfil 

Φ K 0, u + ℓ 2

π2σ2τ
≥ 1 − ε′, with ε′ = ε ⋅ πσ2

2 ⋅ πσ2τ

2 u + ℓ 2 ⋅ exp − μx

σ2 + μ2τ

2σ2 / u + ℓ μ
π + σ2 .

B.1 Probability of absorption

We now consider the overall absorption probability at the upper barrier. In the single-stage 

process (i.e., for single and synchronous redundant stimuli), the probability is given by

Pu = Fu ∞ u, − ℓ, μ, σ2 =
0

∞
f u t   dt =

exp −2ℓμ/σ2 − 1
exp −2 u + ℓ μ/σ2 − 1

(B.5)

(e.g., Horrocks & Thompson, 2004). In the two-stage process (e.g., V τ A), upper 

absorptions occur either before τ, with probability Fu τ u, − ℓ, μV, σV
2 . Alternatively, 
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absorption occurs after τ, with the probability given by the integrated weighted compound of 

the not-yet-absorbed processes at that time,

−ℓ

u
w2B x, τ u, − ℓ, μV, σV

2 ⋅ Fu ∞ u − x, − ℓ + x , μAV, σAV
2   dx (B.6)

with Fu ∞  given by (B.5), for the new barriers u − x and − ℓ + x , and w2B denoting the 

density of the not-yet-absorbed processes in the two-barrier situation (see above Eqs. B.3a 

and B.3b). In Expression B.6, the upper and lower barriers in Pu (B.4) are replaced by u − x

and − ℓ + x , respectively, such that only the numerator depends on x.

The integral in (B.6) is then easily obtained. Let μ′ =
μV
σV

2 −
2μAV
σAV

2 . Then, for μ′ ≫ 0, we have,

∫ w2B x, τ u, − ℓ, μV, σV
2 ⋅ Fu ∞ u − x, − ℓ + x , μAV, σAV

2   dx

= 1

1 − exp −
2 u + ℓ μAV

σAV
2

× W2B x, τ u, − ℓ, μV, σV
2

− 2σV
2 τ

μAV
σAV

2

2
− 2 ℓ + μVτ

μAV
σAV

2 ⋅

k = − ∞
∞ exp μ′r2k Φ x r2k + μ′σV

2 τ, σV
2 τ − exp μ′r2k′ Φ x r2k′ + μ′σV

2 τ, σV
2 τ ,

(B.7a)

which is an alternating and absolutely decreasing series and converges when exp μ′r−2k ≤ ε

(see B.3a). For μ′ ≪ 0, we evaluate 

− −u
ℓ w2B x, τ ℓ, − u, − μV, σV

2 ⋅ Fu ∞ ℓ − x, − u + x , − μAV, σAV
2   dx. For μ′ ≈ 0, we 

integrate the “small-drift” representation (Cox & Miller, 1965, Eq. 81) to obtain the 

antiderivative
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∫ w2B x, τ u, − ℓ, μV, σV
2 ⋅ Fu ∞ u − x, − ℓ + x , μAV, σAV

2   dx

= 1

1 − exp −
2 u + ℓ μAV

σAV
2

× W2B x, τ u, − ℓ, μV, σV
2

−exp −
2ℓμAV

σAV
2

k = 1

∞ ak ⋅ exp μ′x − λkt

bk
2 + μ′2

⋅ μ′sin bk x + ℓ − bkcos bk x + ℓ .

(B.7b)

The latter representation converges with truncation error ε for

Φ K 0, u + ℓ 2

π2σV
2 τ

≥ 1 − ε′

with 

ε′ =   ε ⋅ exp
2ℓμAV

σAV
2 ⋅ exp −

2 u + ℓ μAV
σAV

2 − 1 ÷ 2
π 2 u + ℓ 2

πσV
2 τ

⋅ u + ℓ μ′
π + 1 ⋅ exp μ′x −

μV
2 τ

2σV
2 .

B.2 Conditional mean response time

For the single stage-process, first passages at the upper barrier occur within T1 a − z, 0  given 

by (Grasman et al., 2009) Grasman et al. (2009, their Eq. 13). For the two-stage process, the 

mean first-passage time, conditional on absorption before the onset Eu D D ≤ τ  is 

determined using the finite integral 0
τ t ⋅ f u t   dt. This integral is obtained by replacing 

FIG t  in Expression B.1 by the respective integral of the inverse Gaussian density
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0

τ
t ⋅ f u t u, − ℓ, μ, σ2   dt

=
k = 0

∞
exp −

r2kμ

σ2 GIG t r2k + u, μ, σ2 − exp
−r2k + 1μ + 2uμ

σ2 GIG t r2k + 1 − u, μ, σ2

,

(B.8)

with GIG τ c, μ, σ2 = 0
τ t ⋅ f IG t c, μ, σ2   dt = c

μ Φ μτ − c

σ2t
− exp 2cμ

σ2 Φ −μτ − c

σ2t
 (e.g., 

Schwarz, 1994, A.2). For the absorptions in the second stage, we did not find an analytical 

solution for Eu D D > τ  from Eq. 15 in the main text. The main difficulty is due to the quite 

formidable solution for the Eu D  in the single-stage process (Grasman et al., 2009, Eq. 13). 

It is not obvious how to determine the antiderivative of the compound 

∫ w2B x, τ u, − ℓ, μV, σV
2 ⋅ Eu − x D   dx, so we chose to fall back to a numerical 

approximation using R’s built-in integrate function.
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Highlights for Chandrasekaran, Blurton, and Gondan, “Audiovisual 
detection at different intensities and delays”

• We extend the one-barrier Wiener diffusion superposition model by 

incorporating a deadline and provide closed-form solutions for detection rate 

and mean response time for redundant signals tasks with asynchronous 

stimuli.

• We also provide improved implementations for multisensory detection models 

based on the two-barrier Wiener diffusion process.

• The deadline model provides the best description of response times and 

detection rates of two monkeys performing an audiovisual redundant signals 

task.
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Figure 1. A schematic of the three models considered in the study.
A One barrier Wiener diffusion superposition model (DSM), with an upper bound at u. This 

model has been used to describe response times in multisensory detection tasks (Schwarz, 

1994). B Extension of Model A with a temporal deadline. C Two-barrier Wiener diffusion 

model with asymmetric bounds at u and −ℓ. X-axes in all graphs show time. Y-axes the 

activation of the decision-variable. Solid blue line shows the accumulated drift at each time 

point (without the noise). At time t=τ, the drift rate and the diffusion noise change to 

highlight the piecewise homogenous nature of these Wiener diffusion models. For all 

simulations, at all time points, the diffusion noise variance was set to 4.32, drift rate was 0.03 

and 0.14 for before and after τ. τ was set to be 800 ms for schematic purposes. Upper barrier 

for the A, B were set at 200. The lower barrier (−ℓ) was set at −300.

Chandrasekaran et al. Page 35

J Math Psychol. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Stimuli and task structure for experiments in monkeys.
A: Waveform and spectrogram of coo vocalizations detected by the monkeys. B: Frames of 

the two monkey avatars at the point of maximal mouth opening for the largest SNR. C: 

Frames with maximal mouth opening from one of the monkey avatars for three different 

SNRs of +22 dB (High), +5 dB (Medium) and –10 dB (Low). D: Task structure for 

monkeys. An avatar face was always on the screen. Visual, auditory and audiovisual stimuli 

were randomly presented with an inter stimulus interval of 1–3 seconds drawn from a shifted 

and truncated exponential distribution. Responses within a 2 sec window after stimulus onset 

were considered hits. Responses in the inter-stimulus interval were considered to be 

response errors and led to timeouts.
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Figure 3. The single-barrier diffusion superposition model provides an incomplete description of 
the reaction times of the monkeys and cannot model the accuracy of the monkeys.
Audiovisual, visual-only and auditory-only mean RTs for both monkeys along with the 

predicted RT shown in lines according to the diffusion superposition model as a function of 

SNR (squares = low, diamonds = medium, circles = high) and SOA. Error bars denote 

confidence intervals (SEM: 2 × standard error of the mean) around predicted mean RTs. 

Panel A shows the RT for Monkey 1; Panel B shows the RT for Monkey 2. Accuracy is 

predicted to be at ceiling (see text).
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Figure 4. Wiener diffusion superposition model with a time deadline predicts monkey RTs and 
response accuracy to audiovisual stimuli. Accuracy and RT of the two monkeys along with the 
fits from the model.
A, C Accuracy of the monkeys as a function of SNR and SOA. X-axes show SOA; Y-axes 

show the percent correct. B, D Response time of the monkeys as a function of SNR and 

SOA. X-axes show SOA; Y-axes show mean RT in ms. In both panels, the high SNRS are 

shown in black circles, the medium SNRs in blue diamonds and low SNRs in green squares. 

Error bars denote confidence intervals (2 x SEM). The Wiener DSM model with deadline 

has the ability to fit to both RT and detection accuracy unlike the standard Wiener DSM (cf. 

Figure 3).
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Figure 5. A diffusion superposition model with two barriers is poorer at predicting monkey RTs 
and response accuracy to audiovisual stimuli
Accuracy and RT of the two monkeys along with the fits from the diffusion superposition 

model with two barriers. A, C: Accuracy of the monkeys as a function of SNR and SOA. X-

axes show SOA; Y-axes show the percent correct. B, D: Response time of the monkeys as a 

function of SNR and SOA. X-axes show SOA; Y-axes show Response Time in ms. In both 

panels, the high SNRS are shown in black circles, the medium SNRs in blue diamonds and 
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low SNRs in green squares. Error bars denote confidence intervals (2 x SEM). Note how the 

two-barrier model fails at predicting the RTs and accuracy for the lowest SNR.
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Table 1.

Model parameters for the Wiener superposition model with a deadline

Parameter Monkey 1 Monkey 2

μA (low, medium, high) 0.01, 0.25, 1.53 0.09, 0.41, 9.74

σA
2

 (low, medium, high) 18.5, 130.3, 74.4 11.7, 379.6, 10.7

μV (low, medium, high) 0.35, 0.37, 0.34 0.30, 0.34, 0.37

σV
2

 (low, medium, high) 73.2, 68.0, 92.8 67.8, 73.1, 41.9

μM 419 ms 343 ms

Deadline d (ms) 951 ms 828 ms
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Table 2:

Model parameters for the best fitting two barrier Wiener diffusion superposition model

Parameter Monkey 1 Monkey 2

μA (low, medium, high) 0.01, 0.32, 1.13 0.01, 0.59, 1.62

σA
2

 (low, medium, high) 27.2, 45.1, 102.9 30.1, 90.1, 227.6

μV (low, medium, high) 0.36, 0.37, 0.37 0.32, 0.28 0.35

σV
2

 (low, medium, high) 37.6, 40.8, 43.2 42.0, 45.0, 37.2

ℓ 205.6 236.0

μM 401 ms 307 ms
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