
A high-bias, low-variance introduction to Machine Learning for
physicists

Pankaj Mehta,
Department of Physics, Boston University, Boston, MA 02215, USA*

Ching-Hao Wang,
Department of Physics, Boston University, Boston, MA 02215, USA

Alexandre G. R. Day,
Department of Physics, Boston University, Boston, MA 02215, USA

Clint Richardson,
Department of Physics, Boston University, Boston, MA 02215, USA

Marin Bukov,
Department of Physics, University of California, Berkeley, CA 94720, USA†

Charles K. Fisher,
Unlearn.AI, San Francisco, CA 94108

David J. Schwab
Initiative for the Theoretical Sciences, The Graduate Center, City University of New York, 365 Fifth
Ave., New York, NY 10016

Abstract

Machine Learning (ML) is one of the most exciting and dynamic areas of modern research and

application. The purpose of this review is to provide an introduction to the core concepts and tools

of machine learning in a manner easily understood and intuitive to physicists. The review begins

by covering fundamental concepts in ML and modern statistics such as the bias-variance tradeoff,

overfitting, regularization, generalization, and gradient descent before moving on to more

advanced topics in both supervised and unsupervised learning. Topics covered in the review

include ensemble models, deep learning and neural networks, clustering and data visualization,

energy-based models (including MaxEnt models and Restricted Boltzmann Machines), and

variational methods. Throughout, we emphasize the many natural connections between ML and

statistical physics. A notable aspect of the review is the use of Python Jupyter notebooks to

introduce modern ML/statistical packages to readers using physics-inspired datasets (the Ising

Model and Monte-Carlo simulations of supersymmetric decays of proton-proton collisions). We

conclude with an extended outlook discussing possible uses of machine learning for furthering our

understanding of the physical world as well as open problems in ML where physicists may be able

to contribute.

* pankajm@bu.edu. † mgbukov@berkeley.edu.

HHS Public Access
Author manuscript
Phys Rep. Author manuscript; available in PMC 2019 August 09.

Published in final edited form as:
Phys Rep. 2019 May 30; 810: 1–124. doi:10.1016/j.physrep.2019.03.001.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

I. INTRODUCTION

Machine Learning (ML), data science, and statistics are fields that describe how to learn

from, and make predictions about, data. The availability of big datasets is a hallmark of

modern science, including physics, where data analysis has become an important component

of diverse areas, such as experimental particle physics, observational astronomy and

cosmology, condensed matter physics, biophysics, and quantum computing. Moreover, ML

and data science are playing increasingly important roles in many aspects of modern

technology, ranging from biotechnology to the engineering of self-driving cars and smart

devices. Therefore, having a thorough grasp of the concepts and tools used in ML is an

important skill that is increasingly relevant in the physical sciences.

The purpose of this review is to serve as an introduction to foundational and state-of-the-art

techniques in ML and data science for physicists. The review seeks to find a middle ground

between a short overview and a full-length textbook. While there exist many wonderful ML

textbooks (Abu-Mostafa et al., 2012; Bishop, 2006; Friedman et al., 2001; Murphy, 2012),

they are lengthy and use specialized language that is often unfamiliar to physicists. This

review builds upon the considerable knowledge most physicists already possess in statistical

physics in order to introduce many of the major ideas and techniques used in modern ML.

We take a physics-inspired pedagogical approach, emphasizing simple examples (e.g.,

regression and clustering), before delving into more advanced topics. The intention of this

review and the accompanying Jupyter notebooks (available at https://physics.bu.edu/

~pankajm/MLnotebooks.html) is to give the reader the requisite background knowledge to

follow and apply these techniques to their own areas of interest.

While this review is written with a physics background in mind, we aim for it to be useful to

anyone with some background in statistical physics, and it is suitable for both graduate

students and researchers as well as advanced undergraduates. The review is based on an

advanced topics graduate course taught at Boston University in Fall of 2016. As such, it

assumes a level of familiarity with several topics found in graduate physics curricula

(partition functions, statistical mechanics) and a fluency in mathematical techniques such as

linear algebra, multivariate calculus, variational methods, probability theory, and Monte-

Carlo methods. It also assumes a familiarity with basic computer programming and

algorithmic design.

A. What is Machine Learning?

Most physicists learn the basics of classical statistics early on in undergraduate laboratory

courses. Classical statistics is primarily concerned with how to use data to estimate the value

of an unknown quantity. For instance, estimating the speed of light using measurements

obtained with an interferometer is one such example that relies heavily on techniques from

statistics.

Machine Learning is a subfield of artificial intelligence with the goal of developing

algorithms capable of learning from data automatically. In particular, an artificially

intelligent agent needs to be able to recognize objects in its surroundings and predict the

behavior of its environment in order to make informed choices. Therefore, techniques in ML

Mehta et al. Page 2

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

tend to be more focused on prediction rather than estimation. For example, how do we use

data from the interferometry experiment to predict what interference pattern would be

observed under a different experimental setup? In addition, methods from ML tend to be

applied to more complex high-dimensional problems than those typically encountered in a

classical statistics course.

Despite these differences, estimation and prediction problems can be cast into a common

conceptual framework. In both cases, we choose some observable quantity x of the system

we are studying (e.g., an interference pattern) that is related to some parameters θ (e.g., the

speed of light) of a model p x |θ that describes the probability of observing x given θ. Now,

we perform an experiment to obtain a dataset X and use these data to fit the model.

Typically, “fitting” the model involves finding θ that provides the best explanation for the

data. In the case when “fitting” refers to the method of least squares, the estimated

parameters maximize the probability of observing the data (i.e., θ = argmaxθ p X |θ).

Estimation problems are concerned with the accuracy of θ , whereas prediction problems are

concerned with the ability of the model to predict new observations (i.e., the accuracy of

p x|θ). Although the goals of estimation and prediction are related, they often lead to

different approaches. As this review is aimed as an introduction to the concepts of ML, we

will focus on prediction problems and refer the reader to one of many excellent textbooks on

classical statistics for more information on estimation (Lehmann and Casella, 2006;

Lehmann and Romano, 2006; Wasserman, 2013; Witte and Witte, 2013).

B. Why study Machine Learning?

The last three decades have seen an unprecedented increase in our ability to generate and

analyze large data sets. This “big data” revolution has been spurred by an exponential

increase in computing power and memory commonly known as Moore’s law. Computations

that were unthinkable a few decades ago can now be routinely performed on laptops.

Specialized computing machines (such as GPU-based machines) are continuing this trend

towards cheap, large-scale computation, suggesting that the “big data” revolution is here to

stay.

This increase in our computational ability has been accompanied by new techniques for

analyzing and learning from large datasets. These techniques draw heavily from ideas in

statistics, computational neuroscience, computer science, and physics. Similar to physics,

modern ML places a premium on empirical results and intuition over the more formal

treatments common in statistics, computer science, and mathematics. This is not to say that

proofs are not important or undesirable. Rather, many of the advances of the last two

decades – especially in fields like deep learning – do not have formal justifications (much

like there still exists no mathematically well-defined concept of the Feynman path-integral in

d > 1).

Physicists are uniquely situated to benefit from and contribute to ML. Many of the core

concepts and techniques used in ML – such as Monte-Carlo methods, simulated annealing,

variational methods – have their origins in physics. Moreover, “energy-based models”

Mehta et al. Page 3

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

inspired by statistical physics are the backbone of many deep learning methods. For these

reasons, there is much in modern ML that will be familiar to physicists.

Physicists and astronomers have also been at the fore-front of using “big data”. For example,

experiments such as CMS and ATLAS at the LHC generate petabytes of data per year. In

astronomy, projects such as the Sloan Digital Sky Survey (SDSS) routinely analyze and

release hundreds of terabytes of data measuring the properties of nearly a billion stars and

galaxies. Researchers in these fields are increasingly incorporating recent advances in ML

and data science, and this trend is likely to accelerate in the future.

Besides applications to physics, part of the goal of this review is to serve as an introductory

resource for those looking to transition to more industry-oriented projects. Physicists have

already made many important contributions to modern big data applications in an industrial

setting (Metz, 2017). Data scientists and ML engineers in industry use concepts and tools

developed for ML to gain insight from large datasets. A familiarity with ML is a prerequisite

for many of the most exciting employment opportunities in the field, and we hope this

review will serve as a useful introduction to ML for physicists beyond an academic setting.

C. Scope and structure of the review

Any review on ML must simultaneously accomplish two related but distinct goals. First, it

must convey the rich theoretical foundations underlying modern ML. This task is made

especially difficult because ML is very broad and interdisciplinary, drawing on ideas and

intuitions from many fields including statistics, computational neuroscience, and physics.

Unfortunately, this means making choices about what theoretical ideas to include in the

review. This review emphasizes connections with statistical physics, physics-inspired

Bayesian inference, and computational neuroscience models. Thus, certain ideas (e.g.,

gradient descent, expectation maximization, variational methods, and deep learning and

neural networks) are covered extensively, while other important ideas are given less attention

or even omitted entirely (e.g., statistical learning, support vector machines, kernel methods,

Gaussian processes). Second, any ML review must give the reader the practical know-how to

start using the tools and concepts of ML for practical problems. To accomplish this, we have

written a series of Jupyter notebooks to accompany this review. These python notebooks

introduce the nuts-and-bolts of how to use, code, and implement the methods introduced in

the main text. Luckily, there are numerous great ML software packages available in Python

(scikit-learn, tensorflow, Pytorch, Keras) and we have made extensive use of them. We have

also made use of a new package, Paysage, for energy-based generative models which has

been co-developed by one of the authors (CKF) and maintained by Unlearn.AI (a company

affiliated with two of the authors: CKF and PM). The purpose of the notebooks is to both

familiarize physicists with these resources and to serve as a starting point for experimenting

and playing with ideas.

ML can be divided into three broad categories: supervised learning, unsupervised learning,

and reinforcement learning. Supervised learning concerns learning from labeled data (for

example, a collection of pictures labeled as containing a cat or not containing a cat).
Common supervised learning tasks include classification and regression. Unsupervised

learning is concerned with finding patterns and structure in unlabeled data. Examples of

Mehta et al. Page 4

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

unsupervised learning include clustering, dimensionality reduction, and generative

modeling. Finally, in rein-forcement learning an agent learns by interacting with an

environment and changing its behavior to maximize its reward. For example, a robot can be

trained to navigate in a complex environment by assigning a high reward to actions that help

the robot reach a desired destination. We refer the interested reader to the classic book by

Sutton and Barto Reinforcement Learning: an Introduction (Sutton and Barto, 1998). While

useful, the distinction between the three types of ML is sometimes fuzzy and fluid, and

many applications often combine them in novel and interesting ways. For example, the

recent success of Google DeepMind in developing ML algorithms that excel at tasks such as

playing Go and video games employ deep reinforcement learning, combining reinforcement

learning with supervised learning methods based on deep neural networks.

Here, we limit our focus to supervised and unsupervised learning. The literature on

reinforcement learning is extensive and uses ideas and concepts that, to a large degree, are

distinct from supervised and unsupervised learning tasks. For this reason, to ensure

cohesiveness and limit the length of this review, we have chosen not to discuss

reinforcement learning. However, this omission should not be mistaken for a value

judgement on the utility of reinforcement learning for solving physical problems. For

example, some of the authors have used inspiration from reinforcement learning to tackle

difficult problems in quantum control (Bukov, 2018; Bukov et al., 2018).

In writing this review, we have tried to adopt a style that reflects what we consider to be the

best of the physics tradition. Physicists understand the importance of well-chosen examples

for furthering our understanding. It is hard to imagine a graduate course in statistical physics

without the Ising model. Each new concept that is introduced in statistical physics (mean-

field theory, transfer matrix techniques, high-and low-temperature expansions, the

renormalization group, etc.) is applied to the Ising model. This allows for the progressive

building of intuition and ultimately a coherent picture of statistical physics. We have tried to

replicate this pedagogical approach in this review by focusing on a few well-chosen

techniques – linear and logistic regression in the case of supervised learning and clustering

in the case of unsupervised learning – to introduce the major theoretical concepts.

In this same spirit, we have chosen three interesting datasets with which to illustrate the

various algorithms discussed here. (i) The SUSY data set consists of 5, 000, 000 Monte-

Carlo samples of proton-proton collisions decaying to either signal or background processes,

which are both parametrized with 18 features. The signal process is the production of

electrically-charged supersymmetric particles, which decay to W bosons and an electrically-

neutral supersymmetric particle, invisible to the detector, while the background processes

are various decays involving only Standard Model particles (Baldi et al., 2014). (ii) The

Ising data set consists of 104 states of the 2D Ising model on a 40 × 40 square lattice,

obtained using Monte-Carlo (MC) sampling at a few fixed temperatures T. (iii) The MNIST

dataset comprises 70000 handwritten digits, each of which comes in a square image, divided

into a 28 × 28 pixel grid. The first two datasets were chosen to reflect the various sub-

disciplines of physics (high-energy experiment, condensed matter) where we foresee

techniques from ML becoming an increasingly important tool for research. The MNIST

dataset, on the other hand, introduces the flavor of present-day ML problems. By re-

Mehta et al. Page 5

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

analyzing the same datasets with multiple techniques, we hope readers will be able to get a

sense of the various, inevitable tradeoffs involved in choosing how to analyze data. Certain

techniques work better when data is limited while others may be better suited to large data

sets with many features. A short description of these datasets are given in the Appendix.

This review draws generously on many wonderful text-books on ML and we encourage the

reader to consult them for further information. They include Abu Mostafa’s masterful

Learning from Data, which introduces the basic concepts of statistical learning theory (Abu-

Mostafa et al., 2012), the more advanced but equally good The Elements of Statistical
Learning by Hastie, Tibshirani, and Friedman (Friedman et al., 2001), Michael Nielsen’s

indispensable Neural Networks and Deep Learning which serves as a wonderful introduction

to the neural networks and deep learning (Nielsen, 2015) and David MacKay’s outstanding

Information Theory, Inference, and Learning Algorithms which introduced Bayesian

inference and information theory to a whole generation of physicists (MacKay, 2003). More

comprehensive (and much longer) books on modern ML techniques include Christopher

Bishop’s classic Pattern Recognition and Machine Learning (Bishop, 2006) and the more

recently published Machine Learning: A Probabilistic Perspective by Kevin Murphy

(Murphy, 2012). Finally, one of the great successes of modern ML is deep learning, and

some of the pioneers of this field have written a textbook for students and researchers

entitled Deep Learning (Goodfellow et al., 2016). In addition to these textbooks, we have

consulted numerous research papers, reviews, and web resources. Whenever possible, we

have tried to point the reader to key papers and other references that we have found useful in

preparing this review. However, we are neither capable of nor have we made any effort to

make a comprehensive review of the literature.

The review is organized as follows. We begin by introducing polynomial regression as a

simple example that highlights many of the core ideas of ML. The next few chapters

introduce the language and major concepts needed to make these ideas more precise

including tools from statistical learning theory such as overfitting, the bias-variance tradeoff,

regularization, and the basics of Bayesian inference. The next chapter builds on these

examples to discuss stochastic gradient descent and its generalizations. We then apply these

concepts to linear and logistic regression, followed by a detour to discuss how we can

combine multiple statistical techniques to improve supervised learning, introducing bagging,

boosting, random forests, and XG Boost. These ideas, though fairly technical, lie at the root

of many of the advances in ML over the last decade. The review continues with a thorough

discussion of supervised deep learning and neural networks, as well as convolutional nets.

We then turn our focus to unsupervised learning. We start with data visualization and

dimensionality reduction before proceeding to a detailed treatment of clustering. Our

discussion of clustering naturally leads to an examination of variational methods and their

close relationship with mean-field theory. The review continues with a discussion of deep

unsupervised learning, focusing on energy-based models, such as Restricted Boltzmann

Machines (RBMs) and Deep Boltzmann Machines (DBMs). Then we discuss two new and

extremely popular modeling frameworks for unsupervised learning, generative adversarial

networks (GANs) and variational autoencoders (VAEs). We conclude the review with an

outlook and discussion of promising research directions at the intersection physics and ML.

Mehta et al. Page 6

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

II. WHY IS MACHINE LEARNING DIFFICULT?

A. Setting up a problem in ML and data science

Many problems in ML and data science starts with the same ingredients. The first ingredient

is the dataset 𝒟 = X,y where X is a matrix of independent variables and y is a vector of

dependent variables. The second is the model f (x; θ), which is a function f : x → y of the

parameters θ. That is, f is a function used to predict an output from a vector of input

variables. The final ingredient is the cost function 𝒞 y, f X; θ that allows us to judge how

well the model performs on the observations y. The model is fit by finding the value of θ
that minimizes the cost function. For example, one commonly used cost function is the

squared error. Minimizing the squared error cost function is known as the method of least

squares, and is typically appropriate for experiments with Gaussian measurement errors.

ML researchers and data scientists follow a standard recipe to obtain models that are useful

for prediction problems. We will see why this is necessary in the following sections, but it is

useful to present the recipe up front to provide context. The first step in the analysis is to

randomly divide the dataset 𝒟 into two mutually exclusive groups 𝒟train and 𝒟test called the

training and test sets. The fact that this must be the first step should be heavily emphasized –

performing some analysis (such as using the data to select important variables) before

partitioning the data is a common pitfall that can lead to incorrect conclusions. Typically, the

majority of the data are partitioned into the training set (e.g., 90%) with the remainder going

into the test set. The model is fit by minimizing the cost function using only the data in the

training set θ = arg minθ 𝒞 ytrain, f Xtrain; θ . Finally, the performance of the model is

evaluated by computing the cost function using the test set 𝒞 ytest, f Xtest; θ .The value of

the cost function for the best fit model on the training set is called the in-sample error

Ein = 𝒞 ytrain, f Xtrain; θ and the value of the cost function on the test set is called the out-

of-sample error Eout = 𝒞 ytest, f Xtest; θ .

One of the most important observations we can make is that the out-of-sample error is

almost always greater than the in-sample error, i.e. Eout ≥ Ein. We explore this point further

in Sec. VI and its accompanying notebook. Splitting the data into mutually exclusive

training and test sets provides an unbiased estimate for the predictive performance of the

model – this is known as cross-validation in the ML and statistics literature. In many

applications of classical statistics, we start with a mathematical model that we assume to be

true (e.g., we may assume that Hooke’s law is true if we are observing a mass-spring

system) and our goal is to estimate the value of some unknown model parameters (e.g., we

do not know the value of the spring stiffness). Problems in ML, by contrast, typically involve

inference about complex systems where we do not know the exact form of the mathematical

model that describes the system. Therefore, it is not uncommon for ML researchers to have

multiple candidate models that need to be compared. This comparison is usually done using

Eout; the model that minimizes this out-of-sample error is chosen as the best model (i.e.

model selection). Note that once we select the best model on the basis of its performance on

Eout, the real-world performance of the winning model should be expected to be slightly

worse because the test data was now used in the fitting procedure.

Mehta et al. Page 7

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

B. Polynomial Regression

In the previous section, we mentioned that multiple candidate models are typically compared

using the out-of-sample error Eout. It may be at first surprising that the model that has the

lowest out-of-sample error Eout usually does not have the lowest in-sample error Ein.

Therefore, if our goal is to obtain a model that is useful for prediction we may not want to

choose the model that provides the best explanation for the current observations. At first

glance, the observation that the model providing the best explanation for the current dataset

probably will not provide the best explanation for future datasets is very counter-intuitive.

Moreover, the discrepancy between Ein and Eout becomes more and more important, as the

complexity of our data, and the models we use to make predictions, grows. As the number of

parameters in the model increases, we are forced to work in high-dimensional spaces. The

“curse of dimensionality” ensures that many phenomena that are absent or rare in low-

dimensional spaces become generic. For example, the nature of distance changes in high

dimensions, as evidenced in the derivation of the Maxwell distribution in statistical physics

where the fact that all the volume of a d-dimensional sphere of radius r is contained in a

small spherical shell around r is exploited. Almost all critical points of a function (i.e., the

points where all derivatives vanish) are saddles rather than maxima or minima (an

observation first made in physics in the context of the p-spin spherical spin glass). For all

these reasons, it turns out that for complicated models studied in ML, predicting and fitting

are very different things (Bickel et al., 2006).

To develop some intuition about why we need to pay close attention to out-of-sample

performance, we will consider a simple one-dimensional problem – polynomial regression.

Our task is a simple one, fitting data with polynomials of different order. We will explore

how our ability to predict depends on the number of data points we have, the “noise” in the

data generation process, and our prior knowledge about the system. The goal is to build

intuition about why prediction is difficult in preparation for introducing general strategies

that overcome these difficulties.

Before reading the rest of the section, we strongly encourage the reader to read Notebook 1

and complete the accompanying exercises.

Consider a probabilistic process that assigns a label yi to an observation xi. The data are

generated by drawing samples from the equation

yi = f xi + ηi, (1)

where f (xi) is some fixed (but possibly unknown) function, and ηi is a Gaussian,

uncorrelated noise variable, such that

ηi = 0,

ηiη j = δi jσ
2 .

Mehta et al. Page 8

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We will refer to the f (xi) as the function used to generate the data, and σ as the noise

strength. The larger σ is the noisier the data; σ = 0 corresponds to the noiseless case.

To make predictions, we will consider a family of functions fα(x; θα) that depend on some

parameters θα. These functions represent the model class that we are using to model the data

and make predictions. Note that we choose the model class without knowing the function f
(x). The fα(x; θα) encode the features we choose to represent the data. In the case of

polynomial regression we will consider three different model classes: (i) all polynomials of

order 1 which we denote by f1(x; θ1), (ii) all polynomials up to order 3 which we denote by

f3(x; θ3), and (iii) all polynomials of order 10, f10(x; θ10). Notice that these three model

classes contain different number of parameters. Whereas f1(x; θ1) has only two parameters

(the coefficients of the zeroth and first order terms in the polynomial), f3(x; θ3) and f10(x;

θ10) have four and eleven parameters, respectively. This reflects the fact that these three

models have different model complexities. If we think of each term in the polynomial as a

“feature” in our model, then increasing the order of the polynomial we fit increases the

number of features. Using a more complex model class may give us better predictive power,

but only if we have a large enough sample size to accurately learn the model parameters

associated with these extra features from the training dataset.

To learn the parameters θα, we will train our models on a training dataset and then test the

effectiveness of the model on a different dataset, the test dataset. Since we are interested

only in gaining intuition, we will simply plot the fitted polynomials and compare the

predictions of our fits for the test data with the true values. As we will see below, the models

that give the best fit to existing data do not necessarily make the best predictions even for a

simple task like polynomial regression.

To illustrate these ideas, we encourage the reader to experiment with the accompanying

notebook to generate data using a linear function f (x) = 2x and a tenth order polynomial f
(x) = 2x − 10x5 + 15x10 and ask how the size of the training dataset Ntrain and the noise

strength σ affect the ability to make predictions. Obviously, more data and less noise leads to

better predictions. To train the models (linear, third-order, tenthorder), we uniformly

sampled the interval x ϵ [0, 1] and constructed Ntrain training examples using (1). We then

fit the models on these training samples using standard least-squares regression. To visualize

the performance of the three models, we plot the predictions using the best fit parameters for

a test set where x are drawn uniformly from the interval x ϵ [0, 1.2]. Notice that the test

interval is slightly larger than the training interval.

Figure 1 shows the results of this procedure for the noiseless case, σ = 0. Even using a small

training set with Ntrain = 10 examples, we find that the model class that generated the data

also provides the best fit and the most accurate out-of-sample predictions. That is, the linear

model performs the best for data generated from a linear polynomial (the third and tenth

order polynomials perform similarly), and the tenth order model performs the best for data

generated from a tenth order polynomial. While this may be expected, the results are quite

different for larger noise strengths.

Mehta et al. Page 9

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2 shows the results of the same procedure for noisy data, σ = 1, and a larger training

set, Ntrain = 100. As in the noiseless case, the tenth order model provides the best fit to the

data (i.e., the lowest Ein). In contrast, the tenth order model now makes the worst out-of-

sample predictions (i.e., the highest Eout). Remarkably, this is true even if the data were

generated using a tenth order polynomial.

At small sample sizes, noise can create fluctuations in the data that look like genuine

patterns. Simple models (like a linear function) cannot represent complicated patterns in the

data, so they are forced to ignore the fluctuations and to focus on the larger trends. Complex

models with many parameters, such as the tenth order polynomial in our example, can

capture both the global trends and noise-generated patterns at the same time. In this case, the

model can be tricked into thinking that the noise encodes real information. This problem is

called “overfitting” and leads to a steep drop-off in predictive performance.

We can guard against overfitting in two ways: we can use less expressive models with fewer

parameters, or we can collect more data so that the likelihood that the noise appears

patterned decreases. Indeed, when we increase the size of the training data set by two orders

of magnitude to Ntrain = 104 (see Figure 3) the tenth order polynomial clearly gives both the

best fits and the most predictive power over the entire training range x ϵ [0, 1], and even

slightly beyond to approximately x ≈ 1.05. This is our first experience with what is known

as the bias-variance tradeoff, c.f. Sec. III.B. When the amount of training data is limited as it

is when Ntrain = 100, one can often get better predictive performance by using a less

expressive model (e.g., a lower order polynomial) rather than the more complex model (e.g.,

the tenthorder polynomial). The simpler model has more “bias” but is less dependent on the

particular realization of the training dataset, i.e. less “variance”. Finally we note that even

with ten thousand data points, the model’s performance quickly degrades beyond the

original training data range. This demonstrates the difficulty of predicting beyond the

training data we mentioned earlier.

This simple example highlights why ML is so difficult and holds some universal lessons that

we will encounter repeatedly in this review:

• Fitting is not predicting. Fitting existing data well is fundamentally different

from making predictions about new data.

• Using a complex model can result in overfitting. Increasing a model’s

complexity (i.e number of fitting parameters) will usually yield better results on

the training data. However when the training data size is small and the data are

noisy, this results in overfitting and can substantially degrade the predictive

performance of the model.

• For complex datasets and small training sets, simple models can be better at

prediction than complex models due to the bias-variance tradeoff. It takes less

data to train a simple model than a complex one. Therefore, even though the

correct model is guaranteed to have better predictive performance for an infinite

amount of training data (less bias), the training errors stemming from finite-size

sampling (variance) can cause simpler models to outperform the more complex

model when sampling is limited.

Mehta et al. Page 10

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• It is difficult to generalize beyond the situations encountered in the training data

set.

III. BASICS OF STATISTICAL LEARNING THEORY

In this section, we briefly summarize and discuss the sense in which learning is possible,

with a focus on supervised learning. We begin with an unknown function y = f (x) and fix a

hypothesis set ℋ consisting of all functions we are willing to consider, defined also on the

domain of f. This set may be uncountably infinite (e.g. if there are real-valued parameters to

fit). The choice of which functions to include in ℋ usually depends on our intuition about

the problem of interest. The function f (x) produces a set of pairs (xi, yi), i = 1 … N, which

serve as the observable data. Our goal is to select a function from the hypothesis set h ∈ ℋ
that approximates f (x) as best as possible, namely, we would like to find h ∈ ℋ such that h
≈ f in some strict mathematical sense which we specify below. If this is possible, we say that

we learned f (x). But if the function f (x) can, in principle, take any value on unobserved
inputs, how is it possible to learn in any meaningful sense?

The answer is that learning is possible in the restricted sense that the fitted model will

probably perform approximately as well on new data as it did on the training data. Once an

appropriate error function E is chosen for the problem under consideration (e.g. sum of

squared errors in linear regression), we can define two distinct performance measures of

interest. The in-sample error, Ein, and the out-of-sample or generalization error, Eout. Re-call

from Sec II that both metrics are required due to the distinction between fitting and

predicting.

This raises a natural question: Can we say something general about the relationship between
Ein and Eout? Surprisingly, the answer is ‘Yes’. We can in fact say quite a bit. This is the

domain of statistical learning theory, and we give a brief overview of the main results in this

section. Our goal is to briefly introduce some of the major ideas from statistical learning

theory because of the important role they have played in shaping how we think about

machine learning. However, this is a highly technical and theoretical field, so we will just

skim over some introductory topics. A more thorough introduction to statistical learning

theory can be found in the introductory textbook by Abu Mostafa (Abu-Mostafa et al.,
2012).

A. Three simple schematics that summarize the basic intuitions from Statistical Learning
Theory

The basic intuitions of statistical learning can be summarized in three simple schematics.

The first schematic, shown in Figure 4, shows the typical out-of-sample error, Eout, and in-

sample error, Ein, as a function of the amount of training data. In making this graph, we have

assumed that the true data is drawn from a sufficiently complicated distribution, so that we

cannot exactly learn the function f (x). Hence, after a quick initial drop (not shown in

figure), the in-sample error will increase with the number of data points, because our models

are not powerful enough to learn the true function we are seeking to approximate. In

contrast, the out-of-sample error will decrease with the number of data points. As the

number of data points gets large, the sampling noise decreases and the training data set

Mehta et al. Page 11

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

becomes more representative of the true distribution from which the data is drawn. For this

reason, in the infinite data limit, the in-sample and out-of-sample errors must approach the

same value, which is called the “bias” of our model.

The bias represents the best our model could do if we had an infinite amount of training data

to beat down sampling noise. The bias is a property of the kind of functions, or model class,

we are using to approximate f (x). In general, the more complex the model class we use, the

smaller the bias. However, we do not generally have an infinite amount of data. For this

reason, to get best predictive power it is better to minimize the out-of-sample error, Eout,

rather than the bias. As shown in Figure 4, Eout can be naturally decomposed into a bias,

which measures how well we can hypothetically do in the infinite data limit, and a variance,

which measures the typical errors introduced in training our model due to sampling noise

from having a finite training set.

The final quantity shown in Figure 4 is the difference between the generalization and

training error. It meafitting and predicting. Models with a large difference between the in-

sample and out-of-sample errors are said to “overfit” the data. One of the lessons of

statistical learning theory is that it is not enough to simply minimize the training error,

because the out-of-sample error can still be large. As we will see in our discussion of

regression in Sec. VI, this insight naturally leads to the idea of “regularization”.

The second schematic, shown in Figure 5, shows the out-of-sample, or test, error Eout as a

function of “model complexity”. Model complexity is a very subtle idea and defining it

precisely is one of the great achievements of statistical learning theory. In many cases,

model complexity is related to the number of parameters we are using to approximate the

true function f (x)1. In the example of polynomial regression discussed above, higher-order

polynomials are more complex than the linear model. If we consider a training dataset of a

fixed size, Eout will be a non-monotonic function of the model complexity, and is generally

minimized for models with intermediate complexity. The underlying reason for this is that,

even though using a more complicated model always reduces the bias, at some point the

model becomes too complex for the amount of training data and the generalization error

becomes large due to high variance. Thus, to minimize Eout and maximize our predictive

power, it may be more suitable to use a more bisures how well our in-sample error reflects

the out-of-sample error, and measures how much worse we would do on a new data set

compared to our training data. For this reason, the difference between these errors is

precisely the quantity that measures the difference between ased model with small variance

than a less-biased model with large variance. This important concept is commonly called the

bias-variance tradeoff and gets at the heart of why machine learning is difficult.

Another way to visualize the bias-variance tradeoff is shown in Figure 6. In this figure, we

imagine training a complex model (shown in green) and a simpler model (shown in black)

many times on different training sets of a fixed size N. Due to the sampling noise from

having finite size data sets, the learned models will differ for each choice of training sets. In

1There are, of course, exceptions. One neat example in the context of one-dimensional regression in given in (Friedman et al., 2001),
Figure 7.5.

Mehta et al. Page 12

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

general, more complex models need a larger amount of training data. For this reason, the

fluctuations in the learned models (variance) will be much larger for the more complex

model than the simpler model. However, if we consider the asymptotic performance as we

increase the size of the training set (the bias), it is clear that the complex model will

eventually perform better than the simpler model. Thus, depending on the amount of training

data, it may be more favorable to use a less complex, high-bias model to make predictions.

B. Bias-Variance Decomposition

In this section, we dig further into the central principle that underlies much of machine

learning: the biasvariance tradeoff. We will discuss the bias-variance tradeoff in the context

of continuous predictions such as regression. However, many of the intuitions and ideas

discussed here also carry over to classification tasks. Consider a dataset 𝒟 = X, y consisting

of the N pairs of independent and dependent variables. Let us assume that the true data is

generated from a noisy model

y = f x + ϵ (2)

where ϵ is normally distributed with mean zero and standard deviation σϵ.

Assume that we have a statistical procedure (e.g. least-squares regression) for forming a

predictor f x; θ that gives the prediction of our model for a new data point x. This estimator

is chosen by minimizing a cost function which we take to be the squared error

𝒞 y, f X; θ =
i

yi − f xi; θ 2 . (3)

Therefore, the estimates for the parameters,

θ𝒟 = arg min
θ

𝒞 y, f X; θ . (4)

are a function of the dataset, 𝒟. We would obtain a different error 𝒞 y j, f X j; θ𝒟 j
 for each

dataset 𝒟 j = y j, X j in a universe of possible datasets obtained by drawing N samples from

the true data distribution. We denote an expectation value over all of these datasets as 𝔼𝒟.

We would also like to average over different instances of the “noise” ϵ and we denote the

expectation value over the noise by 𝔼ϵ. Thus, we can decompose the expected generalization

error as

Mehta et al. Page 13

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

𝔼𝒟, ϵ 𝒞 y, f X; θ𝒟 = 𝔼𝒟, ϵ
i

yi − f xi; θ𝒟
2

= 𝔼𝒟, ϵ
i

yi − f xi + f xi − f xi; θ𝒟
2

=
i

𝔼ϵ[yi − f xi
2] + 𝔼𝒟, ϵ[(f xi − f (xi; θ𝒟))2]

+ 2𝔼ϵ[yi − f xi]𝔼𝒟[f xi − f (xi; θ𝒟)]

=
i

σϵ
2 + 𝔼𝒟[(f xi − f (xi; θ𝒟))2],

(5)

where in the last line we used the fact that our noise has zero mean and variance σϵ
2 and the

sum over i applies to all terms. It is also helpful to further decompose the second term as

follows:

𝔼𝒟[(f (xi) − f (xi; θ𝒟))2] = 𝔼𝒟[{ f (xi) − 𝔼𝒟[f (xi; θ𝒟)] + 𝔼𝒟[f (xi; θ𝒟)] − f (xi; θ𝒟)}2]
= 𝔼𝒟[{ f (xi) − 𝔼𝒟[f (xi; θ𝒟)]}2]

+ 𝔼𝒟[{ f (xi; θ𝒟) − 𝔼𝒟[f (xi; θ𝒟)]}2]
+ 2𝔼𝒟[{ f (xi) − 𝔼𝒟[f (xi; θ𝒟)]}{ f (xi; θ𝒟) − 𝔼𝒟[f (xi; θ𝒟)]}]

= (f (xi) − 𝔼𝒟[f (xi; θ𝒟)])2 + 𝔼𝒟[{ f (xi; θ𝒟) − 𝔼𝒟[f (xi; θ𝒟)]}2] .

(6)

The first term is called the bias

Bias2 =
i

(f xi − 𝔼𝒟[f (xi; θ𝒟)])2
(7)

and measures the deviation of the expectation value of our estimator (i.e. the asymptotic

value of our estimator in the infinite data limit) from the true value. The second term is

called the variance

Var =
i

𝔼𝒟[(f (xi; θ𝒟) − 𝔼𝒟[f (xi; θ𝒟)])2], (8)

and measures how much our estimator fluctuates due to finite-sample effects. Combining

these expressions, we see that the expected out-of-sample error, Eout: = 𝔼𝒟, ϵ 𝒞 y, f X; θ𝒟 ,

can be decomposed as

Mehta et al. Page 14

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Eout = Bias2 + Var + Noise, (9)

with Noise = ∑iσϵ
2.

The bias-variance tradeoff summarizes the fundamental tension in machine learning,

particularly supervised learning, between the complexity of a model and the amount of

training data needed to train it. Since data is often limited, in practice it is often useful to use

a less-complex model with higher bias – a model whose asymptotic performance is worse

than another model – because it is easier to train and less sensitive to sampling noise arising

from having a finite-sized training dataset (smaller variance). This is the basic intuition

behind the schematics in Figs. 4, 5, and 6.

IV. GRADIENT DESCENT AND ITS GENERALIZATIONS

Almost every problem in ML and data science starts with the same ingredients: a dataset X,

a model g(θ), which is a function of the parameters θ, and a cost function 𝒞 X, g θ that

allows us to judge how well the model g(θ) explains the observations X. The model is fit by

finding the values of θ that minimize the cost function.

In this section, we discuss one of the most powerful and widely used classes of methods for

performing this minimization – gradient descent and its generalizations. The basic idea

behind these methods is straightforward: iteratively adjust the parametersθ in the direction

where the gradient of the cost function is large and negative. In this way, the training

procedure ensures the parameters flow towards a local minimum of the cost function.

However, in practice gradient descent is full of surprises and a series of ingenious tricks have

been developed by the optimization and machine learning communities to improve the

performance of these algorithms.

The underlying reason why training a machine learning algorithm is difficult is that the cost

functions we wish to optimize are usually complicated, rugged, nonconvex functions in a

high-dimensional space with many local minima. To make things even more difficult, we

almost never have access to the true function we wish to minimize: instead, we must

estimate this function directly from data. In modern applications, both the size of the dataset

and the number of parameters we wish to fit is often enormous (millions of parameters and

examples). The goal of this chapter is to explain how gradient descent methods can be used

to train machine learning algorithms even in these difficult settings.

This chapter seeks to both introduce commonly used methods and give intuition for why

they work. We also include some practical tips for improving the performance of stochastic

gradient descent (Bottou, 2012; LeCun et al., 1998b). To help the reader gain more intuition

about gradient descent and its variants, we have developed a Jupyter notebook that allows

the reader to visualize how these algorithms perform on two dimensional surfaces. The

reader is encouraged to experiment with the accompanying notebook whenever a new

method is introduced (especially to explore how changing hyper-parameters can affect

Mehta et al. Page 15

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

performance). The reader may also wish to consult useful reviews that cover these topics

(Ruder, 2016) and this blog http://ruder.io/optimizing-gradient-descent/

A. Gradient Descent and Newton’s method

We begin by introducing a simple first-order gradient descent method and comparing and

contrasting it with another algorithm, Newton’s method. Newton’s method is intimately

related to many algorithms (conjugate gradient, quasi-Newton methods) commonly used in

physics for optimization problems. Denote the function we wish to minimize by E(θ).

In the context of machine learning, E(θ) is just the cost function E θ = 𝒞 X, g θ . As we

shall see for linear and logistic regression in Secs. VI, VII, this energy function can almost

always be written as a sum over n data points,

E θ =
i = 1

n
ei xi, θ . (10)

For example, for linear regression ei is just the mean square-error for data point i; for logistic

regression, it is the cross-entropy. To make analogy with physical systems, we will often

refer to this function as the “energy”.

In the simplest gradient descent (GD) algorithm, we update the parameters as follows.

Initialize the parameters to some value θ0 and iteratively update the parameters according to

the equation

vt = ηt ∇θE θt ,
θt + 1 = θt − vt

(11)

where ∇θE(θ) is the gradient of E(θ) w.r.t. θ and we have introduced a learning rate, ηt, that

controls how big a step we should take in the direction of the gradient at time step t. It is

clear that for sufficiently small choice of the learning rate ηt this methods will converge to a

local minimum (in all directions) of the cost function. However, choosing a small ηt comes

at a huge computational cost. The smaller ηt, the more steps we have to take to reach the

local minimum. In contrast, if ηt is too large, we can overshoot the minimum and the

algorithm becomes unstable (it either oscillates or even moves away from the minimum).

This is shown in Figure 7. In practice, one usually specifies a “schedule” that decreases ηt at

long times. Common schedules include power law and exponential decay in time.

To better understand this behavior and highlight some of the shortcomings of GD, it is useful

to contrast GD with Newton’s method which is the inspiration for many widely employed

optimization methods. In Newton’s method, we choose the step v for the parameters in such

a way as to minimize a second-order Taylor expansion to the energy function

E θ + v ≈ E θ + ∇θE θ v + 1
2vTH θ v,

Mehta et al. Page 16

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ruder.io/optimizing-gradient-descent/

where H(θ) is the Hessian matrix of second derivatives. Differentiating this equation respect

to v and noting that for the optimal value vopt we expect ∇θE(θ + vopt) = 0, yields the

following equation

0 = ∇θE θ + H θ vopt . (12)

Rearranging this expression results in the desired update rules for Newton’s method

vt = H−1 θt ∇θE θt (13)

θt + 1 = θt − vt . (14)

Since we have no guarantee that the Hessian is well conditioned, in almost all applications

of Netwon’s method, one replaces the inverse of the Hessian H−1(θt) by some suitably

regularized pseudo-inverse such as [H(θt)+ϵI]−1 with ϵ a small parameter (Battiti, 1992).

For the purposes of machine learning, Newton’s method is not practical for two interrelated

reasons. First, calculating a Hessian is an extremely expensive numerical computation.

Second, even if we employ first-order approximation methods to approximate the Hessian

(commonly called quasi-Newton methods), we must store and invert a matrix with n2

entries, where n is the number of parameters. For models with millions of parameters such

as those commonly employed in the neural network literature, this is close to impossible

with present-day computational power. Despite these practical shortcomings, Newton’s

method gives many important intuitions about how to modify GD algorithms to improve

their performance. Notice that, unlike in GD where the learning rate is the same for all

parameters, Newton’s method automatically “adapts” the learning rate of different

parameters depending on the Hessian matrix. Since the Hessian encodes the curvature of the

surface we are trying to find the minimum of – more specifically, the singular values of the

Hessian are inversely proportional to the squares of the local curvatures of the surface –

Newton’s method automatically adjusts the step size so that one takes larger steps in flat

directions with small curvature and smaller steps in steep directions with large curvature.

Our derivation of Newton’s method also allows us to develop intuition about the role of the

learning rate in GD. Let us first consider the special case of using GD to find the minimum

of a quadratic energy function of a single parameter θ (LeCun et al., 1998b). Given the

current value of our parameter θ, we can ask what is the optimal choice of the learning rate

ηopt, where ηopt is defined as the value of η that allows us to reach the minimum of the

quadratic energy function in a single step (see Figure 8). To find ηopt, we expand the energy

function to second order around the current value

Mehta et al. Page 17

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

E θ + v = E θc + ∂θE θ v + 1
2 ∂θ

2E θ v2 . (15)

Differentiating with respect to v and setting θmin = θ ‒ v yields

θmin = θ − ∂θ
2E θ −1∂θE θ . (16)

Comparing with (11) gives,

ηopt = ∂θ
2E θ −1 . (17)

One can show that there are four qualitatively different regimes possible (see Fig. 8) (LeCun

et al., 1998b). If η < ηopt, then GD will take multiple small steps to reach the bottom of the

potential. For η = ηopt, GD reaches the bottom of the potential in a single step. If ηopt < η <
2ηopt, then the GD algorithm will oscillate across both sides of the potential before

eventually converging to the minimum. However, when η > 2ηopt, the algorithm actually

diverges!

It is straightforward to generalize this to the multidi-mensional case. The natural

multidimensional generalization of the second derivative is the Hessian H(θ). We can always

perform a singular value decomposition (i.e. a rotation by an orthogonal matrix for quadratic

minima where the Hessian is symmetric, see Sec. VI.B for a brief introduction to SVD) and

consider the singular values {λ} of the Hessian. If we use a single learning rate for all

parameters, in analogy with (17), convergence requires that

η < 2
λmax

, (18)

where λmax is the largest singular value of the Hessian. If the minimum eigenvalue λmin

differs significantly from the largest value λmax, then convergence in the λmin-direction will

be extremely slow! One can actually show that the convergence time scales with the

condition number κ = λmax/λmin (LeCun et al., 1998b).

B. Limitations of the simplest gradient descent algorithm

The last section hints at some of the major shortcomings of the simple GD algorithm

described in (11). Before proceeding, we briefly summarize these limitations and discuss

general strategies for modifying GD to overcome these deficiencies.

• GD finds local minima of the cost function. Since the GD algorithm is

deterministic, if it converges, it will converge to a local minimum of our energy

function. Because in ML we are often dealing with extremely rugged landscapes

Mehta et al. Page 18

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

with many local minima, this can lead to poor performance. A similar problem is

encountered in physics. To overcome this, physicists often use methods like

simulated annealing that introduce a fictitious “temperature” which is eventually

taken to zero. The “temperature” term introduces stochasticity in the form of

thermal fluctuations that allow the algorithm to thermally tunnel over energy

barriers. This suggests that, in the context of ML, we should modify GD to

include stochasticity.

• Gradients are computationally expensive to calculate for large datasets. In many

cases in statistics and ML, the energy function is a sum of terms, with one term

for each data point. For example, in linear regression, E ∝ ∑i = 1
n yi − wT ⋅ xi

2
;

for logistic regression, the square error is replaced by the cross entropy, see Secs.

VI, VII. Thus, to calculate the gradient we have to sum over all n data points.

Doing this at every GD step becomes extremely computationally expensive. An

ingenious solution to this, discussed below, is to calculate the gradients using

small subsets of the data called “mini batches”. This has the added benefit of

introducing stochasticity into our algorithm.

• GD is very sensitive to choices of the learning rates. As discussed above, GD is

extremely sensitive to the choice of learning rates. If the learning rate is very

small, the training process takes an extremely long time. For larger learning

rates, GD can diverge and give poor results. Furthermore, depending on what the

local landscape looks like, we have to modify the learning rates to ensure

convergence. Ideally, we would “adaptively” choose the learning rates to match

the landscape.

• GD treats all directions in parameter space uniformly. Another major drawback

of GD is that unlike Newton’s method, the learning rate for GD is the same in all

directions in parameter space. For this reason, the maximum learning rate is set

by the behavior of the steepest direction and this can significantly slow down

training. Ideally, we would like to take large steps in flat directions and small

steps in steep directions. Since we are exploring rugged landscapes where

curvatures change, this requires us to keep track of not only the gradient but

second derivatives of the energy function (note as discussed above, the ideal

scenario would be to calculate the Hessian but this proves to be too

computationally expensive).

• GD is sensitive to initial conditions. One consequence of the local nature of GD

is that initial conditions matter. Depending on where one starts, one will end up

at a different local minimum. Therefore, it is very important to think about how

one initializes the training process. This is true for GD as well as more

complicated variants of GD introduced below.

• GD can take exponential time to escape saddle points, even with random
initialization. As we mentioned, GD is extremely sensitive to the initial condition

since it determines the particular local minimum GD would eventually reach.

However, even with a good initialization scheme, through randomness (to be

Mehta et al. Page 19

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

introduced later), GD can still take exponential time to escape saddle points,

which are prevalent in high-dimensional spaces, even for non-pathological

objective functions (Du et al., 2017). Indeed, there are modified GD methods

developed recently to accelerate the escape. The details of these boosted method

are beyond the scope of this review, and we refer avid readers to (Jin et al., 2017)

for details.

In the next few subsections, we will introduce variants of GD that address many of these

shortcomings. These generalized gradient descent methods form the backbone of much of

modern deep learning and neural networks, see Sec IX. For this reason, the reader is

encouraged to really experiment with different methods in landscapes of varying complexity

using the accompanying notebook.

C. Stochastic Gradient Descent (SGD) with mini-batches

One of the most widely-applied variants of the gradient descent algorithm is stochastic

gradient descent (SGD)(Bottou, 2012; Williams and Hinton, 1986). As the name suggests,

unlike ordinary GD, the algorithm is stochastic. Stochasticity is incorporated by

approximating the gradient on a subset of the data called a minibatch2. The size of the

minibatches is almost always much smaller than the total number of data points n, with

typical minibatch sizes ranging from ten to a few hundred data points. If there are n points in

total, and the mini-batch size is M, there will be n/M minibatches. Let us denote these

minibatches by Bk where k = 1,…, n/M. Thus, in SGD, at each gradient descent step we

approximate the gradient using a single minibatch Bk,

∇θE θ =
i = 1

n
∇θei xi, θ

i ∈ Bk

∇θei xi, θ . (19)

We then cycle over all k = 1, …, n/M minibatches one at a time, and use the mini-batch

approximation to the gradient to update the parameters θ at every step k. A full iteration over

all n data points – in other words using all n/M minibatches – is called an epoch. For

notational convenience, we will denote the mini-batch approximation to the gradient by

∇θEMB θ =
i ∈ Bk

∇θei xi, θ . (20)

With this notation, we can rewrite the SGD algorithm as

vt = ηt ∇θEMB θ ,
θt + 1 = θt − vt .

(21)

2Traditionally, SGD was reserved for the case where you train on a single example – in other words minibatches of size 1. aHowever,
we will use SGD to mean any approximation to the gradient on a subset of the data.

Mehta et al. Page 20

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Thus, in SGD, we replace the actual gradient over the full data at each gradient descent step

by an approximation to the gradient computed using a minibatch. This has two important

benefits. First, it introduces stochasticity and decreases the chance that our fitting algorithm

gets stuck in isolated local minima. Second, it significantly speeds up the calculation as one

does not have to use all n data points to approximate the gradient. Empirical and theoretical

work suggests that SGD has additional benefits. Chief among these is that introducing

stochasticity is thought to act as a natural regularizer that prevents overfitting in deep,

isolated minima (Bishop, 1995a; Keskar et al., 2016).

D. Adding Momentum

In practice, SGD is almost always used with a “momentum” or inertia term that serves as a

memory of the direction we are moving in parameter space. This is typically implemented as

follows

vt = γvt − 1 + ηt ∇θE θt
θt + 1 = θt − vt,

(22)

where we have introduced a momentum parameter γ, with 0 ≤ γ ≤ 1, and for brevity we

dropped the explicit notation to indicate the gradient is to be taken over a different mini-

batch at each step. We call this algorithm gradient descent with momentum (GDM). From

these equations, it is clear that vt is a running average of recently encountered gradients and

(1 – γ)−1 sets the characteristic time scale for the memory used in the averaging procedure.

Consistent with this, when γ = 0, this just reduces down to ordinary SGD as described in Eq.

(21). An equivalent way of writing the updates is

Δθt + 1 = γΔθt − ηt ∇θE θt , (23)

where we have defined ∆θt = θt − θt−1. In what should be a familiar scenario to many

physicists, momentum based methods were first introduced in old, largely forgotten (until

recently) Soviet papers (Nesterov, 1983; Polyak, 1964).

Before proceeding further, let us try to get more intuition from these equations. It is helpful

to consider a simple physical analogy with a particle of mass m moving in a viscous medium

with viscous damping coefficient µ and potential E(w) (Qian, 1999). If we denote the

particle’s position by w, then its motion is described by

md2w
dt2

+ μdw
dt = − ∇wE w . (24)

We can discretize this equation in the usual way to get

Mehta et al. Page 21

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

m
wt + Δt − 2wt + wt − Δt

Δt 2 + μ
wt + Δt − wt

Δt = − ∇wE w . (25)

Rearranging this equation, we can rewrite this as

Δwt + Δt = − Δt 2

m + μΔt ∇wE w + m
m + μΔt Δwt . (26)

Notice that this equation is identical to Eq. (23) if we identify the position of the particle, w,

with the parameters θ. This allows us to identify the momentum parameter and learning rate

with the mass of the particle and the viscous damping as:

γ = m
m + μΔt , η = Δt 2

m + μΔt . (27)

Thus, as the name suggests, the momentum parameter is proportional to the mass of the

particle and effectively provides inertia. Furthermore, in the large viscosity/small learning

rate limit, our memory time scales as (1 – γ)−1 ≈ m/(µ∆t).

Why is momentum useful? SGD momentum helps the gradient descent algorithm gain speed

in directions with persistent but small gradients even in the presence of stochasticity, while

suppressing oscillations in high-curvature directions. This becomes especially important in

situations where the landscape is shallow and flat in some directions and narrow and steep in

others. It has been argued that first-order methods (with appropriate initial conditions) can

perform comparable to more expensive second order methods, especially in the context of

complex deep learning models (Sutskever et al., 2013). Empirical studies suggest that the

benefits of including momentum are especially pronounced in complex models in the initial

“transient phase” of training, rather than during a subsequent fine-tuning of a coarse

minimum. The reason for this is that, in this transient phase, correlations in the gradient

persist across many gradient descent steps, accentuating the role of inertia and memory.

These beneficial properties of momentum can sometimes become even more pronounced by

using a slight modification of the classical momentum algorithm called Nesterov

Accelerated Gradient (NAG) (Nesterov, 1983; Sutskever et al., 2013). In the NAG algorithm,

rather than calculating the gradient at the current parameters, ∇θ E(θt), one calculates the

gradient at the expected value of the parameters given our current momentum, ∇θE(θt +

γvt−1). This yields the NAG update rule

vt = γvt − 1 + ηt ∇θE θt + γvt − 1
θt + 1 = θt − vt .

(28)

Mehta et al. Page 22

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

One of the major advantages of NAG is that it allows for the use of a larger learning rate

than GDM for the same choice of γ.

E. Methods that use the second moment of the gradient

In stochastic gradient descent, with and without momentum, we still have to specify a

“schedule” for tuning the learning rate ηt as a function of time. As discussed in the context

of Newton’s method, this presents a number of dilemmas. The learning rate is limited by the

steepest direction which can change depending on the current position in the landscape. To

circumvent this problem, ideally our algorithm would keep track of curvature and take large

steps in shallow, flat directions and small steps in steep, narrow directions. Second-order

methods accomplish this by calculating or approximating the Hessian and normalizing the

learning rate by the curvature. However, this is very computationally expensive for models

with extremely large number of parameters. Ideally, we would like to be able to adaptively

change the step size to match the landscape without paying the steep computational price of

calculating or approximating Hessians.

Recently, a number of methods have been introduced that accomplish this by tracking not

only the gradient, but also the second moment of the gradient. These methods include

AdaGrad (Duchi et al., 2011), AdaDelta (Zeiler, 2012), RMSprop (Tieleman and Hinton,

2012), and ADAM (Kingma and Ba, 2014). Here, we discuss the last two as representatives

of this class of algorithms.

In RMSprop, in addition to keeping a running average of the first moment of the gradient,

we also keep track of the second moment denoted by st = 𝔼 gt
2 . The update rule for

RMSprop is given by

gt = ∇θE θ

st = βst − 1 + 1 − β gt
2

θt + 1 = θt − ηt
gt

st + ϵ
,

(29)

where β controls the averaging time of the second moment and is typically taken to be about

β = 0.9, ηt is a learning rate typically chosen to be 10−3, and ϵ ~ 10−8 is a small

regularization constant to prevent divergences. Multiplication and division by vectors is

understood as an element-wise operation. It is clear from this formula that the learning rate

is reduced in directions where the gradient is consistently large. This greatly speeds up the

convergence by allowing us to use a larger learning rate for flat directions.

A related algorithm is the ADAM optimizer. In ADAM, we keep a running average of both

the first and second moment of the gradient and use this information to adaptively change

the learning rate for different parameters. In addition to keeping a running average of the

first and second moments of the gradient (i.e. mt = 𝔼 gt and st = 𝔼 gt
2 , respectively), ADAM

Mehta et al. Page 23

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

performs an additional bias correction to account for the fact that we are estimating the first

two moments of the gradient using a running average (denoted by the hats in the update rule

below). The update rule for ADAM is given by (where multiplication and division are once

again understood to be element-wise operations)

gt = ∇θE θ

mt = β1mt − 1 + 1 − β1 gt

st = β2st − 1 + 1 − β2 gt
2

mt =
mt

1 − β1
t

st =
st

1 − β2
t

(30)

θt + 1 = θt − ηt
mt

st + ϵ
, (31)

where β1 and β2 set the memory lifetime of the first and second moment and are typically

taken to be 0.9 and 0.99 respectively, and β j
t
 denotes βj to the power t. The parameters η

and s have the same role as in RMSprop.

Like in RMSprop, the effective step size of a parameter depends on the magnitude of its

gradient squared. To understand this better, let us rewrite this expression in terms of the

variance σt
2 = s t − mt

2. Consider a single parameter θt. The update rule for this parameter is

given by

Δθt + 1 = − ηt
mt

σt
2 + mt

2 + ϵ
. (32)

We now examine different limiting cases of this expression. Assume that our gradient

estimates are consistent so that the variance is small. In this case our update rule tends to

Δθt + 1 − ηt (here we have assumed that mt ≫ ϵ). This is equivalent to cutting off large

persistent gradients at 1 and limiting the maximum step size in steep directions. On the other

hand, imagine that the gradient is widely fluctuating between gradient descent steps. In this

case σ2 ≫ mt
2 so that our update becomes Δθt + 1 −ηtmt /σt. In other words, we adapt our

learning rate so that it is proportional to the signal-to-noise ratio (i.e. the mean in units of the

standard deviation). From a physics standpoint, this is extremely desirable: the standard

Mehta et al. Page 24

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

deviation serves as a natural adaptive scale for deciding whether a gradient is large or small.

Thus, ADAM has the beneficial effects of (i) adapting our step size so that we cut off large

gradient directions (and hence prevent oscillations and divergences), and (ii) measuring

gradients in terms of a natural length scale, the standard deviation σt. The discussion above

also explains empirical observations showing that the performance of both ADAM and

RMSprop is drastically reduced if the square root is omitted in the update rule. It is also

worth noting that recent studies have shown adaptive methods like RMSProp, ADAM, and

AdaGrad to generalize worse than SGD in classification tasks, though they achieve smaller

training error. Such discussion is beyond the scope of this review so we refer readers to

(Wilson et al., 2017) for more details.

F. Comparison of various methods

To better understand these methods, it is helpful to visualize the performance of the five

methods discussed above – gradient descent (GD), gradient descent with momentum

(GDM), NAG, ADAM, and RMSprop. To do so, we will use Beale’s function:

f x, y = 1.5 − x + xy 2

+ 2.25 − x + xy2 2 + 2.625 − x + xy3 2 .
(33)

This function has a global minimum at (x, y) = (3, 0.5) and an interesting structure that can

be seen in Fig. 9. The figure shows the results of using all five methods for Nsteps = 104 steps

for three different initial conditions. In the figure, the learning rate for GD, GDM, and NAG

are set to η = 10−6 whereas RMSprop and ADAM have a learning rate of η = 10−3. The

learning rates for RMSprop and ADAM can be set significantly higher than the other

methods due to their adaptive step sizes. For this reason, ADAM and RMSprop tend to be

much quicker at navigating the landscape than simple momentum based methods (see Fig.

9). Notice that in some cases (e.g. initial condition of (–1, 4)), the trajectories do not find the

global minimum but instead follow the deep, narrow ravine that occurs along y = 1. This

kind of landscape structure is generic in high-dimensional spaces where saddle points

proliferate. Once again, the adaptive step size and momentum of ADAM and RMSprop

allows these methods to traverse the landscape faster than the simpler first-order methods.

The reader is encouraged to consult the corresponding Jupyter notebook and experiment

with changing initial conditions, the cost function surface being minimized, and hyper-

parameters to gain more intuition about all these methods.

G. Gradient descent in practice: practical tips

We conclude this chapter by compiling some practical tips from experts for getting the best

performance from gradient descent based algorithms, especially in the context of deep

neural networks discussed later in the review, see Secs. IX, XVI.B, IX. This section draws

heavily on best practices laid out in (Bottou, 2012; LeCun et al., 1998b; Tieleman and

Hinton, 2012).

• Randomize the data when making mini-batches. It is always important to

randomly shuffle the data when forming mini-batches. Otherwise, the gradient

Mehta et al. Page 25

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

descent method can fit spurious correlations resulting from the order in which

data is presented.

• Transform your inputs. As we discussed above, learning becomes difficult when

our landscape has a mixture of steep and flat directions. One simple trick for

minimizing these situations is to standardize the data by subtracting the mean

and normalizing the variance of input variables. Whenever possible, also

decorrelate the inputs. To understand why this is helpful, consider the case of

linear regression. It is easy to show that for the squared error cost function, the

Hessian of the energy matrix is just the correlation matrix between the inputs.

Thus, by standardizing the inputs, we are ensuring that the landscape looks

homogeneous in all directions in parameter space. Since most deep networks can

be viewed as linear transformations followed by a non-linearity at each layer, we

expect this intuition to hold beyond the linear case.

• Monitor the out-of-sample performance. Always monitor the performance of

your model on a validation set (a small portion of the training data that is held

out of the training process to serve as a proxy for the test set – see Sec. XI for

more on validation sets). If the validation error starts increasing, then the model

is beginning to overfit. Terminate the learning process. This early stopping
significantly improves performance in many settings.

• Adaptive optimization methods do not always have good generalization. As we

mentioned, recent studies have shown that adaptive methods such as ADAM,

RMSprop, and AdaGrad tend to have poor generalization compared to SGD or

SGD with momentum, particularly in the high-dimensional limit (i.e. the number

of parameters exceeds the number of data points) (Wilson et al., 2017). Although

it is not clear at this stage why sophisticated methods, such as ADAM,

RMSprop, and AdaGrad, perform so well in training deep neural networks such

as generative adversarial networks (GANs) (Goodfellow et al., 2014) [see Sec.

XVII], simpler procedures like properly-tuned plain SGD may work equally well

or better in some applications.

V. OVERVIEW OF BAYESIAN INFERENCE

Statistical modeling usually revolves around estimation or prediction (Jaynes, 1996).

Bayesian methods are based on the fairly simple premise that probability can be used as a

mathematical framework for describing uncertainty. This is not that different in spirit from

the main idea of statistical mechanics in physics, where we use probability to describe the

behavior of large systems where we cannot know the positions and momenta of all the

particles even if the system itself is fully deterministic (at least classically). In practice,

Bayesian inference provides a set of principles and procedures for learning from data and for

describing uncertainty. In this section, we give a gentle introduction to Bayesian inference,

with special emphasis on its logic (i.e. Bayesian reasoning) and provide a connection to ML

discussed in Sec. II and III. For a technical account of Bayesian inference in general, we

refer readers to (Barber, 2012; Gelman et al., 2014).

Mehta et al. Page 26

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A. Bayes Rule

To solve a problem using Bayesian methods, we have to specify two functions: the

likelihood function p(X|θ), which describes the probability of observing a dataset X for a

given value of the unknown parameters θ, and the prior distribution p(θ), which describes

any knowledge we have about the parameters before we collect the data. Note that the

likelihood should be considered as a function of the parameters θ with the data X held fixed.

The prior distribution and the likelihood function are used to compute the posterior
distribution p(θ|X) via Bayes’ rule:

p θ X = p X θ p θ
dθ′p X θ′ p θ′ . (34)

The posterior distribution describes our knowledge about the unknown parameter θ after

observing the data X. In many cases, it will not be possible to analytically compute the

normalizing constant in the denominator of the posterior distribution, i.e. p(X) = ʃ d θ p(X |

θ)p(θ), and Markov Chain Monte Carlo (MCMC) methods are needed to draw random

samples from p(θ|X).

The likelihood function p(X|θ) is a common feature of both classical statistics and Bayesian

inference, and is determined by the model and the measurement noise. Many common

statistical procedures such as least-square fitting can be cast as Maximum Likelihood

Estimation (MLE). In MLE, one chooses the parameters θ that maximize the likelihood (or

equivalently the log-likelihood since log is a monotonic function) of the observed data:

θ = arg max
θ

logp X θ . (35)

In other words, in MLE we choose the parameters that maximize the probability of seeing

the observed data given our generative model. MLE is an important concept in both

frequentist and Bayesian statistics.

The prior distribution, by contrast, is uniquely Bayesian. There are two general classes of

priors: if we do not have any specialized knowledge about θ before we look at the data then

we would like to select an uninformative prior that reflects our ignorance, otherwise we

should select an informative prior that accurately reflects the knowledge we have about θ.

This review will focus on informative priors that are commonly used for ML applications.

However, there is a large literature on uninformative priors, including reparameterization

invariant priors, that would be of interest to physicists and we refer the interested reader to

(Berger and Bernardo, 1992; Gelman et al., 2014; Jaynes, 1996; Jeffreys, 1946; Mattingly et
al., 2018).

Using an informative prior tends to decrease the variance of the posterior distribution while,

potentially, increasing its bias. This is beneficial if the decrease in variance is larger than the

increase in bias. In high-dimensional problems, it is reasonable to assume that many of the

parameters will not be strongly relevant. Therefore, many of the parameters of the model

Mehta et al. Page 27

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

will be zero or close to zero. We can express this belief using two commonly used priors: the

Gaussian prior p θ |λ = ∏ j
λ

2π e
−λθ j

2
 is used to express the assumption that many of the

parameters will be small, and the Laplace prior p θ |λ = ∏ j
λ
2e

−λ θ j is used to express the

assumption that many of the parameters will be zero. We’ll come back to this point later in

Sec. VI.F.

B. Bayesian Decisions

The above section presents the tools for computing the posterior distribution p(θ|X), which

uses probability as a framework for expressing our knowledge about the parameters θ. In

most cases, however, we need to summarize our knowledge and pick a single “best” value

for the parameters. In principle, the specific value of the parameters should be chosen to

maximize a utility function. In practice, however, we usually use one of two choices: the

posterior mean θ = dθ θp θ | X , or the posterior mode θMAP = arg maxθp θ | X . Often, θ

is called the Bayes estimate and θMAP is called the maximum-a-posteriori or MAP estimate.

While the Bayes estimate minimizes the mean-squared error, the MAP estimate is often used

instead because it is easier to compute.

C. Hyperparameters

The Gaussian and Laplace prior distributions, used to express the assumption that many of

the model parameters will be small or zero, both have an extra parameter λ. This

hyperparameter or nuisance variable has to be chosen somehow. One standard Bayesian

approach is to define another prior distribution for λ – usually using an uninformative prior

– and to average the posterior distribution over all choices of λ. This is called a hierarchical

prior. Computing averages, however, often requires long Markov Chain Monte Carlo

simulations that are computationally intensive. Therefore, it is simpler if we can find a good

value of λ using an optimization procedure instead. We will discuss how this is done in

practice when discussing linear regression in Sec. VI.

VI. LINEAR REGRESSION

In Section II, we performed our first numerical ML experiments by fitting datasets generated

by polynomials in the presence of different levels of additive noise. We used the fitted

parameters to make predictions on ‘unseen’ observations, allowing us to gauge the

performance of our model on new data. These experiments highlighted the fundamental

tension common to all ML models between how well we fit the training dataset and

predictions on new data. The optimal choice of predictor depended on, among many other

things, the functions used to fit the data and the underlying noise level. In Section III, we

formalized this by introducing the notion of model complexity and the bias-variance

decomposition, and discussed the statistical meaning of learning. In this section, we take a

closer look at these ideas in the simple setting of linear regression.

As in Section II, fitting a given set of samples (yi, xi) means relating the independent

variables xi to their responses yi. For example, suppose we want to see how the voltage

Mehta et al. Page 28

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

across two sides of a metal slab V changes in response to the applied electric current I.
Normally we would first make a bunch of measurements labeled by i and plot them on a

two-dimensional scatterplot, (Vi, Ii). The next step is to assume, either from an oracle or

from theoretical reasoning, some models that might explain the measurements and

measuring their performance. Mathematically, this amounts to finding some function f such

that Vi = f (Ii; w), where w is some parameter (e.g. the electrical resistance R of the metal

slab in the case of Ohm’s law). We then try to minimize the errors made in explaining the

given set of measurements based on our model f by tuning the parameter w. To do so, we

need to first define the error function (formally called the loss function) that characterizes

the deviation of our prediction from the actual response.

Before formulating the problem, let us set up the notation. Suppose we are given a dataset

with n samples 𝒟 = yi, x i
i = 1
n

, where x(i) is the i-th observation vector while yi is its

corresponding (scalar) response. We assume that every sample has p features, namely,

x i ∈ ℝp. Let f be the true function/model that generated these samples via yi = f (x(i); wtrue)

+ ϵi, where wtrue ∈ ℝp is a parameter vector and ϵi is some i.i.d. white noise with zero mean

and finite variance. Conventionally, we cast all samples into an n × p matrix, X ∈ ℝn × p,

called the design matrix, with the rows Xi, : = x i ∈ ℝp,, i = 1,…, n being observations and

the columns X : , j ∈ ℝn, j = 1,… p being measured features. Bear in mind that this function f

is never known to us explicitly, though in practice we usually presume its functional form.

For example, in linear regression, we assume yi = f x i ; wtrue + ϵi = wtrue
T x i + ϵi for some

unknown but fixed wtrue ∈ ℝp.

We want to find a function g with parameters w fit to the data 𝒟 that can best approximate f.
When this is done, meaning we have found a w such that g x; w yields our best estimate of f,

we can use this g to make predictions about the response y0 for a new data point x0, as we

did in Section II.

It will be helpful for our discussion of linear regression to define one last piece of notation.

For any real number p ≥ 1, we define the Lp norm of a vector x = x1, ⋅ ⋅ ⋅ , xd ∈ ℝd to be

x p = x1
p + ⋅ ⋅ ⋅ + xd

p
1
p (36)

A. Least-square regression

Ordinary least squares linear regression (OLS) is defined as the minimization of the L2 norm

of the difference between the response yi and the predictor g(x(i); w) = wTx(i):

Mehta et al. Page 29

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

min
w ∈ ℝp

Xw − y 2
2 = min

w ∈ ℝpi = 1

n
wTx i − yi

2 . (37)

In other words, we are looking to find the w which minimizes the L2 error. Geometrically

speaking, the predictor function g(x(i); w) = wTx(i) defines a hyperplane in ℝp. Minimizing

the least squares error is therefore equivalent to minimizing the sum of all projections (i.e.

residuals) for all points x(i) to this hyperplane (see Fig. 10). Formally, we denote the solution

to this problem as wLS:

wLS = arg min
w ∈ ℝp

Xw − y 2
2, (38)

which, after straightforward differentiation, leads to

wLS = XTX −1XTy . (39)

Note that we have assumed that XTX is invertible, which is often the case when n ≫ p.

Formally speaking, if rank(X) = p, namely, the predictors X:,1, …, X:,p (i.e. columns of X)

are linearly independent, then wLS is unique. In the case of rank(X) < p, which happens

when p > n, XTX is singular, implying there are infinitely many solutions to the least squares

problem, Eq. (38). In this case, one can easily show that if w0 is a solution, w0 +η is also a

solution for any η which satisfies Xη = 0 (i.e. η ϵ null(X)). Having determined the least

squares solution, we can calculate y, the best fit of our data X, as y = XwLS = PXy, where PX

= X(XTX)−1XT, c.f. Eq. (37). Geometrically, PX is the projection matrix which acts on y and

projects it onto the column space of X, which is spanned by the predictors X:,1, …, X:,p (see

FIG. 11). Notice that we found the optimal solution wLS in one shot, without doing any sort

of iterative optimization like that discussed in Section IV.

In Section III we explained that the difference between learning and fitting lies in the

prediction on “unseen” data. It is therefore necessary to examine the out-of-sample error. For

a more refined argument on the role of out-of-sample errors in linear regression, we

encourage the reader to do the exercises in the corresponding Jupyter notebooks. The upshot

is, following our definition of Ein and Eout in Section III, the average in-sample and out-of-

sample error can be shown to be

Ein = σ2 1 − p
n (40)

Mehta et al. Page 30

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Eout = σ2 1 + p
n , (41)

provided we obtain the least squares solution wLS from i.i.d. samples X and y generated

through y = Xwtrue + ϵ 3. Therefore, we can calculate the average generalization error

explicitly:

Ein − Eout = 2σ2 p
n . (42)

This imparts an important message: if we have p ≫ n (i.e. high-dimensional data), the

generalization error is extremely large, meaning the model is not learning. Even when we

have p ≈ n, we might still not learn well due to the intrinsic noise σ2. One way to ameliorate

this is, as we shall see in the following few sections, to use regularization. We will mainly

focus on two forms of regularization: the first one employs an L2 penalty and is called Ridge
regression, while the second uses an L1 penalty and is called LASSO.

B. Ridge-Regression

In this section, we study the effect of adding to the least squares loss function a regularizer
defined as the L2 norm of the parameter vector we wish to optimize over. In other words, we

want to solve the following penalized regression problem called Ridge regression:

wRidge λ = arg min
w ∈ ℝp

(Xw − y 2
2 + λ w 2

2
) . (43)

This problem is equivalent to the following constrained optimization problem

wRidge t = arg min
w ∈ ℝp: w 2

2
≤ t

Xw − y 2
2 . (44)

This means that for any t ≥ 0 and solution wRidge in Eq. (44), there exists a value λ ≥ 0 such

that wRidge solves Eq. (43), and vice versa4. With this equivalence, it is obvious that by

3This requires that ϵ is a noise vector whose elements are i.i.d. of zero mean and variance σ2, and is independent of the samples X.
4Note that the equivalence between the penalized and the constrained (regularized) form of least square optimization does not always
hold. It holds for Ridge and LASSO (introduced later), but not for best subset selection which is defined by choosing a L0 norm:

λ w 0. In this case, for every λ > 0 and any wBS that solves the penalized form of best subset selection, there is a value t ≥ 0 such

that wBS also solves that constrained form of best subset selection, but the converse is not true.

Mehta et al. Page 31

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

adding a regularization term, λ w 2
2
, to our least squares loss function, we are effectively

constraining the magnitude of the parameter vector learned from the data.

To see this, let us solve Eq. (43) explicitly. Differentiating w.r.t. w, we obtain,

wRidge λ = XTX + λI p × p
−1XTy . (45)

In fact, when X is orthogonal, one can simplify this expression further:

wRidge λ =
wLS
1 + λ , for orthogonal X, (46)

where wLS is the least squares solution given by Eq. (39). This implies that the ridge

estimate is merely the least squares estimate scaled by a factor (1 + λ)−1.

Can we derive a similar relation between the fitted vector y = XwRidge and the prediction

made by least squares linear regression? To answer this, let us do a singular value

decomposition (SVD) on X. Recall that the SVD of an n × p matrix X has the form

X = UDVT, (47)

where U ∈ ℝn × p and V ∈ ℝp × p are orthogonal matrices such that the columns of U span

the column space of X while the columns of V span the row space of X.

D ∈ ℝp × p = diag d1, d2, ⋅ ⋅ ⋅ , dp is a diagonal matrix with entries d1 ≥ d2 ≥ … dp ≥ 0 called

the singular values of X. Note that X is singular if there is at least one dj = 0. By writing X in

terms of its SVD, one can recast the Ridge estimator Eq. (45) as

wRidge = V D2 + λI −1DUTy, (48)

which implies that the Ridge predictor satisfies

yRidge = XwRidge

= UD D2 + λI −1DUTy

=
j = 1

p
U; , j

d j
2

d j
2 + λ

U : j
T y

(49)

Mehta et al. Page 32

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

≤ UUTy (50)

= X y ≡ yLS, (51)

where U:,j are the columns of U. Note that in the in-equality step we assumed λ ≥ 0 and

used SVD to simplify Eq. (39). By comparing Eq. (49) with Eq. (51), it is clear that in order

to compute the fitted vector y, both Ridge and least squares linear regression have to project

y to the column space of X. The only difference is that Ridge regression further shrinks each

basis component j by a factor d j
2/ d j

2 + λ . We encourage the reader to do the exercises in

Notebook 3 to develop further intuition about how Ridge regression works.

C. LASSO and Sparse Regression

In this section, we study the effects of adding an L1 regularization penalty, conventionally

called LASSO, which stands for “least absolute shrinkage and selection operator”.

Concretely, LASSO in the penalized form is defined by the following regularized regression

problem:

wLASSO λ = arg min
w ∈ ℝp

Xw − y 2
2 + λ w 1 . (52)

As in Ridge regression, there is another formulation for LASSO based on constrained

optimization, namely,

wLASSO t = arg min
w ∈ ℝp: w 1 ≤ t

Xw − y 2
2 . (53)

The equivalence interpretation is the same as in Ridge regression, namely, for any t ≥ 0 and

solution wLASSO in Eq. (53), there is a value λ ≥ 0 such that wLASSO solves Eq. (52), and

vice versa. However, to get the analytic solution of LASSO, we cannot simply take the

gradient of Eq. (52) with respect to w, since the L1-regularizer is not everywhere

differentiable, in particular at any point where wj = 0 (see Fig. 13). Nonetheless, LASSO is a

convex problem. Therefore, we can invoke the so-called “subgradient optimality condition”

(Boyd and Vanden-berghe, 2004; Rockafellar, 2015) in optimization theory to obtain the

solution. To keep the notation simple, we only show the solution assuming X is orthogonal:

w j
LASSO λ = sign(w j

LS)(|w j
LS| − λ)+, for orthogonal X, (54)

Mehta et al. Page 33

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where (x)+ denotes the positive part of x and w j
LS is the j-th component of least squares

solution. In Fig. 12, we compare the Ridge solution Eq. (46) with LASSO solution Eq. (54).

As we mentioned above, the Ridge solution is the least squares solution scaled by a factor of

(1 + λ). Here LASSO does something conventionally called “soft-thresholding” (see Fig.

12). We encourage interested readers to work out the exercises in Notebook 3 to explore

what this function does.

How different are the solutions found using LASSO and Ridge regression? In general,

LASSO tends to give sparse solutions, meaning many components of wLASSO are zero. An

intuitive justification for this result is provided in Fig. 13. In short, to solve a constrained

optimization problem with a fixed regularization strength t ≥ 0, for example, Eq. (44) and

Eq. (53), one first carves out the “feasible region” specified by the regularizer in the {w1, …,
wd} space. This means that a solution w0 is legitimate only if it falls in this region. Then one

proceeds by plotting the contours of the least squares regressors in an increasing manner

until the contour touches the feasible region. The point where this occurs is the solution to

our optimization problem (see Fig. 13 for illustration). Loosely speaking, since the L1

regularizer of LASSO has sharp protrusions (i.e. vertices) along the axes, and because the

regressor contours are in the shape of ovals (it is quadratic in w), their intersection tends to

occur at the vertex of the feasibility region, implying the solution vector will be sparse.

In Notebook 3, we analyze a Diabetes dataset using both LASSO and Ridge regression to

predict the diabetes outcome one year forward (Efron et al., 2004). In Figs. 14, 15, we show

the performance of both methods and the solutions wLASSO λ , wRidge λ explicitly. More

details of this dataset and our regression implementation can be found in Notebook 3.

D. Using Linear Regression to Learn the Ising Hamiltonian

To gain deeper intuition about what kind of physics problems linear regression allows us to

tackle, consider the following problem of learning the Hamiltonian for the Ising model.

Imagine you are given an ensemble of random spin configurations, and assigned to each

state its energy, generated from the 1D Ising model:

H = − J
j = 1

L
S jS j + 1 (55)

where J is the nearest-neighbor spin interaction, and Sj ϵ {±1} is a spin variable. Let’s

assume the data was generated with J = 1. You are handed the data set 𝒟 = S j j = 1
L , E j

without knowledge of what the numbers Ej mean, and the configuration S j j = 1
L

 can be

interpreted in many ways: the outcome of coin tosses, black-and-white pixels of an image,

the binary representation of integers, etc. Your goal is to learn a model that predicts Ej from

the spin configurations.

Mehta et al. Page 34

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Without any prior knowledge about the origin of the data set, physics intuition may suggest

to look for a spin model with pairwise interactions between every pair of variables. That is,

we choose the following model class:

Hmodel Si = −
j = 1

L

k = 1

L
J j, kS j

iSk
i , (56)

The goal is to determine the interaction matrix Jj,k by applying linear regression on the data

set 𝒟. This is a well-defined problem, since the unknown Jj,k enters linearly into the

definition of the Hamiltonian. To this end, we cast the above ansatz into the more familiar

linear-regression form:

Hmodel Si = Xi ⋅ J . (57)

The vectors Xi represent all two-body interactions S j
i Sk

i
j, k = 1
L

, and the index i runs over the

samples in the dataset. To make the analogy complete, we can also represent the dot product

by a single index p = {j, k}, i.e.Xi ⋅ J = X p
i J p. Note that the regression model does not include

the minus sign. In the following, we apply ordinary least squares, Ridge, and LASSO

regression to the problem, and compare their performance.

Figure. 16 shows the R2 of the three regression models.

R2 = 1 − i = 1
n

yi
true − yi

pred 2

i = 1

n
yi

true − 1
n i = 1

n
yi

pred 2 . (58)

Let us make a few remarks: (i) the regularization parameter λ affects the Ridge and LASSO

regressions at scales separated by a few orders of magnitude. Notice that this is different for

the data considered in the diabetes dataset, cf. Fig. 14. Therefore, it is considered good

practice to always check the performance for the given model and data as a function of λ.

(ii) While the OLS and Ridge regression test curves are monotonic, the LASSO test curve is

not – suggesting an optimal LASSO regularization parameter is λ ≈ 10−2. At this sweet

spot, the Ising interaction weights J contains only nearest-neighbor terms (as did the model

the data was generated from).

Choosing whether to use Ridge or LASSO regression in this case turns out to be similar to

fixing gauge degrees of freedom. Recall that the uniform nearest-neighbor interactions

strength Jj,k = J which we used to generate the data, was set to unity, J = 1. Moreover, Jj,k

was NOT defined to be symmetric (we only used the Jj,j+1 but never the Jj,j−1 elements).

Figure. 17 shows the matrix representation of the learned weights Jj,k. Interestingly, OLS

and Ridge regression learn nearly symmetric weights J ≈ −0.5. This is not surprising, since it

Mehta et al. Page 35

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

amounts to taking into account both the Jj,j+1 and the Jj,j−1 terms, and the weights are

distributed symmetrically between them. LASSO, on the other hand, tends to break this

symmetry (see matrix elements plots for λ = 0.01) 5. Thus, we see how different

regularization schemes can lead to learning equivalent models but in different ‘gauges’. Any

information we have about the symmetry of the unknown model that generated the data

should be reflected in the definition of the model and the choice of regularization. In

addition to the diabetes dataset in Notebook 3, we encourage the reader to work out

Notebook 4 in which linear regression is applied to the one-dimensional Ising model.

E. Convexity of regularizer

In the previous section, we mentioned that the analytical solution of LASSO can be found by

invoking its convexity. In this section, we provide a gentle introduction to convexity theory

and highlight a few properties which can help us understand the differences between LASSO

and Ridge regression. First, recall that a set C ⊆ ℝn is called convex if for any x, y ∈ C and t
∈ [0, 1],

tx + 1 − t y ∈ C . (59)

In other words, every line segment joining x, y lies entirely in C. A function f :ℝn ℝ is

called convex if its domain, dom(f), is a convex set, and for any x, y ∈dom(f) and t ∈ [0, 1]

we have

f tx + 1 − t y ≤ t f x + 1 − t f y , (60)

That is, the function lies on or below the line segment joining its evaluation at x and y. This

function f is called strictly convex if this inequality holds astrictly for x ≠ y and t ϵ 0, 1).

Now, it turns out that for convex functions, any local minimizer is a global minimizer.
Algorithmically, this means that in the optimization procedure, as long as we are “going

down the hill” and agree to stop when we reach a minimum, then we have hit the global

minimum. In addition to this, there is an abundance of rich theory regarding convex duality

and optimality, which allow us to understand the solutions even before solving the problem

itself. We refer interested readers to (Boyd and Vandenberghe, 2004; Rockafellar, 2015).

Now let us examine the two regularizers we introduced earlier. A close inspection reveals

that LASSO and Ridge regressions are both convex problems but only Ridge regression is a

strictly convex problem (assuming λ > 0). From convexity theory, this means that we

always have a unique solution for Ridge but not necessary for LASSO. In fact, it was

recently shown that under mild conditions, such as demanding general position for columns

of X, the LASSO solution is indeed unique (Tibshirani et al., 2013). Apart from this

theoretical characterization, (Zou and Hastie, 2005) introduced the notion of Elastic Net to

retain the desirable properties of both LASSO and Ridge regression, which is now one of the

5Look closer, and you will see that LASSO actually splits the weights rather equally for the periodic boundary condition element at
the edges of the anti-diagonal.

Mehta et al. Page 36

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

standard tools for regression analysis and machine learning. We refer to reader to explore

this in Notebook 2.

F. Bayesian formulation of linear regression

In Section V, we gave an overview of Bayesian inference and phrased it in the context of

learning and uncertainty quantification. In this section we formulate least squares regression

from a Bayesian point of view. We shall see that regularization in learning will emerge

naturally as part of the Bayesian inference procedure.

From the setup of linear regression, the data 𝒟 used to fit the regression model is generated

through y = xT w + ϵ. We often assume that ∈ is a Gaussian noise with mean zero and

variance σ2. To connect linear regression to the Bayesian framework, we often write the

model as

p y x, θ = 𝒩 y μ x , σ2 x . (61)

In other words, our regression model is defined by a conditional probability that depends not

only on data x but on some model parameters θ. For example, if the mean is a linear

function of x given by µ = xT w, and the variance is fixed σ2(x) = σ2, then θ = (w, σ2).

In statistics, many problems rely on estimation of some parameters of interest. For example,

suppose we are given the height data of 20 junior students from a regional high school, but

what we are interested in is the average height of all high school juniors in the whole county.

It is conceivable that the data we are given are not representative of the student population as

a whole. It is therefore necessary to devise a systematic way to preform reliable estimation.

Here we present the maximum likelihood estimation (MLE), and show that MLE for θ is the

one that minimizes the mean squared error (MSE) used in OLS, see Sec.VI.A.

MLE is defined by maximizing the log-likelihood w.r.t. the parameters θ:

θ ≡ arg max log
θ

p 𝒟 θ . (62)

Using the assumption that samples are i.i.d., we can write the log-likelihood as

l θ ≡ logp 𝒟 θ =
i = 1

n
logp yi x i , θ . (63)

Note that the conditional dependence of the response variable yi on the independent variable

x(i) in the likelihood function is made explicit since in regression the observed value of data,

yi, is predicted based on x(i) using a model that is assumed to be a probability distribution

that depends on unknown parameter θ. This distribution, when endowed with θ, can, as we

hope, potentially explain our prediction on yi. By definition, such distribution is the

Mehta et al. Page 37

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

likelihood function we discussed in Sec. V. Note that this is consistent with the formal

statistical treatment of regression where the goal is to estimate the conditional expectation of

the dependent variable given the value of the independent variable (sometimes called the

covariate) (Wasserman, 2013). We stress that this notation does not imply x(i) is unknown– it

is still part of the observed data!

Using Eq. (61), we get

l θ = − 1
2σ2

i = 1

n
yi − wTx i 2 − n

2log 2πσ2

= − 1
2σ2 Xw − y 2

2 + const .

(64)

By comparing Eq. (38) and Eq. (64), it is clear that performing least squares is the same as

maximizing the log-likelihood of this model.

What about adding regularization? In Section V, we introduced the maximum a posteriori
probability (MAP) estimate. Here we show that it actually corresponds to regularized linear

regression, where the choice of prior determines the type of regularization. Recall Bayes’

rule

p θ D ∝ p 𝒟 θ p θ . (65)

Now instead of maximizing the log-likelihood, l θ = logp 𝒟 |θ , let us maximize the log

posterior, logp θ |𝒟 . Invoking Eq. (65), the MAP estimator becomes

θMAP ≡ arg max log
θ

p 𝒟 θ + logp θ . (66)

In Sec. V.C, we discussed that a common choice for the prior is a Gaussian distribution.

Consider the Gaussian prior6 with zero mean and variance τ 2, namely,

p w = ∏ j𝒩 w j | 0, τ2 . Then, we can recast the MAP estimator into

θMAP = argmax
θ

− 1
2σ2

i = 1

n
yi − wTx i 2 − 1

2τ2
j = 1

n
w j

2

= argmax
θ

− 1
2σ2 Xw − y 2

2 − 1
2τ2 w 2

2
.

(67)

6Indeed, a Gaussian prior is the conjugate prior that gives a Gaussian posterior. For a given likelihood, conjugacy guarantees the
preservation of prior distribution at the posterior level. For example, for a Gaussian (Geometric) likelihood with a Gaussian (Beta)
prior, the posterior distribution is still Gaussian (Beta) distribution.

Mehta et al. Page 38

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Note that we dropped constant terms that do not depend on the maximization parameters θ.

The equivalence between MAP estimation with a Gaussian prior and Ridge regression is

established by comparing Eq. (67) and Eq. (44) with λ ≡ σ2/τ2. We relegate the analogous

derivation for LASSO to an exercise in Notebook 3.

G. Recap and a general perspective on regularizers

In this section, we explored least squares linear regression with and without regularization.

We motivated the need for regularization due to poor generalization, in particular in the

“high-dimensional limit” p ≫ n . Instead of showing the average in-sample and out-of-

sample errors for the regularized problem explicitly, we conducted numerical experiments in

Notebook 3 on the diabetes dataset and showed that regularization typically leads to better

generalization. Due to the equivalence between the constrained and penalized form of

regularized regression (in LASSO and Ridge, but not generally true in cases such as L0

penalization), we can regard the regularized regression problem as an un-regularized

problem but on a constrained set of parameters. Since the size of the allowed parameter

space (e.g. w ∈ ℝp when un-regularized vs. w ∈ C ⊂ ℝp when regularized) is roughly a proxy

for model complexity, solving the regularized problem is in effect solving the un-regularized

problem with a smaller model complexity class. This implies that we’re less likely to overfit.

We also showed the connection between using a regularization function and the use of priors

in Bayesian inference. This connection can be used to develop more intuition about why

regularization implies we are less likely to overfit the data: Let’s say you are a young

Physics student taking a laboratory class where the goal of the experiment is to measure the

behavior of several different pendula and use that to predict the formula (i.e. model) that

determines the period of oscillation. In your investigation you would probably record many

things (hopefully including the length and mass!) in an effort to give yourself the best

possible chance of determining the unknown relationship, perhaps writing down the

temperature of the room, any air currents, if the table were vibrating, etc. What you have

done is create a high-dimensional dataset for yourself. However you actually possess an

even higher-dimensional dataset than you probably would admit to yourself. For example

you are probably aware of the time of day, that it is a Wednesday, your friend Alice being in

attendance, your friend Bob being absent with a cold, the country in which you are doing the

experiment, and the planet you are on, but you almost assuredly haven’t written these down

in your notebook. Why not? The reason is because you entered the classroom with strongly

held prior beliefs that none of those things affect the physics which takes place in that room.

Even of the things you did write down in an effort to be a careful scientist you probably hold

some doubt as to their importance to your result and what is serving you here is the intuition

that probably only a few things matter in the physics of pendula. Hence again you are

approaching the experiment with prior beliefs about how many features you will need to pay

attention to in order to predict what will happen when you swing an unknown pendulum.

This example might seem a bit contrived, but the point is that we live in a high-dimensional

world of information and while we have good intuition about what to write down in our

notebook for well-known problems, often in the field of ML we cannot say with any

confidence a priori what the small list of things to write down will be, but we can at least use

Mehta et al. Page 39

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

regularization to help us enforce that the list not be too long so that we don’t end up

predicting that the period of a pendulum depends on Bob having a cold on Wednesdays.

Of course, in both LASSO and Ridge regression there is a parameter λ involved. In

principle, this hyper-parameter is usually predetermined, which means that it is not part of

the regression process. As we saw in Fig. 15, our learning performance and solution depends

strongly on λ, thus it is vital to choose it properly. As we discussed in Sec. V.C, one

approach is to assume an uninformative prior on the hyper-parameters, p(λ), and average the

posterior over all choices of λ following this distribution. However, this comes with a large

computational cost. Therefore, it is simpler to choose the regularization parameter through

some optimization procedure.

We’d like to emphasize that linear regression can be applied to model non-linear relationship

between input and response. This can be done by replacing the input x with some nonlinear

function ϕ(x). Note that doing so preserves the linearity as a function of the parameters w,

since model is defined by the their inner product ϕT (x)w. This method is known as basis
function expansion (Bishop, 2006; Murphy, 2012).

Recent years have also seen a surge of interest in understanding generalized linear regression

models from a statistical physics perspective. Much of this research has focused on

understanding high-dimensional linear regression and compressed sensing (Donoho, 2006)

(see (Advani et al., 2013; Zdeborová and Krzakala, 2016) for accessible reviews for

physicists). On a technical level, this research imports and extends the machinery of spin

glass physics (replica method, cavity method, and message passing) to analyze high-

dimensional linear models (Advani and Ganguli, 2016; Fisher and Mehta, 2015a,b; Krzakala

et al., 2014, 2012a,b; Ramezanali et al., 2015; Zdeborová and Krzakala, 2016). This is a rich

area of activity at the intersection of physics, computer science, information theory, and

machine learning and interested readers are encouraged to consult the literature for further

information (see also (Mezard and Montanari, 2009)).

VII. LOGISTIC REGRESSION

So far we have focused on learning from datasets for which there is a “continuous” output.

For example, in linear regression we were concerned with learning the co-efficients of a

polynomial to predict the response of a continuous variable yi on unseen data based on its

independent variables xi. However, a wide variety of problems, such as classification, are

concerned with outcomes taking the form of discrete variables (i.e. categories). For example,

we may want to detect if there is a cat or a dog in an image. Or given a spin configuration of,

say, the 2D Ising model, we would like to identify its phase (e.g. ordered/disordered). In this

section, we introduce logistic regression which deals with binary, dichotomous outcomes

(e.g. True or False, Success or Failure, etc.). We encourage the reader to use the opportunity

to build their intuition about the inner workings of logistic regression, as this will prove

valuable later on in the study of modern supervised Deep Learning models (see Sec. IX).

This section is structured as follows: first, we define logistic regression and derive its

corresponding cost function (the cross entropy) using a Bayesian approach, and discuss its

Mehta et al. Page 40

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

minimization. Then, we generalize logistic regression to the case of multiple categories

which is called SoftMax regression. We demonstrate how to apply logistic regression using

three different problems: (i) classifying phases of the 2D Ising model, (ii) learning features

in the SUSY dataset, and (iii) MNIST handwritten digit classification.

Throughout this section, we consider the case where the dependent variables yi ∈ ℤ are

discrete and only take values from m = 0, …, M ‒1 (which enumerate the M classes), see

Fig. 18. The goal is to predict the output classes from the design matrix X ∈ ℝn × p made of n
samples, each of which bears p features. The primary goal is to identify the classes to which

new unseen samples belong.

Before delving into the details of logistic regression, it is helpful to consider a slightly

simpler classifier: a linear classifier that categorizes examples using a weighted linear-

combination of the features and an additive offset:

si = xi
Tw + b0 ≡ xi

Tw, (68)

where we use the short-hand notation xi = (1, xi) and w = (b0, w). This function takes values

on the entire real axis. In the case of logistic regression, however, the labels yi are discrete

variables. One simple way to get a discrete output is to have sign functions that map the

output of a linear regressor to {0, 1}, σ(si) = sign(si) = 1 if si ≥ 0 and 0 otherwise. Indeed,

this is commonly known as the “perceptron” in the machine learning literature.

A. The cross-entropy as a cost function for logistic regression

The perceptron is an example of a “hard classification”: each datapoint is assigned to a

category (i.e. yi = 0 or yi = 1). Even though the perceptron is an extremely simple model, it

is favorable in many cases (e.g. when dealing with noisy data) to have a “soft” classifier that

outputs the probability of a given category. For example, given xi, the classifier returns the

probability of being in category m. One such function is the logistic (or sigmoid) function:

σ s = 1
1 + e−s . (69)

Note that 1‒σ(s) = σ(‒s), which will be useful shortly. In many cases, it is favorable to

work with a “soft” classifier.

Logistic regression is the canonical example of a soft classifier. In logistic regression, the

probability that a data point xi belongs to a category yi = {0, 1} is given by

Mehta et al. Page 41

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

P yi = 1 xi, θ = 1

1 + e
−xi

Tθ
,

P yi = 0 xi, θ = 1 − P yi = 1 xi, θ ,

(70)

where θ = w are the weights we wish to learn from the data. To gain some intuition for these

equations, consider a collection of non-interacting two-state systems coupled to a thermal

bath (e.g. a collection of atoms that can be in two states). Furthermore, denote the state of

system i by a binary variable: yi ϵ {0, 1}. From elementary statistical mechanics, we know

that if the two states have energies ϵ0 and ϵ1 the probability for finding the system in a state

yi is:

P yi = 1 = e
−βϵ0

e
−βϵ0 + e

−βϵ1
= 1

1 + e−βΔϵ ,

P yi = 1 = 1 − P yi = 0 .

(71)

Notice that in these expressions, as is often the case in physics, only energy differences are

observable. If the difference in energies between two states is given by Δϵ = xi
Tw, we recover

the expressions for logistic regression. We shall use this mapping between partition

functions and classification to generalize the logistic regressor to SoftMax regression in Sec.

VII.D. Notice that in terms of the logistic function, we can write

P yi = 1 = σ xi
Tw = 1 − P yi = 0 . (72)

We now define the cost function for logistic regression using Maximum Likelihood

Estimation (MLE). Recall, that in MLE we choose parameters to maximize the probability

of seeing the observed data. Consider a dataset 𝒟 = yi, xi with binary labels yi ϵ {0, 1}

from which the data points are drawn independently. The likelihood of observing the data

under our model is just:

P 𝒟 w =
i = 1

n
σ xi

Tw
yi 1 − σ xi

Tw
1 − yi

(73)

from which we can readily compute the log-likelihood:

Mehta et al. Page 42

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

l w =
i = 1

n
yilogσ xi

Tw + 1 − yi log 1 − σ xi
Tw . (74)

The maximum likelihood estimator is defined as the set of parameters that maximize the log-

likelihood:

w = arg max
θ i = 1

n
yilogσ xi

Tw + 1 − yi log 1 − σ xi
Tw . (75)

Since the cost (error) function is just the negative log-likelihood, for logistic regression we

find

𝒞 w = − l w

=
i = 1

n
−yilogσ xi

Tw − 1 − yi log 1 − σ xi
Tw .

(76)

The right-hand side in Eq. (76) is known in statistics as the cross entropy.

Having specified the cost function for logistic regression, we note that, just as in linear

regression, in practice we usually supplement the cross-entropy with additional

regularization terms, usually L1 and L2 regularization (see Sec. VI for discussion of these

regularizers).

B. Minimizing the cross entropy

The cross entropy is a convex function of the weights w and, therefore, any local minimizer

is a global minimizer. Minimizing this cost function leads to the following equation

0 = ∇𝒞 w =
i = 1

n
σ xi

Tw − yi xi, (77)

where we made use of the logistic function identity ∂zσ(s) = σ(s)[1‒σ(s)]. Equation (77)

defines a transcendental equation for w, the solution of which, unlike linear regression,

cannot be written in a closed form. For this reason, one must use numerical methods such as

those introduced in Sec. IV to solve this optimization problem.

C. Examples of binary classification

Let us now show how to use logistic regression in practice. In this section, we showcase two

pedagogical examples to train a logistic regressor to classify binary data. Each example

Mehta et al. Page 43

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

comes with a corresponding Jupyter notebook, see https://physics.bu.edu/pankajm/

MLnotebooks.html.

1. Identifying the phases of the 2D Ising model—The goal of this example is to

show how one can employ logistic regression to classify the states of the 2D Ising model

according to their phase of matter.

The Hamiltonian for the classical Ising model is given by

H = − J
i j

SiS j, S j ∈ ±1 , (78)

where the lattice site indices i, j run over all nearest neighbors of a 2D square lattice, and J is

an interaction energy scale. We adopt periodic boundary conditions. Onsager proved that this

model undergoes a phase transition in the thermodynamic limit from an ordered ferromagnet

with all spins aligned to a disordered phase at the critical temperature

Tc/J = 2/log 1 + 2 ≈ 2.26. For any finite system size, this critical point is smeared out to a

critical region around Tc.

An interesting question to ask is whether one can train a statistical classifier to distinguish

between the two phases of the Ising model. If successful, this can be used to locate the

position of the critical point in more complicated models where an exact analytical solution

has so far remained elusive (Morningstar and Melko, 2017; Zhang et al., 2017b). In other

words, given an Ising state, we would like to classify whether it belongs to the ordered or the

disordered phase, without any additional information other than the spin configuration itself.

This categorical machine learning problem is well suited for logistic regression, and will

thus consist of recognizing whether a given state is ordered by looking at its bit

configurations. Notice that, for the purposes of applying logistic regression, the 2D spin state

of the Ising model will be flattened out to a 1D array, so it will not be possible to learn

information about the structure of the contiguous ordered 2D domains [see Fig. 20]. Such

information can be incorporated using deep convolutional neural networks, see Section IX.

To this end, we consider the 2D Ising model on a 40 × 40 square lattice, and use Monte-

Carlo (MC) sampling to prepare 104 states at every fixed temperature T out of a pre-defined

set. We furthermore assign a label to each state according to its phase: 0 if the state is

disordered, and 1 if it is ordered.

It is well-known that near the critical temperature Tc, the ferromagnetic correlation length

diverges, which leads to, among other things, critical slowing down of the MC algorithm.

Perhaps identifying the phases is also harder in the critical region. With this in mind,

consider the following three types of states: ordered (T/J < 2.0), near-critical (2.0 ≤ T/J ≤

2.5) and disordered (T/J > 2.5). We use both ordered and disordered states to train the

logistic regressor and, once the supervised training procedure is complete, we will evaluate

the performance of our classification model on unseen ordered, disordered, and near-critical

states.

Mehta et al. Page 44

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://physics.bu.edu/pankajm/MLnotebooks.html
https://physics.bu.edu/pankajm/MLnotebooks.html

Here, we deploy the liblinear routine (the default for Scikit’s logistic regression) and

stochastic gradient descent (SGD, see Sec. IV for details) to optimize the logistic regression

cost function with L2 regularization. We define the accuracy of the classifier as the

percentage of correctly classified data points. Comparing the accuracy on the training and

test data, we can study the degree of overfitting. The first thing to notice in Fig. 21 is the

small degree of overfitting, as suggested by the training (blue) and test (red) accuracy curves

being very close to each other. Interestingly, the liblinear minimizer outperforms SttD on the

training and test data, but not on the near-critical data for certain values of the regularization

strength λ. Moreover, similar to the linear regression examples, we find that there exists a

sweet spot for the SGD regularization strength λ that results in optimal performance of the

logistic regressor, at about λ ~ 10−1. We might expect that the difficulty of the phase

recognition problem depends on the temperature of the queried sample. Looking at the states

in the near-critical region, c.f. Fig. 20, it is no longer easy for a trained human eye to

distinguish between the ferromagnetic and the disordered phases close to Tc. Therefore, it is

interesting to also compare the training and test accuracies to the accuracy of the near-

critical state predictions. (Recall that the model is not trained on near-critical states.) Indeed,

the liblinear accuracy is about 7% smaller for the critical states (green curves) compared to

the test data (red line).

Finally, it is important to note that all of Scikit’s logistic regression solvers have in-built

regularizers. We did not emphasize the role of the regularizers in this section, but they are

crucial in order to prevent overfitting. We encourage the interested reader to play with the

different regularization types and numerical solvers in Notebook 6 and compare model

performances.

2. SUSY—In high energy physics experiments, such as the AT-LAS and CMS detectors at

the CERN LHC, one major hope is the discovery of new particles. To accomplish this task,

physicists attempt to sift through events and classify them as either a signal of some new

physical process or particle, or as a background event from already understood Standard

Model processes. Unfortunately, we don’t know for sure what underlying physical process

occurred (the only information we have access to are the final state particles). However, we

can attempt to define parts of phase space that will have a high percentage of signal events.

Typically this is done by using a series of simple requirements on the kinematic quantities of

the final state particles, for example having one or more leptons with large amounts of

momentum that are transverse to the beam line (pT). Instead, here we will use logistic

regression in an attempt to find the relative probability that an event is from a signal or a

background event. Rather than using the kinematic quantities of final state particles directly,

we will use the output of our logistic regression to define a part of phase space that is

enriched in signal events (see Jupyter notebookNotebook 5).

The dataset we are using comes from the UC Irvine ML repository and has been produced

using Monte Carlo simulations to contain events with two leptons (electrons or muons)

(Baldi et al., 2014). Each event has the value of 18 kinematic variables (“features”). The first

8 features are direct measurements of final state particles, in this case the pT, pseudo-rapidity

η, and azimuthal angle ϕ of two leptons in the event and the amount of missing transverse

momentum (MET) together with its azimuthal angle. The last ten features are higher order

Mehta et al. Page 45

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

functions of the first 8 features; these features are derived by physicists to help discriminate

between the two classes. These high-level features can be thought of as the physicists’

attempt to use non-linear functions to classify signal and background events, having been

developed with formidable theoretical effort. Here, we will use only logistic regression to

attempt to classify events as either signal (that is, coming from a SUSY process) or

background (events from some already observed Standard Model process). Later on in the

review, in Sec. IX, we shall revisit the same problem with the tools of Deep Learning.

As stated before, we never know the true underlying process, and hence the goal in these

types of analyses is to find regions enriched in signal events. If we find an excess of events

above what is expected, we can have confidence that they are coming from the type of signal

we are searching for. Therefore, the two metrics of import are the efficiency of signal

selection, and the background rejection achieved (also called detection/rejection rates and

similar to recall/precision). Oftentimes, rather than thinking about just a single working

point, performance is characterized by Receiver Operator Charecteristic curves (ROC

curves). These ROC curves plot signal efficiency versus background rejection at various

thresholds of some discriminating variable. Here that variable will be the output signal

probability of our logistic regression. Figure 22 shows examples of these outputs for true

signal events (left) and background events (right) using L2 regularization with a

regularization parameter of 10−5.

Notice that while the majority of signal events receive high probabilities of passing our

discriminator and the majority of background events receive low probabilities, some signal

events look background-like, and some background events look signal-like to our

discriminator. This is further reason to characterize performance of our selection in terms of

ROC curves. Figure 23 shows examples of these curves using L2 regularization for many

different regularization parameters using two different ML python packages, either

TensorFlow (top) or Sci-Kit Learn (bottom), when using the full set of 18 input variables.

Notice there is minimal overfitting, in part because we trained on such a large dataset (4.5

million events). More importantly, however, is the underlying data we are working with:

each input variable is an important feature.

While figure 23 shows nice discrimination power between signal and background events, the

adoption of ML techniques adds complication to any analysis. Given that we’ve already

come up with a set of discriminating variables, including higher order ones derived from

theories about SUSY particles, it’s worth reflecting on whether there is utility to the

increased sophistication of ML. To show why we would want to use such a technique, recall

that, even to the learning algorithm, some signal events and background events look similar.

We can illustrate this directly by looking at a plot comparing the pT spectrum of the two

highest pT leptons (often referred to as the leading and sub-leading leptons) for both signal

and background events. Figure 24 shows these two distributions, and one can see that while

some signal events are easily distinguished, many live in the same part of phase space as the

background. This effect can also be seen by looking at figure 22 where you can see that

some signal events look like background events and vice-versa.

Mehta et al. Page 46

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

One could then ask how much discrimination power is obtained by simply putting different

requirements on the input variables rather than using ML techniques. In order to compare

this strategy (often referred to as cut-based in the field of HEP) to our regression results,

different ROC curves have been made for each of the following cases: logistic regression

with just the simple kinematic variables, logistic regression with the full set of variables, and

simply putting a requirement on the leading lepton pT. Figure 25 shows that there is a clear

performance benefit from using logistic regression. Note also that in the cut-based approach

we have only used one variable where we could have put requirements on all of them. While

putting more requirements would indeed increase background rejection, it would also

decrease signal efficiency. Hence, the cut-based approach will never yield as strong

discrimination as the logistic regression we have performed. One other interesting point

about these results is that the higher-order variables noticeably help the ML techniques. In

later sections, we will return to this point to see if more sophisticated techniques can provide

further improvement.

D. Softmax Regression: So far we have focused only on binary classification, in which

the labels are dichotomous variables. Here we generalize logistic regression to multi-class

classification. One approach is to treat the label as a vector yi ∈ ℤ2
M, namely a binary string

of length M with only one component of yi being 1 and the rest zero. For example, yi = (1, 0,

…, 0) means data the sample xi belongs to class 17, cf. Fig. 18. Following the notation in

Sec. VII.A, the probability of xi being in class mʹ is given by

P(yim′ = 1| xi, wk k = 0
M − 1) = e

−xi
Twm′

∑m = 0
M − 1e

−xi
Twm

, (79)

where yim′ ≡ yi m′ refers to the mʹ-th component of vector yi. This is known as the SoftMax

function. Therefore, the likelihood of this M -class classifier is simply (cf. Sec. VII.A):

P(𝒟 | wk k = 0
M − 1) =

i = 1

n

m = 0

M − 1
P yim = 1 xi, wm

yim

× 1 − P yim = 1 xi, wm
1 − yim

(80)

from which we can define the cost function in a similar fashion:

7For an alternative mathematical description of the categories, which labels the classes by integers, see http://ufldl.stanford.edu/wiki/
index.php/Softmax_Regression.

Mehta et al. Page 47

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ufldl.stanford.edu/wiki/index.php/Softmax_Regression
http://ufldl.stanford.edu/wiki/index.php/Softmax_Regression

𝒞 w = −
i = 1

n

m = 0

M − 1
yimlogP yim = 1 xi, wm

+ 1 − yim log 1 − P yim = 1 xi, wm .

(81)

As expected, for M = 1, we recover the cross entropy for logistic regression, cf. Eq. (76).

E. An Example of SoftMax Classification: MNIST Digit Classification: A

paradigmatic example of SoftMax regression is to classify handwritten digits from the

MNIST dataset. Yann LeCun and collaborators first collected and processed 70000

handwritten digits, each of which is laid out on a 28 × 28-pixel grid. Every pixel assumes

one of 256 grayscale values, interpolating between white and black. Since there are 10

categories for the digits 0 through 9, this corresponds to SoftMax regression with M = 10.

We encourage readers to experiment with Notebook 7 to explore SoftMax regression applied

to MNIST. We include in Fig. 26 the learned weights wk, where k corresponds to class labels

(i.e. digits). We shall come back to SoftMax regression in Sec. IX.

VIII. COMBINING MODELS

One of the most powerful and widely-applied ideas in modern machine learning is the use of

ensemble methods that combine predictions from multiple, often weak, statistical models to

improve predictive performance (Dietterich et al., 2000). Ensemble methods, such as

random forests (Breiman, 2001; Geurts et al., 2006; Ho, 1998), and boosted gradient trees,

such as XGBoost (Chen and Guestrin, 2016; Friedman, 2001), undergird many of the

winning entries in data science competitions such as Kaggle, especially on structured

datasets 8. Even in the context of neural networks, see Sec. IX, it is common to combine

predictions from multiple neural networks to increase performance on tough image

classification tasks (He et al., 2015; Ioffe and Szegedy, 2015).

In this section, we give an overview of ensemble methods and provide rules of thumb for

when and why they work. On one hand, the idea of training multiple models and then using

a weighted sum of the predictions of the all these models is very natural. After all, the idea

of the “wisdom of the crowds” can be traced back, at least, to the writings of Aristotle in

Politics. On the other hand, one can also imagine that the ensemble predictions can be much

worse than the predictions from each of the individual models that constitute the ensemble,

especially when pooling reinforces weak but correlated deficiencies in each of the individual

predictors. Thus, it is important to understand when we expect ensemble methods to work.

In order to do this, we will revisit the bias-variance trade-off, discussed in Sec. III, and

generalize it to consider an ensemble of classifiers. We will show that the key to determining

when ensemble methods work is the degree of correlation between the models in the

ensemble (Louppe, 2014). Armed with this intuition, we will introduce some of the most

8Neural networks generally perform better than ensemble methods on unstructured data, images, and audio.

Mehta et al. Page 48

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

widely-used and powerful ensemble methods including bagging (Breiman, 1996), boosting

(Freund et al., 1999; Freund and Schapire, 1995; Schapire and Freund, 2012), random

forests (Breiman, 2001), and gradient boosted trees such as XGBoost (Chen and Guestrin,

2016).

A. Revisiting the Bias-Variance Tradeoff for Ensembles

The bias-variance tradeoff summarizes the fundamental tension in machine learning between

the complexity of a model and the amount of training data needed to fit it (see Sec. III).

Since data is often limited, in practice it is frequently useful to use a less complex model

with higher bias – a model whose asymptotic performance is worse than another model –

because it is easier to train and less sensitive to sampling noise arising from having a finite-

sized training dataset (i.e. smaller variance). Here, we will revisit the bias-variance tradeoff

in the context of ensembles, drawing upon the beautiful discussion in Ref. (Louppe, 2014).

A key property that will emerge from this analysis is the correlation between models that

constitute the ensemble. The degree of correlation between models9 is important for two

distinct reasons. First, holding the ensemble size fixed, averaging the predictions of

correlated models reduces the variance less than averaging uncorrelated models. Second, in

some cases, correlations between models within an ensemble can result in an increase in

bias, offsetting any potential reduction in variance gained from ensemble averaging. We will

discuss this in the context of bagging below. One of the most dramatic examples of

increased bias from correlations is the catastrophic predictive failure of almost all derivative

models used by Wall Street during the 2008 financial crisis.

1. Bias-Variance Decomposition for Ensembles

We will discuss the bias-variance tradeoff in the context of continuous predictions such as

regression. However, many of the intuitions and ideas discussed here also carry over to

classification tasks. Before discussing ensembles, let us briefly review the bias-variance

tradeoff in the context of a single model. Consider a data set consisting of data

Xℒ = yi, x j , j = 1…N . Let us assume that the true data is generated from a noisy model

y = f x + ϵ, (82)

where ϵ is a normally distributed with mean zero and standard deviation σϵ.

Assume that we have a statistical procedure (e.g. least-squares regression) for forming a

predictor gℒ x that gives the prediction of our model for a new data point x given that we

trained the model using a dataset ℒ. This estimator is chosen by minimizing a cost function

which, for the sake of concreteness, we take to be the squared error

9For example, the correlation coefficient between the predictions made by two randomized models based on the same training set but
with different random seeds, see Sec. VIII.A.1 for precise definition.

Mehta et al. Page 49

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

𝒞 X, g x =
i

yi − gℒ xi
2 . (83)

The dataset ℒ is drawn from some underlying distribution that describes the data. If we

imagine drawing many datasets ℒ j of the same size as ℒ from this distribution, we know

that the corresponding estimators gℒ j
x will differ from each other due to stochastic effects

arising from sampling noise. For this reason, we can view our estimator gℒ x as a random

variable and define an expectation value 𝔼ℒ in the usual way. Note that the subscript denotes

that the expectation is taken over ℒ. In practice, 𝔼ℒ is computed by by drawing infinitely

many different datasets ℒ j of the same size, fitting the corresponding estimator, and then

averaging the results. We will also average over different instances of the “noise” ϵ. The

expectation value over the noise will be denoted by Eϵ.

As discussed in Sec. III, we can decompose the expected generalization error as

𝔼ℒ, ϵ 𝒞 X, g x = Bias2 + Var + Noise . (84)

where the bias,

Bias2 =
i

f xi − 𝔼ℒ gℒ xi
2, (85)

measures the deviation of the expectation value of our estimator (i.e. the asymptotic value of

our estimator in the limit of infinite data) from the true value. The variance

Var =
i

𝔼ℒ[gℒ xi − 𝔼ℒ gℒ xi
2], (86)

measures how much our estimator fluctuates due to finite-sample effects. The noise term

Noise =
i

σϵi
2 (87)

is the part of the error due to intrinsic noise in the data generation process that no statistical

estimator can overcome.

Let us now generalize this to ensembles of estimators. Given a dataset Xℒ and hyper-

parameters θ that parameterize members of our ensemble, we will consider a procedure that

deterministically generates a model gℒ xi, θ given Xℒ and θ. We assume that the θ includes

Mehta et al. Page 50

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

some random parameters that introduce stochasticity into our ensemble (e.g. an initial

condition for stochastic gradient descent or a random subset of features or data points used

for training.) Concretely, with a giving dataset ℒ, one has a learning algorithm 𝒜 that

generates a model 𝒜 θ, ℒ based on a deterministic procedure which introduced stochasticity

through θ in its execution on dataset ℒ. We will be concerned with the expected prediction

error of the aggregate ensemble predictor

gℒ
A xi, θ = 1

M m = 1

M
gℒ xi, θm . (88)

For future reference, let us define the mean, variance, and covariance (i.e. the connected

correlation function in the language of physics), and the normalized correlation coefficient

of a single randomized model gℒ x, θm as:

𝔼ℒ, θm
gℒ x, θm = μℒ, θm

x

𝔼ℒ, θm
gℒ x, θm

2 − 𝔼ℒ, θm
gℒ x, θ 2 = σℒ, θm

2 x

𝔼ℒ, θm
gℒ x, θm gℒ x, θm′ − 𝔼θ gℒ x, θm

2 = 𝒞ℒ, θm, θm′
x

ρ x =
Cℒ, θm, θm′

x

σℒ, θ
2 .

(89)

Note that the expectation 𝔼ℒ, θm
⋅ is computed over the joint distribution of ℒ and θm.

Also, by definition, we assume m ≠ m′ in Cℒ, θm, θm′
.

We can now ask about the expected generalization (out-of-sample) error for the ensemble

𝔼ℒ, ϵ, θ[𝒞(X, gℒ
A x)] = 𝔼ℒ, ϵ, θ

i
(yi − gℒ

A xi, θ)2 . (90)

As in the single estimator case, we decompose the error into a noise term, a bias-term, and a

variance term. To see this, note that

Mehta et al. Page 51

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

𝔼ℒ, ϵ, θ[𝒞(X, gℒ
A x)] = 𝔼ℒ, ϵ, θ

i
(yi − f xi + f (xi − gℒ

A xi, θ)2

=
i

𝔼ℒ, ϵ, θ[yi − f xi)2 + (f xi − gℒ
A xi, θ)2 + 2 yi − f xi

(f xi − gℒ
A xi, θ]

=
i

σϵi
2 +

i
𝔼ℒ, θ[(f xi − gℒ

A xi, θ)2],

(91)

where in the last line we have used the fact that 𝔼ϵ yi = f xi to eliminate the last term. We

can further decompose the second term as

𝔼ℒ, θ[(f xi − gℒ
A xi, θ)2] = 𝔼ℒ, θ

[(f xi − 𝔼ℒ, θ[gℒ
A xi, θ] + 𝔼ℒ, θ[gℒ

A xi, θ] − gℒ
A xi, θ)2]

= 𝔼ℒ, θ[(f xi − 𝔼ℒ, θ[gℒ
A xi, θ])2]

+ 𝔼ℒ, θ[(𝔼ℒ, θ[gℒ
A xi, θ] − gℒ

A xi, θ)2]
+ 2𝔼ℒ, θ[(Eℒ, θ[gℒ

A xi, θ] − gℒ
A xi, θ)

(f xi − 𝔼ℒ, θ[gℒ
A xi, θ])

= (f xi − 𝔼ℒ, θ[gℒ
A xi, θ])2

+ 𝔼ℒ, θ[(gℒ
A xi, θ − 𝔼ℒ, θ[gℒ

A xi, θ])2]
≡ Bias2 xi + Var xi ,

(92)

where we have defined the bias of an aggregate predictor as

Bias2 x ≡ (f x − 𝔼ℒ, θ[gℒ
A x, θ])2

(93)

and the variance as

Var x ≡ 𝔼ℒ, θ[(gℒ
A x, θ − 𝔼ℒ, θ[gℒ

A x, θ])2] . (94)

So far the calculation for ensembles is almost identical to that of a single estimator.

However, since the aggregate estimator is a sum of estimators, its variance implicitly

depends on the correlations between the individual estimators in the ensemble. Using the

definition of the aggregate estimator Eq. (88) and the definitions in Eq. (89), we see that

Mehta et al. Page 52

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Var x = 𝔼ℒ, θ[(gℒ
A x, θ − 𝔼ℒ, θ[gℒ

A x, θ])2]

= 1
M2

m, m′
𝔼ℒ, θ gℒ x, θm gℒ x, θm′ − M2

i
μℒ, θ x 2

= ρ x σℒ, θ
2 + 1 − ρ x

M σℒ, θ
2 .

(95)

This last formula is the key to understanding the power of random ensembles. Notice that by

using large ensembles (M → ∞), we can significantly reduce the variance, and for

completely random ensembles where the models are uncorrelated (ρ(x) = 0), maximally

suppresses the variance! Thus, using the aggregate predictor beats down fluctuations due to

finite-sample effects. The key, as the formula indicates, is to decorrelate the models as much

as possible while still using a very large ensemble. One can be worried that this comes at the

expense of a very large bias. This turns out not to be the case. When models in the ensemble

are completely random, the bias of the aggregate predictor is just the expected bias of a

single model

Bias2 x = (f x − 𝔼ℒ, θ[gℒ
A (x, θ])2

= (f x − 1
M m = 1

M
𝔼ℒ, θ gℒ(x, θm)

2

(96)

= f x − μℒ, θ
2 . (97)

Thus, for a random ensemble one can always add more models without increasing the bias.

This observation lies behind the immense power of random forest methods discussed below.

For other methods, such as bagging, we will see that the bootstrapping procedure actually

does increase the bias. But in many cases, this increase in bias is negligible compared to the

reduction in variance.

2. Summarizing the Theory and Intuitions behind Ensembles

Before discussing specific methods, let us briefly summarize why ensembles have proven so

successful in many ML applications. Dietterich (Dietterich et al., 2000) identifies three

distinct shortcomings that are fixed by ensemble methods: statistical, computational, and

representational. These are explained in the following discussion from Ref. (Louppe, 2014):

The first reason is statistical. When the learning set is too small, a learning

algorithm can typically find several models in the hypothesis space ℋ that all give

the same performance on the training data. Provided their predictions are

uncorrelated, averaging several models reduces the risk of choosing the wrong

Mehta et al. Page 53

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

hypothesis. The second reason is computational. Many learning algorithms rely on

some greedy assumption or local search that may get stuck in local optima. As

such, an ensemble made of individual models built from many different starting

points may provide a better approximation of the true unknown function than any

of the single models. Finally, the third reason is representational. In most cases, for

a learning set of finite size, the true function cannot be represented by any of the

candidate models in ℋ. By combining several models in an ensemble, it may be

possible to expand the space of representable functions and to better model the true

function.

The increase in representational power of ensembles can be simply visualized. For example,

the classification task shown in Fig. 27 reveals that it is more advantageous to combine a

group of simple hypotheses (vertical or horizontal lines) than to utilize a single arbitrary

linear classifier. This of course comes with the price of introducing more parameters to our

learning procedure. But if the problem itself can never be learned through a simple

hypothesis, then there is no reason to avoid applying a more complex model. Since ensemble

methods reduce the variance and are often easier to train than a single complex model, they

are a powerful way of increasing representational power (also called expressivity in the ML

literature).

Our analysis also gives several intuitions for how we should construct ensembles. First, we

should try to randomize ensemble construction as much as possible to reduce the

correlations between predictors in the ensemble. This ensures that our variance will be

reduced while minimizing an increase in bias due to correlated errors. Second, the

ensembles will work best for procedures where the error of the predictor is dominated by the

variance and not the bias. Thus, these methods are especially well suited for unstable

procedures whose results are sensitive to small changes in the training dataset.

Finally, we note that although the discussion above was derived in the context of continuous

predictors such as regression, the basic intuition behind using ensembles applies equally

well to classification tasks. Using an ensemble allows one to reduce the variance by

averaging the result of many independent classifiers. As with regression, this procedure

works best for unstable predictors for which errors are dominated by variance due to finite

sampling rather than bias.

B. Bagging

BAGGing, or Bootstrap AGGregation, first introduced by Leo Breiman, is one of the most

widely employed and simplest ensemble-inspired methods (Breiman, 1996). Imagine we

have a very large dataset ℒ that we could partition into M smaller data sets which we label

ℒ1, …, ℒM . If each partition is sufficiently large to learn a predictor, we can create an

ensemble aggregate predictor composed of predictors trained on each subset of the data. For

continuous predictors like regression, this is just the average of all the individual predictors:

Mehta et al. Page 54

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

gℒ
A x = 1

M i = 1

M
gℒi x . (98)

For classification tasks where each predictor predicts a class label j ϵ{1, …, J}, this is just a

majority vote of all the predictors,

gℒ
A x = arg max

j i = 1

M
I gℒi

x = j , (99)

where I gℒi
x = j is an indicator function that is equal to one if gℒi

x = j and zero

otherwise. From the theoretical discussion above, we know that this can significantly reduce

the variance without increasing the bias.

While simple and intuitive, this form of aggregation clearly works only when we have

enough data in each partitioned set ℒi. To see this, one can consider the extreme limit where

ℒi contains exactly one point. In this case, the base hypothesis gℒi
x (e.g. linear regressor)

becomes extremely poor and the procedure above fails. One way to circumvent this

shortcoming is to resort to empirical bootstrapping, a resampling technique in statistics

introduced by Efron (Efron, 1979) (see accompanying box and Fig. 28). The idea of

empirical bootstrapping is to use sampling with replacement to create new “bootstrapped”

datasets ℒ1
BS, …, ℒM

BS from our original dataset ℒ. These bootstrapped datasets share

many points, but due to the sampling with replacement, are all somewhat different from each

other. In the bagging procedure, we create an aggregate estimator by replacing the M
independent datasets by the M bootstrapped estimators:

gℒ
BS x = 1

M i = 1

M
gℒi

BS x . (100)

and

gℒ
BS x = arg max

j i = 1

M
I[g

ℒi
BS x = j] . (101)

This bootstrapping procedure allows us to construct an approximate ensemble and thus

reduce the variance. For unstable predictors, this can significantly improve the predictive

performance. The price we pay for using bootstrapped training datasets, as opposed to really

partitioning the dataset, is an increase in the bias of our bagged estimators. To see this, note

that as the number of datasets M goes to infinity, the expectation with respect to the

Mehta et al. Page 55

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

bootstrapped samples converges to the empirical distribution describing the training data set

pℒ x (e.g. a delta function at each datapoint in ℒ) which in general is different from the

true generative distribution for the data p(x).

In Fig. 29 we demonstrate bagging with a perceptron (linear classifier) as the base classifier

that constitutes the elements of the ensemble. It is clear that, although each individual

classifier in the ensemble performs poorly at classification, bagging these estimators yields

reasonably good predictive performance. This raises questions like why bagging works and

how many bootstrap samples are needed. As mentioned in the discussion above, bagging is

effective on “unstable” learning algorithms where small changes in the training set result in

large changes in predictions (Breiman, 1996). When the procedure is unstable, the prediction

error is dominated by the variance and one can exploit the aggregation component of

bagging to reduce the prediction error. In contrast, for a stable procedure the accuracy is

limited by the bias introduced by using bootstrapped datasets. This means that there is an

instability-to-stability transition point beyond which bagging stops improving our prediction.

Brief Introduction to Bootstrapping

Suppose we are given a finite set of n data points 𝒟 = X1, ⋅ ⋅ ⋅ , Xn as training samples and

our job is to construct measures of confidence for our sample estimates (e.g. the confidence

interval or mean-squared error of sample median estimator). To do so, one first samples n

points with replacement from 𝒟 to get a new set 𝒟 ⋆ 1 = X1
⋆ 1 , ⋅ ⋅ ⋅ , Xn

⋆ 1 , called a

bootstrap sample, which possibly contains repetitive elements. Then we repeat the same

procedure to get in total B such sets: 𝒟 ⋆ 1 , ⋅ ⋅ ⋅ , 𝒟 ⋆ B . The next step is to use these B

bootstrap sets to get the bootstrap estimate of the quantity of interest. For example,

Mn
⋆ k = Median 𝒟 ⋆ k be the sample median of bootstrap data 𝒟 ⋆ k . Then we can

construct the variance of the distribution of bootstrap medians ans as :

VarB Mn = 1
B − 1 k = 1

B
Mn

⋆ k − Mn
⋆ 2, (102)

where

Mn
⋆ = 1

B k = 1

B
Mn

⋆ k (103)

is the mean of the median of all bootstrap samples. Specifically, Bickel and Freedman

(Bickel and Freedman, 1981) and Singh (Singh, 1981) showed that in the n → ∞ limit, the

distribution of the bootstrap estimate will be a Gaussian centered around

Mn 𝒟 = Median X1, ⋅ ⋅ ⋅ , Xn with standard deviation proportional to 1/ n. This means that

the bootstrap distribution Mn
⋆ − Mn approximates fairly well the sampling distribution

Mehta et al. Page 56

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mn − M from which we obtain the training data 𝒟. Note that M is the median based on

which the true distribution 𝒟 is generated. In other words, if we plot the histogram of

Mn
⋆ k

k = 1
B

, we will see that in the large n limit it can be well fitted by a Gaussian which

sharp peaks at Mn 𝒟 and vanishing variance whose definition is given by Eq. (102) (see Fig.

28).

C. Boosting

Another powerful and widely used ensemble method is Boosting. In bagging, the

contribution of all predictors is weighted equally in the bagged (aggregate) predictor.

However, in principle, there are myriad ways to combine different predictors. In some

problems one might prefer to use an autocratic approach that emphasizes the best predictors,

while in others it might be better to opt for more ‘democratic’ ways as is done in bagging. In

all cases, the idea is to build a strong predictor by combining many weaker classifiers.

In boosting, an ensemble of weak classifiers {gk(x)} is combined into an aggregate, boosted

classifier. However, unlike bagging, each classifier is associated with a weight αk that

indicates how much it contributes to the aggregate classifier

gA x =
K = 1

M
αkgk x , (104)

where ∑k αk = 1. For the reasons outlined above, boosting, like all ensemble methods, works

best when we combine simple, high-variance classifiers into a more complex whole.

Here, we focus on “adaptive boosting” or AdaBoost, first proposed by Freund and Schapire

in the mid 1990s (Freund et al., 1999; Freund and Schapire, 1995; Schapire and Freund,

2012). The basic idea behind AdaBoost, is to form the aggregate classifier in an iterative

process. Importantly, at each iteration we reweight the error function to “highlight” data

points where the aggregate classifier performs poorly (so that in the next round the

procedure put more emphasis on making those right.) In this way, we can successively

ensure that our classifier has good performance over the whole dataset.

We now discuss the AdaBoost procedure in greater detail. Suppose that we are given a data

set ℒ = xi, yi , i = 1, ⋅ ⋅ ⋅ , N where xi ∈ 𝒳 and yi ∈ 𝒴 = +1, − 1 . Our objective is to find

an optimal hypothesis/classifier g:𝒳 𝒴 to classify the data. Let ℋ = g:𝒳 𝒴 be the

family of classifiers available in our ensemble. In the AdaBoost setting, we are concerned

with the classifiers that perform somehow better than “tossing a fair coin”. This means that

for each classifier, the family ℋ can predict yi correctly at least half of the time.

We construct the boosted classifier as follows:

• Initialize w t=1 (xn) = 1/N, n = 1, … , N.

Mehta et al. Page 57

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• For t = 1 …, T (desired termination step), do:

1. Select a hypothesis gt ∈ ℋ that minimizes the weighted error

ϵt =
i = 1

N
wt xi 𝟙 gt xi ≠ yi (105)

2.
Let αt = 1

2 ln
1 − ϵt

ϵt
, update the weight for each data xn by

wt + 1 xn wt xn
exp −αtyngt xn

Zt
,

where Zt = ∑n = 1
N wt xn e

−αtyngt xn ensures all weights add up to unity.

• Output gA x = sign ∑n = 1
T αtgt x

There are many theoretical and empirical studies on the performance of AdaBoost but they

are beyond the scope of this review. We refer interested readers to the extensive literature on

boosting (Freund et al., 1999).

D. Random Forests

We now briefly review one of the most widely used and versatile algorithms in data science

and machine learning, Random Forests (RF). Random Forests is an ensemble method widely

deployed for complex classification tasks. A random forest is composed of a family of

(randomized) tree-based classifier decision trees (discussed below). Decision trees are high-

variance, weak classifiers that can be easily randomized, and as such, are ideally suited for

ensemble-based methods. Below, we give a brief highlevel introduction to these ideas.

A decision tree uses a series of questions to hierarchically partition the data. Each branch of

the decision tree consists of a question that splits the data into smaller subsets (e.g. is some

feature larger than a given number? See Fig. 30), with the leaves (end points) of the tree

corresponding to the ultimate partitions of the data. When using decision trees for

classification, the goal is to construct trees such that the partitions are informative about the

class label (see Fig. 30). It is clear that more complex decision trees lead to finer partitions

that give improved performance on the training set. However, this generally leads to over-

fitting10, limiting the out-of-sample performance. For this reason, in practice almost all

decision trees use some form of regularization (e.g. maximum depth for the tree) to control

complexity and reduce overfitting. Decision trees also have extremely high variance, and are

often extremely sensitive to many details of the training data. This is not surprising since

decision trees are learned by partitioning the training data. Therefore, individual decision

10One extreme limit is an n node tree, with n being the number of data point in the dataset given.

Mehta et al. Page 58

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

trees are weak classifiers. However, these same properties make them ideal for incorporation

in an ensemble method.

In order to create an ensemble of decision trees, we must introduce a randomization

procedure. As discussed above, the power of ensembles to reduce variance only manifests

when randomness reduces correlations between the classifiers within the ensemble.

Randomness is usually introduced into random forests in one of three distinct ways. The first

is to use bagging and simply “bag” the decision trees by training each decision tree on a

different bootstrapped dataset (Breiman, 2001). Strictly speaking, this procedure does not

constitute a random forest but rather a bagged decision tree. The second procedure is to only

use a different random subset of the features at each split in the tree. This “feature bagging”

is the distinguishing characteristic of random forests (Breiman, 2001; Ho, 1998). Using

feature bagging reduces correlations between decision trees that can arise when only a few

features are strongly predictive of the class label. Finally, extremized random forests (ERFs)

combine ordinary and feature bagging with an extreme randomization procedure where

splitting is done randomly instead of using optimality criteria (see for details Refs. (Geurts et
al., 2006; Louppe, 2014)). Even though this reduces the predictive power of each individual

decision tree, it still often improves the predictive power of the ensemble because it

dramatically reduces correlations between members and prevents overfitting.

Examples of the kind of decision surfaces found by decision trees, random forests, and

Adaboost are shown in Fig. 31. We invite the reader to check out the corresponding scikit-

learn tutorial for more details of how these are implemented in python (Pedregosa et al.,
2011).

There are many different types of decision trees and training procedures. A full discussion of

decision trees (and random forests) lies beyond the scope of this review and we refer readers

to the extensive literature on these topics (Lim et al., 2000; Loh, 2011; Louppe, 2014).

Recently, decision trees were applied in high-energy physics to study to learn non-Higgsable

gauge groups (Wang and Zhang, 2018).

E. Gradient Boosted Trees and XGBoost

Before we turn to applications of these techniques, we briefly discuss one final class of

ensemble methods that has become increasingly popular in the last few years: Gradient-
Boosted Trees (Chen and Guestrin, 2016; Friedman, 2001). The basic idea of gradient-

boosted trees is to use intuition from boosting and gradient descent (in particular Newton’s

method, see Sec. IV) to construct ensembles of decision trees. Like in boosting, the

ensembles are created by iteratively adding new decision trees to the ensemble. In gradient

boosted trees, one critical component is the a cost function that measures the performance of

our ensemble. At each step, we compute the gradient of the cost function with respect to the

predicted value of the ensemble and add trees that move us in the direction of the gradient.

Of course, this requires a clever way of mapping gradients to decision trees. We give a brief

overview of how this is done within XGBoost (Extreme Gradient Boosting), which has

recently been applied, to classify and rank transcription factor binding in DNA sequences

(Li et al., 2018). Below, we follow closely the XGboost tutorial.

Mehta et al. Page 59

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Our starting point is a clever parametrization of decision trees. Here, we use notation where

the decision tree makes continuous predictions (regression trees), though this can also easily

be generalized to classification tasks. We parametrize a decision tree j, denoted as gj(x), with

T leaves by two quantities: a function q(x) that maps each data point to one of the leaves of

the tree, q:x ∈ ℝd 1, 2…, T and a weight vector w ∈ ℝT that assigns a predicted value to

each leaf. In other words, the decision tree’s prediction for the datapoint xi is simply:

q xi = w
q xi

.

In addition to a parametrization of decision trees, we also have to specify a cost function

which measures predictions. The prediction of our ensemble for a datapoint (yi, xi) is given

by

yi = gA xi =
j = 1

M
g j xi , g j ∈ ℱ (106)

where gj (xi) is the prediction of the j-th decision tree on datapoint xi, M is the number of

members of the ensemble, and ℱ = g x = wq x is the space of trees. As discussed in the

context of random trees above, without regularization, decision trees tend to overfit the data

by dividing it into smaller and smaller partitions. For this reason, our cost function is

generally composed of two terms, a term that measures the goodness of predictions on each

datapoint, li yi, yi , which is assumed to be differentiable and convex, and for each tree in the

ensemble, a regularization term Ω(gj) that does not depend on the data:

𝒞 X, gA =
i = 1

N
l yi, yi +

j = 1

M
Ω g j , (107)

where the index i runs over data points and the index j runs over decision trees in our

ensemble. In XGBoost, the regularization function is chosen to be

Ω g = γT + λ
2 w 2

2
, (108)

with γ and λ regularization parameters that must be chosen appropriately. Notice that this

regularization penalizes both large weights on the leaves (similar to L2-regularization) and

having large partitions with many leaves.

As in boosting, we form the ensemble iteratively. For this reason, we define a family of

predictors yi
t as

Mehta et al. Page 60

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

yi
t =

j = 1

t
g j xi = yi

t − 1 + gt xi . (109)

Note that by definition yi
M = gA xi . The central idea is that for large t, each decision tree is

a small perturbation to the predictor (of order 1/T) and hence we can perform a Taylor

expansion on our loss function to second order:

𝒞t =
i = 1

N
l(yi, yi

t − 1 + gt xi + Ω gt)

≈ 𝒞t − 1 + Δ𝒞t,

(110)

with

Δ𝒞t = ail(yi, yi
t − 1)gt xi + 1

2bigt xi
2 + Ω gt , (111)

where

ai = ∂
yi

t − 1 l(yi, yi
t − 1), (112)

bi = ∂
yí

t − 1
2 l(yi, yi

t − 1) . (113)

We then choose the t-th decision tree gt to minimize Δ𝒞t. This is almost identical to how we

derived the Newton method update in the section on gradient descent, see Sec. IV.

We can actually derive an expression for the parameters of gt that minimize Δ𝒞t analytically.

To simplify notation, it is useful to define the set of points xi that get mapped to leaf j: Ij =

{i : qt(xi) = j} and the functions B j = ∑i ∈ I j
bi and A j = ∑i ∈ I j

ai. Notice that in terms of

these quantities, we can write

Δ𝒞t =
j = 1

T
[B jw j + 1

2 A j + λ w j
2] + γT , (114)

Mehta et al. Page 61

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where we made the t-dependence of all parameters implicit. Note that λ comes from the

regularization term, Ω(gt), through Eq.(108). To find the optimal wj, just as in Newton’s

method we take the gradient of the above expression with respect to wj and set this equal to

zero, to get

w j
opt = −

B j
A j + λ . (115)

Plugging this expression into Δ𝒞t gives

Δ𝒞t
opt = − 1

2 j = 1

T B j
2

A j + λ + γT . (116)

It is clear that Δ𝒞t
opt measures the in-sample performance of gt and we should find the

decision tree that minimizes this value. In principle, one could enumerate all possible trees

over the data and find the tree that minimizes Δ𝒞t
opt. However, in practice this is impossible.

Instead, an approximate greedy algorithm is run that optimizes one level of the tree at a time

by trying to find optimal splits of the data. This leads to a tree that is a good local minimum

of Δ𝒞t
opt which is then added to the ensemble. We emphasize that this is only a very high

level sketch of how the algorithm works. In practice, additional regularization such as

shrinkage(Friedman, 2002) and feature subsampling(Breiman, 2001; Friedman et al., 2003)

is also used. In addition, there are many numerical and technical tricks used for the

approximate algorithm and how to find splits of the data that give good decision trees (Chen

and Guestrin, 2016).

F. Applications to the Ising model and Supersymmetry Datasets

We now illustrate some of these ideas using two examples drawn from physics: (i)

classifying the phases of the spin configurations of the 2D-Ising model above and below the

critical temperature using random forests and (ii) classifying Monte-Carlo simulations of

collision events in the SUSY dataset as supersymmetric or standard using an XGBoost

implementation of gradient-boosted trees. Both examples were analyzed in Sec. VII.C using

logistic regression. Here we show that on the Ising dataset, the RFs perform significantly

better than logistic regression models whereas gradient boosted trees seem to yield an

accuracy of about 80%, comparable to published results. The two accompanying Jupyter

notebooks discuss practical details of implementing these examples and the readers are

encouraged to experiment with the notebooks.

The Ising dataset used for classification by RFs here is identical to that used to study logistic

regression in Sec. VII.C. We assign a label to each state according to its phase: 0 if the state

is disordered, and 1 if it is ordered. We divide the dataset into three categories according to

the temperature at which samples are drawn: ordered (T/J < 2.0), near-critical (2.0 ≤ T/J 2.5)

Mehta et al. Page 62

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

and disordered (T/J > 2.5) (see Figure 20). We use the ordered and disordered states to train

a random forest and evaluate our learned model on a test set of unseen ordered and

disordered states (test sets). We also ask how well our RF can predict the phase of samples

drawn in the critical region (i.e. predict whether the temperature of a critical sample is above

or below the critical temperature). Since our model is never trained on samples in the critical

region, prediction in this region is a test of the algorithm’s ability to generalize to new

regions in phase space.

The results of fits using RFs to predict phases are shown in Figure 32. We used two types of

RF classifiers, one where the ensemble consists of coarse decision trees with a few leaves

and another with finer decision trees with many leaves (see corresponding notebook). RFs

have extremely high accuracy on the training and test sets (over 99%) for both coarse and

fine trees. However, notice that the RF consisting of coarse trees perform extremely poorly

on samples from the critical region whereas the RF with fine trees classifies critical samples

with an accuracy of nearly 85%. Interestingly, and unlike with logistic regression, this

performance in the critical region requires almost no parameter tuning. This is because, as

discussed above, RFs are largely immune to overfitting problems even as the number of

estimators in the ensemble becomes large. Increasing the number of estimators in the

ensemble does increase performance but at a large cost in computational time (Fig. 32

bottom).

In the second application of ensemble methods to physics-related datasets, we used the

XGBoost implementation of gradient boosted trees to classify Monte-Carlo collisions from

the SUSY dataset. With default parameters using a small subset of the data (100, 000 out of

the full 5, 000, 000 samples), we were able to achieve a classification accuracy of about

79%, which could be improved to nearly 80% after some fine-tuning (see accompanying

notebook). This is comparable to published results (Baldi et al., 2014) and those obtained

using logistic regression in earlier chapters. One nice feature of ensemble methods such as

XGBoost is that they automatically allow us to calculate feature scores (Fscores) that rank

the importance of various features for classification. The higher the Fscore, the more

important the feature for classification. Figure 33 shows the feature scores from our

XGBoost algorithm for the production of electrically-charged supersymmetric particles 𝒳±

which decay to W bosons and an electrically neutral supersymmetric particle 𝒳0, which is

invisible to the detector. The features are a mix of eight directly measurable quantities from

the detector, as well as ten hand crafted features chosen using physics knowledge. Consistent

with the physics of these supersymmetric decays in the lepton channel, we find that the most

informative features for classification are the missing transverse energy along the vector

defined by the charged leptons (Axial MET) and the missing energy magnitude due to 𝒳0.

IX. AN INTRODUCTION TO FEED-FORWARD DEEP NEURAL NETWORKS

(DNNS)

Over the last decade, neural networks have emerged as the one of most powerful and widely-

used supervised learning techniques. Deep Neural Networks (DNNs) have a long history

(Bishop, 1995b; Schmidhuber, 2015), but re-emerged to prominence after a rebranding as

Mehta et al. Page 63

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

“Deep Learning” in the mid 2000s (Hinton et al., 2006; Hinton and Salakhutdinov, 2006).

DNNs truly caught the attention of the wider machine learning community and industry in

2012 when Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton used a GPU-based DNN

model (AlexNet) to lower the error rate on the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) by an incredible twelve percent from 28% to 16% (Krizhevsky et al.,
2012). Just three years later, a machine learning group from Microsoft achieved an error of

3.57% using an ultra-deep residual neural network (ResNet) with 152 layers (He et al.,
2016)! Since then, DNNs have become the workhorse technique for many image and speech

recognition based machine learning tasks. The large-scale industrial deployment of DNNs

has given rise to a number of high-level libraries and packages (Caffe, Keras, Pytorch, and

TensorFlow) that make it easy to quickly code and deploy DNNs.

Conceptually, it is helpful to divide neural networks into four categories: (i) general purpose

neural networks for supervised learning, (ii) neural networks designed specifically for image

processing, the most prominent example of this class being Convolutional Neural Networks

(CNNs), (iii) neural networks for sequential data such as Recurrent Neural Networks

(RNNs), and (iv) neural networks for unsupervised learning such as Deep Boltzmann

Machines. Here, we will limit our discussions to the first two categories (unsupervised

learning is discussed later in the review). Though increasingly important for many

applications such as audio and speech recognition, for the sake of brevity, we omit a

discussion of sequential data and RNNs from this review. For an introduction to RNNs and

LSTM networks see Chris Olah’s blog, https://colah.github.io/posts/2015-08-Understanding-

LSTMs/, and Chapter 13 of (Bishop, 2006) as well as the introduction to RNNs in Chapter

10 of (Goodfellow et al., 2016) for sequential data.

Due to the number of recent books on deep learning (see for example Michael Nielsen’s

introductory online book (Nielsen, 2015) and the more advanced (Goodfellow et al., 2016)),

the goal of this section is to give a high-level introduction to the basic ideas behind of

DNNs, and provide some practical knowledge for coding simple neural nets for supervised

learning tasks. This section assumes the reader is familiar with the basic concepts introduced

in earlier sections on logistic and linear regression. Throughout, we strive to provide

intuition behind the inner workings of DNNs, as well as highlight limitations of present-day

algorithms.

The influx of corporate and industrial interests has rapidly transformed the field in the last

few years. This massive influx of money and researchers has given rise to new dogmas and

best practices that change rapidly. As with most intellectual fields experiencing rapid

expansion, many commonly accepted heuristics many turn out not to be as powerful as

thought (Wilson et al., 2017), and widely held beliefs not as universal as once imagined (Lee

et al., 2017; Zhang et al., 2016). This is especially true in modern neural networks where

results are largely empirical and heuristic and lack the firm footing of many earlier machine

learning methods. For this reason, in this review we have chosen to emphasize tried and true

fundamentals, while pointing out what, from our current vantage point, seem like promising

new techniques. The field is rapidly evolving and readers are urged to read papers and to

implement these algorithms themselves in order to gain a deep appreciation for the

Mehta et al. Page 64

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

incredible power of modern neural networks, especially in the context of image, speech, and

natural language processing, as well as limitations of the current methods.

In physics, DNNs and CNNs have already found numerous applications. In statistical

physics, they have been applied to detect phase transitions in 2D Ising (Tanaka and Tomiya,

2017a) and Potts (Li et al., 2017) models, lattice gauge theories (Wetzel and Scherzer, 2017),

and different phases of polymers (Wei et al., 2017). It has also been shown that deep neural

networks can be used to learn free-energy landscapes (Sidky and Whitmer, 2017). At the

same time, methods from statistical physics have been applied to the field of deep learning

to study the thermodynamic efficiency of learning rules (Goldt and Seifert, 2017), to explore

the hypothesis space that DNNs span, make analogies between training DNNs and spin

glasses (Baity-Jesi et al., 2018; Baldassi et al., 2017), and to characterize phase transitions

with respect to network topology in terms of errors (Li and Saad, 2017). In relativistic

hydrodynamics, deep learning has been shown to capture features of non-linear evolution

and has the potential to accelerate numerical simulations (Huang et al., 2018), while in

mechanics CNNs have been used to predict eigenvalues of photonic crystals (Finol et al.,
2018). Deep CNNs were used in lensing reconstruction of the cosmic microwave

background (Caldeira et al., 2018). Recently, DNNs have been used to improve the

efficiency of Monte-Carlo algorithms (Shen et al., 2018).

Deep learning has also found interesting applications in quantum physics. Various quantum

phase transitions (Arai et al., 2017; Broecker et al., 2017; Iakovlev et al., 2018; van

Nieuwenburg et al., 2017b; Suchsland and Wessel, 2018) can be detected and studied using

DNNs and CNNs, including the transverse-field Ising model (Ohtsuki and Ohtsuki, 2017),

topological phases (Yoshioka et al., 2017; Zhang et al., 2017a,b) and non-invasive

topological quality control (Caio et al., 2019), and even non-equilibrium many-body

localization (van Nieuwenburg et al., 2017a,b; Schindler et al., 2017; Venderley et al., 2017)

and the characterization of photoexcited quantum states (Shinjo et al., 2019). DNNs were

recently applied in cold atoms to identify critical points (Rem et al., 2018). Representing

quantum states as DNNs (Gao et al., 2017; Gao and Duan, 2017; Levine et al., 2017; Saito

and Kato, 2017) and quantum state tomography (Torlai et al., 2017) are among some of the

impressive achievements to reveal the potential of DNNs to facilitate the study of quantum

systems. Machine learning techniques involving neural networks were also used to study

quantum and fault-tolerant error correction (Baireuther et al., 2017; Breuckmann and Ni,

2017; Chamberland and Ronagh, 2018; Davaasuren et al., 2018; Krastanov and Jiang, 2017;

Maskara et al., 2018), estimate rates of coherent and incoherent quantum processes

(Greplova et al., 2017), to obtain spectra of 1/f -noise in spin-qubit devices (Zhang and

Wang, 2018), and the recognition of state and charge configurations and auto-tuning in

quantum dots (Kalantre et al., 2017). In quantum information theory, it has been shown that

one can perform gate decompositions with the help of neural nets (Swaddle et al., 2017). In

lattice quantum chromodynamics, DNNs have been used to learn action parameters in

regions of parameter space where principal component analysis fails (Shanahan et al., 2018).

Last but not least, DNNs also found place in the study of quantum control (Yang et al.,
2017), and in scattering theory to learn s-wave scattering length (Wu et al., 2018) of

potentials.

Mehta et al. Page 65

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A. Neural Network Basics

Neural networks (also called neural nets) are neuralinspired nonlinear models for supervised

learning. As we will see, neural nets can be viewed as natural, more powerful extensions of

supervised learning methods such as linear and logistic regression and soft-max methods.

1. The basic building block: neurons

The basic unit of a neural net is a stylized “neuron” i that takes a vector of d input features x
= (x1, x2, …, xd) and produces a scalar output ai(x). A neural network consists of many such

neurons stacked into layers, with the output of one layer serving as the input for the next (see

Figure 34). The first layer in the neural net is called the input layer, the middle layers are

often called “hidden layers”, and the final layer is called the output layer.

The exact function ai varies depending on the type of non-linearity used in the neural

network. However, in essentially all cases ai can be decomposed into a linear operation that

weights the relative importance of the various inputs and a non-linear transformation σi(z)

which is usually the same for all neurons. The linear transformation in almost all neural

networks takes the form of a dot product with a set of neuron-specific weights

w i = w1
i , w2

i , …, wd
i followed by re-centering with a neuron-specific bias b(i):

z i = w i ⋅ x + b i = xT ⋅ w i , (117)

where x = (1, x) and w(i) = (b(i), w(i)). In terms of z(i) and the non-linear function σi(z), we

can write the full input-output function as

ai x = σi(z
i), (118)

see Figure 34.

Historically in the neural network literature, common choices of nonlinearities included

step-functions (perceptrons), sigmoids (i.e. Fermi functions), and the hyperbolic tangent.

More recently, it has become more common to use rectified linear units (ReLUs), leaky

rectified linear units (leaky ReLUs), and exponential linear units (ELUs) (see Figure 35).

Different choices of non-linearities lead to different computational and training properties

for neurons. The underlying reason for this is that we train neural nets using gradient descent

based methods, see Sec. IV, that require us to take derivatives of the neural input-output

function with respect to the weights w(i) and the bias b(i). Notice that the derivatives of the

aforementioned non-linearities σ(z) have very different properties. The derivative of the

perceptron is zero everywhere except where the input is zero. This discontinuous behavior

makes it impossible to train perceptrons using gradient descent. For this reason, until

recently the most popular choice of non-linearity was the tanh function or a sigmoid/Fermi

function. However, this choice of non-linearity has a major drawback. When the input

weights become large, as they often do in training, the activation function saturates and the

Mehta et al. Page 66

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

derivative of the output with respect to the weights tends to zero since ∂σ/∂z → 0 for z ≫ 1.

Such “vanishing gradients” are a feature of any saturating activation function (top row of

Fig. 35), making it harder to train deep networks. In contrast, for a non-saturating activation

function such as ReLUs or ELUs, the gradients stay finite even for large inputs.

2. Layering neurons to build deep networks: network architecture.

The basic idea of all neural networks is to layer neurons in a hierarchical fashion, the general

structure of which is known as the network architecture (see Fig. 34). In the simplest feed-

forward networks, each neuron in the input layer of the neurons takes the inputs x and

produces an output ai(x) that depends on its current weights, see Eq. (118). The outputs of

the input layer are then treated as the inputs to the next hidden layer. This is usually repeated

several times until one reaches the top or output layer. The output layer is almost always a

simple classifier of the form discussed in earlier sections: a logistic regression or soft-max

function in the case of categorical data (i.e. discrete labels) or a linear regression layer in the

case of continuous outputs. Thus, the whole neural network can be thought of as a

complicated nonlinear transformation of the inputs x into an output y that depends on the

weights and biases of all the neurons in the input, hidden, and output layers.

The use of hidden layers greatly expands the representational power of a neural net when

compared with a simple soft-max or linear regression network. Perhaps, the most formal

expression of the increased representational power of neural networks (also called the

expressivity) is the universal approximation theorem which states that a neural network with

a single hidden layer can approximate any continuous, multi-input/multi-output function

with arbitrary accuracy. The reader is strongly urged to read the beautiful graphical proof of

the theorem in Chapter 4 of Nielsen’s free online book (Nielsen, 2015). The basic idea

behind the proof is that hidden neurons allow neural networks to generate step functions

with arbitrary offsets and heights. These can then be added together to approximate arbitrary

functions. The proof also makes clear that the more complicated a function, the more hidden

units (and free parameters) are needed to approximate it. Hence, the applicability of the

approximation theorem to practical situations should not be overemphasized. In condensed

matter physics, a good analogy are matrix product states, which can approximate any

quantum many-body state to an arbitrary accuracy, provided the bond dimension can be

increased arbitrarily – a severe requirement not met in any useful practical implementation

of the theory.

Modern neural networks generally contain multiple hidden layers (hence the “deep” in deep

learning). There are many ideas of why such deep architectures are favorable for learning.

Increasing the number of layers increases the number of parameters and hence the

representational power of neural networks. Indeed, recent numerical experiments suggests

that as long as the number of parameters is larger than the number of data points, certain

classes of neural networks can fit arbitrarily labeled random noise samples (Zhang et al.,
2016). This suggests that large neural networks of the kind used in practice can express

highly complex functions. Adding hidden layers is also thought to allow neural nets to learn

more complex features from the data. Work on convolutional networks suggests that the first

few layers of a neural network learn simple, “low-level” features that are then combined into

Mehta et al. Page 67

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

higher-level, more abstract features in the deeper layers. Other works suggest that it is

computationally and algorithmically easier to train deep networks rather than shallow, wider

nets, though this is still an area of major controversy and active research (Mhaskar et al.,
2016).

Choosing the exact network architecture for a neural network remains an art that requires

extensive numerical experimentation and intuition, and is often times problem-specific. Both

the number of hidden layers and the number of neurons in each layer can affect the

performance of a neural network. There seems to be no single recipe for the right

architecture for a neural net that works best. However, a general rule of thumb that seems to

be emerging is that the number of parameters in the neural net should be large enough to

prevent underfitting (see theoretical discussion in (Advani and Saxe, 2017)).

Empirically, the best architecture for a problem depends on the task, the amount and type of

data that is available, and the computational resources at one’s disposal. Certain

architectures are easier to train, while others might be better at capturing complicated

dependencies in the data and learning relevant input features. Finally, there have been

numerous works that move beyond the simple deep, feed-forward neural network

architectures discussed here. For example, modern neural networks for image segmentation

often incorporate “skip connections” that skip layers of the neural network (He et al., 2016).

This allows information to directly propagate to a hidden or output layer, bypassing

intermediate layers and often improving performance.

B. Training deep networks

In the previous section, we introduced the basic architecture for neural networks. Here we

discuss how to efficiently train large neural networks. Luckily, the basic procedure for

training neural nets is the same as we used for training simpler supervised learning

algorithms, such as logistic and linear regression: construct a cost/loss function and then use

gradient descent to minimize the cost function and find the optimal weights and biases.

Neural networks differ from these simpler supervised procedures in that generally they

contain multiple hidden layers that make taking the gradient computationally more difficult.

We will return to this in Sec. IX.D which discusses the “backpropagation” algorithm for

computing gradients.

Like all supervised learning procedures, the first thing one must do to train a neural network

is to specify a loss function. Given a data point (xi, yi), xi ∈ ℝd + 1, the neural network makes

a prediction yi w , where w are the parameters of the neural network. Recall that in most

cases, the top output layer of our neural net is either a continuous predictor or a classifier

that makes discrete (categorical) predictions. Depending on whether one wants to make

continuous or categorical predictions, one must utilize a different kind of loss function.

For continuous data, the loss functions that are commonly used to train neural networks are

identical to those used in linear regression, and include the mean squared error

Mehta et al. Page 68

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

E w = 1
n i = 1

n
yi − yi w 2, (119)

where n is the number of data points, and the mean-absolute error (i.e. L1 norm)

E w = 1
n i

yi − yi w . (120)

The full cost function often includes additional terms that implement regularization (e.g. L1

or L2 regularizers), see Sec. VI.

For categorical data, the most commonly used loss function is the cross-entropy (Eq. (76)

and Eq. (81)), since the output layer is often taken to be a logistic classifier for binary data

with two types of labels, or a softmax classifier if there are more than two types of labels.

The cross-entropy was already discussed extensively in earlier sections on logistic regression

and soft-max classifiers, see Sec. VII. Recall that for classification of binary data, the output

of the top layer of the neural network is the probability yi w = p yi = 1|xi; w that data point i

is predicted to be in category 1. The cross-entropy between the true labels yi ∈ {0, 1} and

the predictions is given by

E w = −
i = 1

n
yilogyi w + 1 − yi log 1 − yi w .

More generally, for categorical data, y can take on M values so that y ϵ {0, 1, …, M ‒ 1}.

For each datapoint i, define a vector yim called a ‘one-hot’ vector, such that

yim =
1, if yi = m

0, otherwise.
(121)

We can also define the probability that the neural network assigns a datapoint to category

m: yim w = p yi = m |xi; w . Then, the categorical cross-entropy is defined as

E w = −
i = 1

n

m = 0

M − 1
yimlog yim w

+ 1 − yim log 1 − yim w .

(122)

As in linear and logistic regression, this loss function is often supplemented by additional

terms that implement regularization.

Mehta et al. Page 69

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Having defined an architecture and a cost function, we must now train the model. Similar to

other supervised learning methods, we make use of gradient descent-based methods to

optimize the cost function. Recall that the basic idea of gradient descent is to update the

parameters w to move in the direction of the gradient of the cost function ∇wE w . In Sec.

IV, we discussed numerous optimizers that implement variations of stochastic gradient

descent (SGD, Nesterov, RMSProp, Adam, etc.) Most modern neural network packages,

such as Keras, allow the user to specify which of these optimizers they would like to use in

order to train the neural network. Depending on the architecture, data, and computational

resources, different optimizers may work better on the problem, though vanilla SGD is a

good first choice.

Finally, we note that unlike in linear and logistic regression, calculating the gradients for a

neural network requires a specialized algorithm, called Backpropagation (often abbreviated

backprop) which forms the heart of any neural network training procedure. Backpropagation

has been discovered multiple times independently but was popularized for modern neural

networks in 1985 (Rumelhart and Zipser, 1985). We will return to the backpropagation

algorithm after briefly discussing a simple example where we build a feed-forward deep

neural network for classifying hand-written digits from the MNIST dataset.

C. High-level specification of a neural network using Keras

We are now in position to implement our first neural network for a classification problem.

This can be done with ease using the high-level Keras package. Below, we walk the reader

step by step through short snippets of code explaining each step. Our purpose is to convince

the reader of the simplicity of open source DNN python packages, and provide the necessary

‘activation energy’ for them to dig into the realm of numerical experiments with DNNs. We

postpone the detailed explanations of the inner workings of the underlying algorithms, such

as backprop, to subsequent sections.

We begin by loading the required packages:

from __future__ import print_function, division

import keras

from keras.models import Sequential

from keras.layers import Dense

from keras.datasets import mnist

import matplotlib.pyplot as plt

import os

os.environ[’KMP_DUPLICATE_LIB_OK’]=’True’

Next, we load the data. We will be studying the MNIST digit classification problem,

introduced in Sec. VII.E and Notebook 11. The MNIST dataset is built into the Keras

package. It contains pre-defined training and test sets to standardize the comparison of

performance over different network architectures. Each datapoint is a 28 × 28 pixel image of

a handwritten digit, with its corresponding label belonging to one of the 10 digits. The size

Mehta et al. Page 70

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of each sample, i.e. the number of bare features used is N_features, while the number of

potential classification categories is N_categories. First, we load the data and preprocess it

into the required shape (Nsamples, Nfeatures)11. Each pixel contains a greyscale value

quantified by an integer between 0 and 255. To standardize the dataset, we normalize the

input data in the interval [0, 1]. A representative input sample is show in Fig. 36.

load MNIST data

input image dimensions

N_categories = 10 # 10 possible digits: zero thru

 nine

N_features = 28* 28 # number of pixels in a single

 image

load MNIST data, shuffled and split between train

 and test sets

(X_train, Y_train), (X_test, Y_test) = mnist.

 load_data()

reshape data

X_train = X_train.reshape(X_train.shape[0],

 N_features).astype(’float32’)

X_test = X_test.reshape(X_test.shape[0], N_features)

 .astype(’float32’)

rescale data in interval [0,1]

X_train /= 255 # 256 nuances (counting from 0) in

 the greyscale of image

X_test /= 255

look at an example of data point

plt.matshow(X_train[20,:].reshape(28,28),cmap=’

 binary’)

plt.show()

print(Y_train[20])

As we explained in Sec. VII.D, for computational reasons it is more convenient to encode

the classification variables using so called one-hot categorical vectors, rather than integers.

Keras provides a function which readily does this for us. Finally, we print the size of the

training and test datasets.

convert class vectors to binary class matrices

Y_train = keras.utils.to_categorical(Y_train,

 N_categories)

Y_test = keras.utils.to_categorical(Y_test,

 N_categories)

11In the section above, we used Nsamples = n and Nfeatures = d.

Mehta et al. Page 71

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

print(’X_train shape:’, X_train.shape)

print(’Y_train shape:’, Y_train.shape)

print(X_train.shape[0], ’train samples’)

print(X_test.shape[0], ’test samples’)

Now that the data has been preprocessed in one-hot form, we can build our first neural

network. Let’s create an instance of Keras’ Sequential() class, and call it model. As the name

suggests, this class allows us to build DNNs layer by layer. We use the add() method to

attach layers to our model. For the purposes of our introductory example, it suffices to focus

on Dense layers for simplicity, but in subsequent examples we shall demonstrate how to add

dropout regularization and convolutional layers. Every Dense() layer accepts as its first

required argument an integer which specifies the number of neurons. The type of activation

function for the layer is defined using the activation optional argument, the input of which is

the name of the activation function in string format. Examples

include ’relu’, ’tanh’, ’elu’, ’sigmoid’, ’softmax’, see Fig. 35. In order for our DNN to work

properly, we must ensure that the numbers of output and input neurons for consecutive

layers match. Therefore, we specify the shape of the input in the first layer of the model

explicitly using the optional argument input_shape=(N_features,), see line 39 below. The

sequential construction of the model then allows Keras to infer the correct input/output

dimensions of all hidden layers automatically. Hence, we only need to specify the size of the

softmax output layer to match the number of categories, see line 47.

create deep neural network

instantiate model

model = Sequential()

add a dense all-to-all sigmoid layer

model.add(Dense(100,input_shape=(N_features,),

 activation=’sigmoid’))

add a dense all-to-all tanh layer

model.add(Dense(400, activation=’tanh’))

add a dense all-to-all relu layer

model.add(Dense(400, activation=’relu’))

add a dense all-to-all elu layer

model.add(Dense(50, activation=’elu’))

add a dense soft-max layer

model.add(Dense(N_categories, activation=’softmax’))

Next, we choose the loss function to train the DNN. For classification problems, this is the

cross-entropy, and since the output data was cast in categorical form, we choose the

categorical_crossentropy defined in Keras’ losses module. Depending on the problem of

interest, one can pick another suitable loss function. To optimize the parameters of the net,

we choose SGD. This algorithm is available to use under Keras’ optimizers module; we

could use Adam() or any other built-in algorithm as well. The parameters for the optimizer,

such as lr (learning rate) or momentum are passed using the corresponding optional

Mehta et al. Page 72

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

arguments of the SGD() function. All available arguments can be found in Keras’ online

documentation. While the loss function and the optimizer are essential for the training

procedure, to test the performance of the model one may want to look at a particular metric

of performance. For instance, in categorical tasks one typically looks at their ’accuracy’,

which is defined as the percentage of correctly classified data points. To complete the

definition of our model, we use the compile() method, with optional arguments for the

optimizer, loss, and the validation metric as follows:

choose loss function, optimizer, and metric

compile the model

model.compile(

 optimizer=keras.optimizers.SGD(lr=0.01,

 momentum=0.9),

 loss=keras.losses.

 categorical_crossentropy,

 metrics=[’accuracy’]

)

Training the DNN is a one-liner using the fit() method of the Sequential class. The first two

required arguments are the training input and output data. As optional arguments, we specify

the mini-batch_size, the number of training epochs, and the test or validation_data. To

monitor the training procedure for every epoch, we set verbose=True.

train model using minibatches

train DNN

history=model.fit(X_train, Y_train,

 batch_size=64,

 epochs=10,

 validation_data=(X_test, Y_test),

 verbose=True

)

D. The backpropagation algorithm

In the last section, we saw how to deploy a high-level package, Keras, to design and train a

simple neural network. This training procedure requires us to be able to calculate the

derivative of the cost function with respect to all the parameters of the neural network (the

weights and biases of all the neurons in the input, hidden, and visible layers). A brute force

calculation is out of the question since it requires us to calculate as many gradients as

parameters at each step of the gradient descent. The backpropagation algorithm (Rumelhart

and Zipser, 1985) is a clever procedure that exploits the layered structure of neural networks

to more efficiently compute gradients (for a more detailed discussion with Python code

examples see Chapter 2 of (Nielsen, 2015)).

Mehta et al. Page 73

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

1. Deriving and implementing the backpropagation equations

At its core, backpropagation is simply the ordinary chain rule for partial differentiation, and

can be summarized using four equations. In order to see this, we must first establish some

useful notation. We will assume that there are L layers in our network with l = 1, …, L

indexing the layer. Denote by w jk
l the weight for the connection from the k-th neuron in layer

l‒1 to the j-th neuron in layer l. We denote the bias of this neuron by b j
l . By construction, in

a feed-forward neural network the activation a j
l of the j-th neuron in the l-th layer can be

related to the activities of the neurons in the layer l‒1 by the equation

a j
l = σ

k
w jk

l ak
l − 1 + b j

l = σ(z j
l), (123)

where we have defined the linear weighted sum

z j
l =

k
w jk

l ak
l − 1 + b j

l . (124)

By definition, the cost function E depends directly on the activities of the output layer a j
L. It

of course also indirectly depends on all the activities of neurons in lower layers in the neural

network through iteration of Eq. (123). Let us define the error Δ j
L of the j-th neuron in the L-

th layer as the change in cost function with respect to the weighted input z j
L

Δ j
L = ∂E

∂z j
L . (125)

This definition is the first of the four backpropagation equations.

We can analogously define the error of neuron j in layer l, Δ j
l , as the change in the cost

function w.r.t. the weighted input z j
l :

Δ j
l = ∂E

∂z j
l = ∂E

∂a j
l σ′(z j

l), (I)

where σ′ x denotes the derivative of the non-linearity σ(·) with respect to its input evaluated

at x. Notice that the error function Δ j
l can also be interpreted as the partial derivative of the

cost function with respect to the bias b j
l , since

Mehta et al. Page 74

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Δ j
l = ∂E

∂z j
l = ∂E

∂b j
l

∂b j
l

∂z j
l = ∂E

∂b j
l , (II)

where in the last line we have used the fact that ∂b j
l / ∂z j

l = 1, cf. Eq. (124). This is the second

of the four backpropagation equations.

We now derive the final two backpropagation equations using the chain rule. Since the error

depends on neurons in layer l only through the activation of neurons in the subsequent layer

l + 1, we can use the chain rule to write

Δ j
l = ∂E

∂z j
l =

k

∂E
∂zk

l + 1
∂zk

l + 1

∂z j
l

=
k

Δk
l + 1∂zk

l + 1

∂z j
l

=
k

Δk
l + 1wk j

l + 1 σ′(z j
l) .

(III)

This is the third backpropagation equation. The final equation can be derived by

differentiating of the cost function with respect to the weight w jk
l as

∂E
∂w jk

l = ∂E
∂z j

l
∂z j

l

∂w jk
l = Δ j

lak
l − 1 (IV)

Together, Eqs. (I), (II), (III), and (IV) define the four backpropagation equations relating the

gradients of the activations of various neurons a j
l , the weighted inputs z j

l = ∑k w jk
l ak

l − 1 + b j
l ,

and the errors Δ j
l . These equations can be combined into a simple, computationally efficient

algorithm to calculate the gradient with respect to all parameters (Nielsen, 2015).

The Backpropagation Algorithm

1. Activation at input layer: calculate the activations a j
l of all the neurons in the

input layer.

2. Feedforward: starting with the first layer, exploit the feed-forward architecture

through Eq. (123) to compute zl and al for each subsequent layer.

3. Error at top layer: calculate the error of the top layer using Eq. (I). This

requires to know the expression for the derivative of both the cost function E(w)

= E(aL) and the activation function σ(z).

Mehta et al. Page 75

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4. “Backpropagate” the error: use Eq. (III) to propagate the error backwards and

calculate Δ j
l for all layers.

5. Calculate gradient: use Eqs. (II) and (IV) to calculate ∂E

∂b j
l and ∂E

∂w jk
l .

We can now see where the name backpropagation comes from. The algorithm consists of a

forward pass from the bottom layer to the top layer where one calculates the weighted inputs

and activations of all the neurons. One then backpropagates the error starting with the top

layer down to the input layer and uses these errors to calculate the desired gradients. This

description makes clear the incredible utility and computational efficiency of the

backpropagation algorithm. We can calculate all the derivatives using a single “forward” and

“backward” pass of the neural network. This computational efficiency is crucial since we

must calculate the gradient with respect to all parameters of the neural net at each step of

gradient descent. These basic ideas also underly almost all modern automatic differentiation

packages such as Autograd (Pytorch).

2. Computing gradients in deep networks: what can go wrong with

backprop?

Armed with backpropagation and gradient descent, it seems like it should be straightforward

to train any neural network. However, until fairly recently it was widely believed that

training deep networks was an extremely difficult task. One reason for this was that even

with backpropagation, gradient descent on large networks is extremely computationally

expensive. However, the great advances in computational hardware (and the widespread use

of GPUs) has made this a much less vexing problem than even a decade ago. It is hard to

understate the impact these advances in computing have had on the practical utility of neural

networks.

On a more technical and mathematical note, another problem that occurs in deep networks,

which transmit information through many layers, is that gradients can vanish or explode.

This is, appropriately, known as the problem of vanishing or exploding gradients. This

problem is especially pronounced in neural networks that try to capture long-range

dependencies, such as Recurrent Neural Networks for sequential data. We can illustrate this

problem by considering a simple network with one neuron in each layer. We further assume

that all weights are equal, and denote them by w. The behavior of the backpropagation

equations for such a network can be inferred from repeatedly using Eq. (III):

Δ j
1 = Δ j

L

j = 0

L − 1
wσ′ z j = Δ j

L w L

j = 0

L − 1
σ′ z j , (126)

where Δ j
L is the error in the L-th topmost layer, and (w)L is the weight to the power L. Let us

now also assume that the magnitude σʹ(zj) is fairly constant and we can approximate

σ′ z j ≈ σ0′ . In this case, notice that for large L, the error Δ j
1 has very different behavior

Mehta et al. Page 76

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

depending on the value of wσ0′ . If wσ0′ > 1, the errors and the gradient blow up. On the other

hand, if wσ0′ < 1 the errors and gradients vanish. Only when the weights satisfy wσ0′ ≈ 1 and

the neurons are not saturated will the gradient stay well behaved for deep networks.

This basic behavior holds true even in more complicated networks. Rather than considering

a single weight, we can ask about the eigenvalues (or singular values) of the weight matrices

w jk
l . In order for the gradients to be finite for deep networks, we need these eigenvalues to

stay near unity even after many gradient descent steps. In modern feedforward and ReLU

neural networks, this is achieved by initializing the weights for the gradient descent in clever

ways and using non-linearities that do not saturate, such as ReLUs (recall that for saturating

functions, σʹ→0, which will cause the gradient to vanish). Proper initialization and

regularization schemes such as gradient clipping (cutting-off gradients with very large

values), and batch normalization also help mitigate the vanishing and exploding gradient

problem.

E. Regularizing neural networks and other practical considerations

DNNs, like all supervised learning algorithms, must navigate the bias-variance tradeoff.

Regularization techniques play an important role in ensuring that DNNs generalize well to

new data. The last five years have seen a wealth of new specialized regularization techniques

for DNNs beyond the simple L1 and L2 penalties discussed in the context of linear and

logistic regression, see Secs. VI and VII. These new techniques include Dropout and Batch

Normalization. In addition to these specialized regularization techniques, large DNNs seem

especially well-suited to implicit regularization that already takes place in the Stochastic

Gradient Descent (SGD) (Wilson et al., 2017), cf. Sec. IV. The implicit stochasticity and

local nature of SGD often prevent overfitting of spurious correlations in the training data,

especially when combined with techniques such as Early Stopping. In this section, we give a

brief overview of these regularization techniques.

1. Implicit regularization using SGD: initialization, hyper-parameter tuning,

and Early Stopping

The most commonly employed and effective optimizer for training neural networks is SGD

(see Sec. IV for other alternatives). SGD acts as an implicit regularizer by introducing

stochasticity (from the use of mini-batches) that prevents overfitting. In order to achieve

good performance, it is important that the weight initialization is chosen randomly, in order

to break any leftover symmetries. One common choice is drawing the weights from a

Gaussian centered around zero with some variance that scales inversely with number of

inputs to the neuron (He et al., 2015; Sutskever et al., 2013). Since SGD is a local procedure,

as networks get deeper, choosing a good weight initialization becomes increasingly
important to ensure that the gradients are well behaved. Choosing an initialization with a

variance that is too large or too small will cause gradients to vanish and the network to train

poorly – even a factor of 2 can make a huge difference in practice (He et al., 2015). For this

reason, it is important to experiment with different variances.

Mehta et al. Page 77

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The second important thing is to appropriately choose the learning rate or step-size by

searching over five logarithmic grid points (Wilson et al., 2017). If the best performance

occurs at the edge of the grid, repeat this procedure until the optimal learning rate is in the

middle of the grid parameters. Finally, it is common to center or whiten the input data (just

as we did for linear and logistic regression).

Another important form of regularization that is often employed in practice is Early

Stopping. The idea of Early Stopping is to divide the training data into two portions, the

dataset we train on, and a smaller validation set that serves as a proxy for out-of-sample

performance on the test set. As we train the model, we plot both the training error and the

validation error. We expect the training error to continuously decrease during training.

However, the validation error will eventually increase due to overfitting. The basic idea of

early stopping is to halt the training procedure when the validation error starts to rise. This

Early Stopping procedure ensures that we stop the training and avoid fitting sample specific

features in the data. Early Stopping is a widely used essential tool in the deep learning

regularization toolbox.

2. Dropout

Another important regularization schemed that has been widely adopted in the neural

networks literature is Dropout (Srivastava et al., 2014). The basic idea of Dropout is to

prevent overfitting by reducing spurious correlations between neurons within the network by

introducing a randomization procedure similar to that underlying ensemble models such as

Bagging. Recall that the basic idea behind ensemble methods is to train an ensemble of

models that are created using a randomization procedure to ensure that the members of the

ensemble are uncorrelated, see Sec. VIII. This reduces the variance of statistical predictions

without creating too much additional bias.

In the context of neural networks, it is extremely costly to train an ensemble of networks,

both from the point of view of the amount of data needed, as well as computational

resources and parameter tuning required. Dropout circumnavigates these problems by

randomly dropping out neurons (along with their connections) from the neural network

during each step of the training (see Figure 39). Typically, for each mini-batch in the

gradient descent step, a neuron is dropped from the neural network with a probability p. The

gradient descent step is then performed only on the weights of the “thinned” network of

individual predictors.

Since during training, on average weights are only present a fraction p of the time,

predictions are made by reweighing the weights by p: wtest = pwtrain.The learned weights

can be viewed as some “average” weight over all possible thinned neural network. This

averaging of weights is similar in spirit to the Bagging procedure discussed in the context of

ensemble models, see Sec. VIII.

3. Batch Normalization

Batch Normalization is a regularization scheme that has been quickly adopted by the neural

network community since its introduction in 2015 (Ioffe and Szegedy, 2015). The basic

Mehta et al. Page 78

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

inspiration behind Batch Normalization is the long-known observation that training in neural

networks works best when the inputs are centered around zero with respect to the bias. The

reason for this is that it prevents neurons from saturating and gradients from vanishing in

deep nets. In the absence of such centering, changes in parameters in lower layers can give

rise to saturation effects in higher layers, and vanishing gradients. The idea of Batch

Normalization is to introduce additional new “BatchNorm” layers that standardize the inputs

by the mean and variance of the mini-batch.

Consider a layer l with d neurons whose inputs are z1
l , …, zd

l . We standardize each

dimension so that

zk
l zk

l =
zk
l − 𝔼 zk

l

Var zk
l

, (127)

where the mean and variance are taken over all samples in the mini-batch. One problem with

this procedure is that it may change the representational power of the neural network. For

example, for tanh non-linearities, it may force the network to live purely in the linear regime

around z = 0. Since non-linearities are crucial to the representational power of DNNs, this

could dramatically alter the power of the DNN.

For this reason, one introduces two new parameters γk
l and βk

l for each neuron that can

additionally shift and scale the normalized input

zk
l zk

l = γk
l zk

l + βk
l . (128)

One can think of Eqs. (127) and (128) as adding new extra layers zk
l in the deep net

architecture. Hence, the new parameters γk
l and βk

l can be learned just like the weights and

biases using backpropagation (since this is just an extra layer for the chain rule). We

initialize the neural network so that at the beginning of training the inputs are being

standardized. Backpropagation then adjusts γ and β during training.

In practice, Batch Normalization considerably improves the learning speed by preventing

gradients from vanishing. However, it also seems to serve as a powerful regularizer for

reasons that are not fully understood. One plausible explanation is that in batch

normalization, the gradient for a sample depends not only on the sample itself but also on all

the properties of the mini-batch. Since a single sample can occur in different mini-batches,

this introduces additional randomness into the training procedure which seems to help

regularize training.

Mehta et al. Page 79

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

F. Deep neural networks in practice: examples

Now that we have gained sufficient high-level background knowledge about deep neural

nets, let us discuss how to use them in practice.

1. Deep learning packages

In Sec. IX.C, we demonstrated that the numerical implementation of DNNs is greatly

facilitated by open source python packages, such as Keras, TensorFlow, and Pytorch (and

many more). The complexity and learning curves for these packages differ, depending on the

user’s level of familiarity with python. The reader should keep mind mind that there are

DNN packages written in other languages, such as Caffe which uses C++, but we do not

discuss them in this review for brevity.

Keras is a high-level framework which does not require any knowledge about the inner

workings of the underlying deep learning algorithms. Coding DNNs in Keras is particularly

simple, see Sec. IX.C, and allows one to quickly grasp the big picture behind the theoretical

concepts which we introduced above. However, for advanced applications, which may

require more direct control over the operations in between the layers, Keras’ high-level

design may prove insufficient.

If one opens up the Keras black box, one will find that it wraps the functionality of another

package – Tensor-Flow12. Over the last years, TensorFlow, which is supported by Google,

has been gaining popularity and has become the preferred library for deep learning. It is

frequently used in Kaggle competitions, university classes, and industry. In TensorFlow one

constructs data flow graphs, the nodes of which represent mathematical operations, while the

edges encode multidimensional tensors (data arrays). A deep neural net can then be thought

of as a graph with a particular architecture. One needs to understand this concept well before

one can truly unleash TensorFlow’s full potential. The learning curve can sometimes be

rather steep for TensorFlow beginners, and requires a certain degree of perseverance and

devoted time to internalize the underlying ideas.

There are, however, many other open source packages which allow for control over the inter-

and intra-layer operations, without the need to introduce computational graphs. Such an

example is Pytorch, which offers libraries for automatic differentiation of tensors at GPU

speed. As we discussed above, manipulating neural nets boils down to fast array

multiplication and contraction operations and, therefore, the torch.nn library often does the

job of providing enough access and controllability to manipulate the linear algebra

operations underlying deep neural nets.

For the benefit of the reader, we have prepared Jupyter notebooks for DNNs using all three

packages for the deep learning problems we discuss below. We invite the reader to carefully

examine the differences in the code which should help them decide on which package they

prefer to use.

12While Keras can also be used with a Theano backend, we do not discuss this here since Theano support has been discontinued.

Mehta et al. Page 80

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2. Approaching the learning problem

Let us now analyze a typical procedure for using neural networks to solve supervised

learning problems. As can be seen already from the code snippets in Sec. IX.C, constructing

a deep neural network to solve ML problems is a multiple-stage process. Generally, one can

identify a set of key steps:

1. Collect and pre-process the data.

2. Deftne the model and its architecture.

3. Choose the cost function and the optimizer.

4. Train the model.

5. Evaluate and study the model performance on the test data.

6. Use the validation data to adjust the hyper-parameters (and, if necessary, network

architecture) to optimize performance for the speciftc dataset.

At this point, a few remarks are in order. While we treat Step 1 above as consisting mainly

of loading and reshaping a dataset prepared ahead of time, we emphasize that obtaining a

sufficient amount of data is a typical challenge in many applications. Oftentimes insufficient

data serves as a major bottleneck on the ultimate performance of DNNs. In such cases one

can consider data augmentation, i.e. distorting data samples from the existing dataset in

some way to enhance size the dataset. Obviously, if one knows how to do this, one already

has partial information about the important features in the data.

One of the first questions we are usually faced with is how to determine the sizes of the

training and test data sets. The MNIST dataset, which has 10 classification categories, uses

80% of the available data for training and 20% for testing. On the other hand, the ImageNet

data which has 1000 categories is split 50% 50%. As a rule of thumb, the more classification

categories there are in the task, the closer the sizes of the training and test datasets should be

in order to prevent overfitting. Once the size of the training set is fixed, it is common to

reserve 20% of it for validation, which is used to fine-tune the hyperparameters of the

model.

Also related to data preprocessing is the standardization of the dataset. It has been found

empirically that if the original values of the data differ by orders of magnitude, training can

be slowed down or impeded. This can be traced back to the vanishing and exploding

gradient problem in backprop discussed in Sec. IX.D. To avoid such unwanted effects, one

often resorts to two tricks: (i) all data should be mean-centered, i.e. from every data point we

subtract the mean of the entire dataset, and (ii) rescale the data, for which there are two

ways: if the data is approximately normally distributed, one can rescale by the standard

deviation. Otherwise, it is typically rescaled by the maximum absolute value so the rescaled

data lies within the interval [‒1, 1]. Rescaling ensures that the weights of the DNN are of a

similar order of magnitude.

The next issue is how to choose the right hyperparameters to begin training the model with.

According to Bengio, the optimal learning rate is often an order of magnitude lower than the

Mehta et al. Page 81

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

smallest learning rate that blows up the loss (Bengio, 2012). One should also keep in mind

that, depending on how ambitious of a problem one is dealing with, training the model can

take a considerable amount of time. This can severely slow down any progress on improving

the model in Step 6. Therefore, it is usually a good idea to play with a small enough fraction

of the training data to get a rough feeling about the correct hyperparameter regimes, the

usefulness of the DNN architecture, and to debug the code. The size of this small ‘play set’

should be such that training on it can be done fast and in real time to allow to quickly adjust

the hyperparameters. A typical strategy of exploring the hyperparameter landscape is to use

grid searches.

Whereas it is always possible to view Steps 1–5 as generic and independent of the particular

problem we are trying to solve, it is only when these steps are put together in Step 6 that the

real benefit of deep learning is revealed, compared to less sophisticated methods such as

regression or bagging, see Secs. VI, VII, and VIII. The optimal choice of network

architecture, cost function, and optimizer is determined by the properties of the training and

test datasets, which are only revealed when we try to improve the model.

While there is no single recipe to approach all ML problems, we believe that the above list

gives a good overview and can be a useful guideline to the layman. Further-more, as it

becomes clear, this ‘recipe’ can be applied to generic supervised learning tasks, not just

DNNs. We refer the reader to Sec. XI for more useful hints and tips on how to use the

validation data during the training process.

3. SUSY dataset

As a first example from physics, we discuss a DNN approach to the SUSY dataset already

introduced in the context of logistic regression in Sec. VII.C.2, and Bagging in Sec. VIII.F.

For a detailed description of the SUSY dataset and the corresponding classification problem,

we refer the reader to Sec. VII.C.2. There is an interest in using deep learning methods to

automate the discovery of collision features from data. Benchmark results using Bayesian

Decision Trees from a standard physics package, and five-layer neural networks using

Dropout were presented in the original paper (Baldi et al., 2014); they demonstrate the

ability of deep learning to bypass the need of using hand-crafted high-level features. Our

goal here is to study systematically the accuracy of a DNN classifier as a function of the

learning rate and the dataset size.

Unlike the MNIST example where we used Keras, here we use the opportunity to introduce

the Pytorch package, see the corresponding notebook. We leave the discussion of the code-

specific details for the accompanying notebook.

To classify the SUSY collision events, we construct a DNN with two dense hidden layers of

200 and 100 neurons, respectively. We use ReLU activation between the input and the

hidden layers, and a sofmax output layer. We apply dropout regularization on the weights of

the DNN. Similar to MNIST, we use the cross-entropy as a cost function and minimize it

using SGD with batches of size 10% of the training data size. We train the DNN for 10

epochs.

Mehta et al. Page 82

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 40 shows the accuracy of our DNN on the test data as a function of the learning rate

and the size of the dataset. It is considered good practice to start with a logarithmic scale to

search through the hyperparameters, to get an overall idea for the order of magnitude of the

optimal values. In this example, the performance peaks at the largest size of the dataset and a

learning rate of 0.1, and is of the order of 80%. Since the optimal performance is obtained at

the edge of the grid, we encourage the reader to extend the grid size to beat our result. For

comparison, in the original study (Baldi et al., 2014), the authors achieved ≈ 89% by using

the entire dataset with 5, 000, 000 points and a more sophisticated network architecture,

trained using GPUs.

4. Phases of the 2D Ising model

As a second example from physics, we discuss a DNN approach to the Ising dataset

introduced in Sec. VII.C.1. We study the problem of classifying the states of the 2D Ising

model with a DNN (Tanaka and Tomiya, 2017a), focussing on the model performance as a

function of both the number of hidden neurons and the learning rate. The discussion is

accompanied by a notebook written in TensorFlow. As in the previous example, the

interested reader can find the discussion of the code-specific details in the notebook.

To classify whether a given spin configuration is in the ordered or disordered phase, we

construct a minimalistic model for a DNN with a single hidden layer containing a number of

hidden neurons. The network architecture thus includes a ReLU-activated input layer, the

hidden layer, and the softmax output layer. We pick the categorical cross-entropy as a cost

function and minimize it using SGD with mini-batches of size 100. We train the DNN for

100 epochs.

Figure 41 shows the outcome of a grid search over a log-spaced learning rate and the

number of neurons in the hidden layer. We see that about 10 neurons are enough at a

learning rate of 0.1 to get to a very high accuracy on the test set. However, if we aim at

capturing the physics close to criticality, clearly more neurons are required to reliably learn

the more complex correlations in the Ising configurations.

X. CONVOLUTIONAL NEURAL NETWORKS (CNNS)

One of the core lessons of physics is that we should exploit symmetries and invariances

when analyzing physical systems. Properties such as locality and translational invariance are

often built directly into the physical laws. Our statistical physics models often directly

incorporate everything we know about the physical system being analyzed. For example, we

know that in many cases it is sufficient to consider only local couplings in our Hamilt nians,

or work directly in momentum space if the system is translationally invariant. This basic

idea, tailoring our analysis to exploit additional structure, is a key feature of modern physical

theories from general relativity, through gauge theories, to critical phenomena.

Like physical systems, many datasets and supervised learning tasks also possess additional

symmetries and structure. For instance, consider a supervised learning task where we want

to label images from some dataset as being pictures of cats or not. Our statistical procedure

must first learn features associated with cats. Because a cat is a physical object, we know

Mehta et al. Page 83

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

that these features are likely to be local (groups of neighboring pixels in the two-dimensional

image corresponding to whiskers, tails, eyes, etc). We also know that the cat can be

anywhere in the image. Thus, it does not really matter where in the picture these features

occur (though relative positions of features likely do matter). This is a manifestation of

translational invariance that is built into our supervised learning task. This example makes

clear that, like many physical systems, many ML tasks (especially in the context of

computer vision and image processing) also possess additional structure, such as locality and

translation invariance.

The all-to-all coupled neural networks in the previous section fail to exploit this additional

structure. For example, consider the image of the digit ‘four’ from the MNIST dataset shown

in Fig. 36. In the all-to-all coupled neural networks used there, the 28 × 28 image was

considered a one-dimensional vector of size 282 = 796. This clearly throws away lots of the

spatial information contained in the image. Not surprisingly, the neural networks community

realized these problems and designed a class of neural network architectures, convolutional

neural networks or CNNs, that take advantage of this additional structure (locality and

translational invariance) (LeCun et al., 1995). Furthermore, what is especially interesting

from a physics perspective is the recent finding that these CNN architectures are intimately

related to models such as tensor networks (Stoudenmire, 2018; Stoudenmire and Schwab,

2016) and, in particular, MERA-like architectures that are commonly used in physical

models for quantum condensed matter systems (Levine et al., 2017).

A. The structure of convolutional neural networks

A convolutional neural network is a translationally invariant neural network that respects

locality of the input data. CNNs are the backbone of many modern deep learning

applications and here we just give a high-level overview of CNNs that should allow the

reader to delve directly into the specialized literature. The reader is also strongly encouraged

to consult the excellent, succinct notes for the Stanford CS231n Convolutional Neural

Networks class developed by Andrej Karpathy and Fei-Fei Li (https://cs231n.github.io/). We

have drawn heavily on the pedagogical style of these notes in crafting this section.

There are two kinds of basic layers that make up a CNN: a convolution layer that computes

the convolution of the input with a bank of filters (as a mathematical operation, see this

practical guide to image kernels: http://setosa.io/ev/image-kernels/), and pooling layers that

coarse-grain the input while maintaining locality and spatial structure, see Fig. 42. For two-

dimensional data, a layer l is characterized by three numbers: height Hl, width Wl, and depth

Dl
13. The height and width correspond to the sizes of the two-dimensional spatial (Wl, Hl)-

plane (in neurons), and the depth Dl (marked by the different colors in Fig. 42) – to the

number of filters in that layer. All neurons corresponding to a particular filter have the same

parameters (i.e. shared weights and bias).

13The depth Dl is often called “number of channels”, to distinguish it from the depth of the neural network itself, i.e. the total number
of layers (which can be convolutional, pooling or fully-connected), cf. Fig. 42.

Mehta et al. Page 84

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://cs231n.github.io/
http://setosa.io/ev/image-kernels/

In general, we will be concerned with local spatial filters (often called a receptive field in

analogy with neuroscience) that take as inputs a small spatial patch of the previous layer at

all depths. For instance, a square filter of size F is a three-dimensional array of size F × F ×
Dl−1. The convolution consists of running this filter over all locations in the spatial plane. To

demonstrate how this works in practice, let us a consider the simple example consisting of a

one-dimensional input of depth 1, shown in Fig. 43. In this case, a filter of size F × 1 × 1 can

be specified by a vector of weights w of length F. The stride, S, encodes by how many

neurons we translate the filter by when performing the convolution. In addition, it is

common to pad the input with P zeros (see Fig. 43). For an input of width W, the number of

neurons (outputs) in the layer is given by (W ‒ F + 2P)/S + 1. We invite the reader to check

out this visualization of the convolution procedure, https://github.com/vdumoulin/

conv_arithmetic/blob/master/README.md for a square input of unit depth. After

computing the filter, the output is passed through a non-linearity, a ReLU in Fig. 43. In

practice, one often inserts a BatchNorm layer before the non-linearity, cf. Sec. IX.E.3.

These convolutional layers are interspersed with pooling layers that coarse-grain spatial

information by performing a subsampling at each depth. One common pooling operation is

the max pool. In a max pool, the spatial dimensions are coarse-grained by replacing a small

region (say 2 × 2 neurons) by a single neuron whose output is the maximum value of the

output in the region. In physics, this pooling step is very similar to the decimation step of

RG (Iso et al., 2018; Koch-Janusz and Ringel, 2017; Lin et al., 2017; Mehta and Schwab,

2014). This generally reduces the dimension of outputs. For example, if the region we pool

over is 2 × 2, then both the height and the width of the output layer will be halved.

Generally, pooling operations do not reduce the depth of the convolutional layers because

pooling is performed separately at each depth. A simple example of a max-pooling operation

is shown in Fig. 44. There are some studies suggesting that pooling might be unnecessary

(Springenberg et al., 2014), but pooling layers remain a staple of most CNNs.

In a CNN, the convolution and max-pool layers are generally followed by an all-to-all

connected layer and a high-level classifier such as a soft-max. This allows us to train CNNs

as usual using the backprop algorithm, cf. Sec. IX.D. From a backprop perspective, CNNs

are almost identical to fully connected neural network architectures except with tied

parameters.

Apart from introducing additional structure, such as translational invariance and locality, this

convolutional structure also has important practical and computational benefits. All neurons

at a given layer represent the same filter, and hence can all be described by a single set of

weights and biases. This reduces the number of free parameters by a factor of H × W at each

layer. For example, for a layer with D = 102 and H = W = 102, this gives a reduction in

parameters of nearly 106! This allows for the training of much larger models than would

otherwise be possible with fully connected layers. We are familiar with similar phenomena

in physics: e.g. in translationally invariant systems we can parametrize all eigenmodes by

specifying only their momentum (wave number) and functional form (sin, cos, etc.), while

without translation invariance much more information is required.

Mehta et al. Page 85

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

B. Example: CNNs for the 2D Ising model

The inclusion of spatial structure in CNNs is an important feature that can be exploited when

designing neural networks for studying physical systems. In the accompanying notebook, we

used Pytorch to implement a simple CNN composed of a single convolutional layer followed

by a soft-max layer. Every input data point (i.e. Ising configuration) is shaped as a two-

dimensional array. We varied the output depth (i.e. the number of output channels) of the

convolutional layer from unity – a single set of weights and one bias – to an output depth of

50 distinct weights and biases. The CNN was then trained using SGD for five epochs using a

training set consisting of samples from far in the paramagnetic and ordered phases. The

results are shown in Fig. 45. The CNN achieved a 100% accuracy on the test set for all

architectures, even for a CNN with depth one. We also checked the performance of the CNN

on samples drawn from the near-critical region for temperatures T slightly above and below

the critical temperature Tc. The CNN performed admirably even on these critical samples

with an accuracy of between 80% and 90%. As is the case with all ML and neural networks,

the performance on parts of the data that are missing from the training set is considerably

worse than on test data that is similar to the training data. This highlights the importance of

properly constructing an accurate training dataset and the considerable obstacles of

generalizing to novel situations. We encourage the interested reader to explore the

corresponding notebook and design better CNN architectures with improved generalization

performance on the near-critical set.

The reader may wish to check out the second part of the MNIST notebook for a discussion

of CNNs applied to the digit recognition using the high-level Keras package. Regarding the

SUSY dataset, we stress that the absence of spatial locality in the collision features renders

applying CNNs to that problem inadequate.

C. Pre-trained CNNs and transfer learning

The immense success of CNNs for image recognition has resulted in the training of huge

networks on enormous datasets, often by large industrial research teams from Google,

Microsoft, Amazon, etc. Many of these models are known by name: AlexNet, GoogLeNet,

ResNet, InceptionNet, VGGNet, etc. Most researchers and practitioners do not have the

resources, data, or time to train networks on this scale. Luckily, the trained models have been

released and are now available in standard packages such as the Torch Vision library in

Pytorch or the Caffe framework. These models can be used directly as a basis for fine-tuning

in different supervised image recognition tasks through a process called transfer learning.

The basic idea behind transfer learning is that the filters (receptive fields) learned by the

convolution layers of these networks should be informative for most image recognition

based tasks, not just the ones they were originally trained for. In other words, we expect that,

since images reflect the natural world, the filters learned by these CNNs should transfer over

to new tasks with only slight modifications and fine-tuning. In practice, this turns out to be

true for many tasks one might be interested in.

Mehta et al. Page 86

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

There are three distinct ways one can take a pretrained CNN and repurpose it for a new task.

The following discussion draws heavily on the notes from the course CS231n mentioned in

the introduction to this section.

• Use CNN as fixed feature detector at top layer. If the new dataset we want to

train on is small and similar to the original dataset, we can simply use the CNN

as a fixed feature detector and retrain our classifier. In other words, we remove

the classifier (soft-max) layer at the top of the CNN and replace it with a new

classifier (linear support vector machine (SVM) or soft-max) relevant to our

supervised learning problem. In this procedure, the CNN serves as a fixed map

from images to relevant features (the outputs of the top fullyconnected layer right

before the original classifier). This procedure prevents overfitting on small,

similar datasets and is often a useful starting point for transfer learning.

• Use CNN as fixed feature detector at intermediate layer. If the dataset is small

and quite different from the dataset used to train the original image, the features

at the top level might not be suitable for our dataset. In this case, one may want

to instead use features in the middle of the CNN to train our new classifier. These

features are thought to be less fine-tuned and more universal (e.g. edge

detectors). This is motivated by the idea that CNNs learn increasingly complex

features the deeper one goes in the network (see discussion on representational

learning in next section).

• Fine-tune the CNN. If the dataset is large, in addition to replacing and retraining

the classifier in the top layer, we can also fine-tune the weights of the original

CNN using backpropagation. One may choose to freeze some of the weights in

the CNN during the procedure or retrain all of them simultaneously.

All these procedures can be carried out easily by using packages such as Caffe or the Torch

Vision library in PyTorch. PyTorch provides a nice python notebook that serves as tutorial

on transfer learning. The reader is strongly urged to read the Pytorch tutorials carefully if

interested in this topic.

XI. HIGH-LEVEL CONCEPTS IN DEEP NEURAL NETWORKS

In the previous sections, we introduced deep neural networks and discussed how we can use

these networks to perform supervised learning. Here, we take a step back and discuss some

high-level questions about the practice and performance of neural networks. The first part of

this section presents a deep learning workflow inspired by the bias-variance tradeoff. This

workflow is especially relevant to industrial applications where one is often trying to employ

neural networks to solve a particular problem. In the second part of this section, we shift

gears and ask the question, why have neural networks been so successful? We provide three

different high-level explanations that reflect current dogmas. Finally, we end the section by

discussing the limitations of supervised learning methods and current neural network

architectures.

Mehta et al. Page 87

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A. Organizing deep learning workflows using the bias-variance tradeoff

Imagine that you are given some data and asked to design a neural network for learning how

to perform a supervised learning task. What are the best practices for organizing a

systematic workflow that allows us to efficiently do this? Here, we present a simple deep

learning workflow inspired by thinking about the bias-variance tradeoff (see Figure 46). This

section draws heavily on Andrew Ng’s tutorial at the Deep Learning School (available

online at https://www.youtube.com/watch?v=F1ka6a13S9I) which readers are strongly

encouraged to watch.

The first thing we would like to do is divide the data into three parts. A training set, a

validation or dev (development) set, and a test set. The test set is the data on which we want

to make predictions. The dev set is a subset of the training data we use to check how well we

are doing out-of-sample, after training the model on the training dataset. We use the

validation error as a proxy for the test error in order to make tweaks to our model. It is

crucial that we do not use any of the test data to train the algorithm. This is a cardinal sin in

ML. We thus suggest the following workflow:

Estimate optimal error rate (Bayes rate).—

The first thing one should establish is the difficulty of the task and the best performance one

can expect to achieve. No algorithm can do better than the “signal” in the dataset. For

example, it is likely much easier to classify objects in high-resolution images than in very

blurry, low-resolution images. Thus, one needs to establish a proxy or baseline for the

optimal performance that can be expected from any algorithm. In the context of Bayesian

statistics, this is often called the Bayes rate. Since we do not know this a priori, we must get

an estimate of this. For many tasks such as speech or object recognition, we can approximate

this by the performance of humans on the task. For a more specialized task, we would like to

ask how well experts, trained at the task, perform. This expert performance then serves as a

proxy for our Bayes rate.

Minimize underfttting (bias) on training data set.—

After we have established the Bayes rate, we want to make sure that we are using a

sufficiently complex model to avoid underfitting on the training dataset. In practice, this

means comparing the training error rate to the Bayes rate. Since the training error does not

care about generalization (variance), our model should approach the Bayes rate on the

training set. If it does not, the bias of the DNN model is too large and one should try training

the model longer and/or using a larger model. Finally, if none of these techniques work, it is

likely that the model architecture is not well suited to the dataset, and one should modify the

neural architecture in some way to better reflect the underlying structure of the data

(symmetries, locality, etc.).

Make sure you are not overfttting.—

Next, we run our algorithm on the validation or dev set. If the error is similar to the training

error rate and Bayes rate, we are done. If it is not, then we are overfitting the training data.

Mehta et al. Page 88

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.youtube.com/watch?v=F1ka6a13S9I

Possible solutions include, regularization and, importantly, collecting more data. Finally, if

none of these work, one likely has to change the DNN architecture.

If the validation and test sets are drawn from the same distributions, then good performance

on the validation set should lead to similarly good performance on the test set. (Of course

performance will typically be slightly worse on the test set because the hyperparameters

were fit to the validation set.) However, sometimes the training data and test data differ in

subtle ways because, for example, they are collected using slightly different methods, or

because it is cheaper to collect data in one way versus another. In this case, there can be a

mismatch between the training and test data. This can lead to the neural network overfitting

these small differences between the test and training sets, and a poor performance on the test

set despite having a good performance on the validation set. To rectify this, Andrew Ng

suggests making two validation or dev sets, one constructed from the training data and one

constructed from the test data. The difference between the performance of the algorithm on

these two validation sets quantifies the train-test mismatch. This can serve as another

important diagnostic when using DNNs for supervised learning.

B. Why neural networks are so successful: three high-level perspectives

on neural networks

Having discussed the basics of neural networks, we conclude by giving three complementary

perspectives on the success of DNNs and Deep Learning. This high-level discussion reflects

various dogmas and intuitions about the success of DNNs and is in no way definitive or

conclusive. As the reader was already warned in the introduction to DNNs, the field is

rapidly expanding and many of these perspectives may turn out to be only partially true or

even false. Nonetheless, we include them here as a guidepost for readers.

1. Neural networks as representation learning

One important and powerful aspect of the deep learning paradigm is the ability to learn

relevant features of the data with relatively little domain knowledge, i.e. with minimal hand-

crafting. Often, the power of deep learning stems from its ability to act like a black box that

can take in a large stream of data and find good features that capture properties of the data

we are interested in. This ability to learn good representations with very little hand-tuning is

one of the most attractive properties of DNNs. Many of the other supervised learning

algorithms discussed here (regression-based models, ensemble methods such as random

forests or gradient-boosted trees) perform comparably or even better than neural networks

but when using hand-crafted features with small-to-intermediate sized datasets.

The hierarchical structure of deep learning models is thought to be crucial to their ability to

represent complex, abstract features. For example, consider the use of CNNs for image

classification tasks. The analysis of CNNs suggests that the lower-levels of the neural

networks learn elementary features, such as edge detectors, which are then combined into

higher levels of the networks into more abstract, higher-level features (e.g. the famous

example of a neuron that “learned to respond to cats”) (Le, 2013). More recently, it has been

shown that CNNs can be thought of as performing tensor decompositions on the data similar

Mehta et al. Page 89

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

to those commonly used in numerical methods in modern quantum condensed matter

(Cohen et al., 2016).

One of the interesting consequences of this line of thinking is the idea that one can train a

CNN on one large dataset and the features it learns should also be useful for other

supervised tasks. This results in the ability to learn important and salient features directly

from the data and then transfer this knowledge to a new task. Indeed, this ability to learn

important, higher-level, coarsegrained features is reminiscent of ideas like the

renormalization group (RG) in physics where the RG flows separate out relevant and

irrelevant directions, and certain unsupervised deep learning architectures have a natural

interpretation in terms of variational RG schemes (Mehta and Schwab, 2014).

2. Neural networks can exploit large amounts of data

With the advent of smartphones and the internet, there has been an explosion in the amount

of data being generated. This data-rich environment favors supervised learning methods that

can fully exploit this rich data world. One important reason for the success of DNNs is that

they are able to exploit the additional signal in large datasets for difficult supervised learning

tasks. Fun-damentally, modern DNNs are unique in that they contain millions of parameters,

yet can still be trained on existing hardwares. The complexity of DNNs (in terms of

parameters) combined with their simple architecture (layer-wise connections) hit a sweet

spot between expressivity (ability to represent very complicated functions) and trainability

(ability to learn millions of parameters).

Indeed, the ability of large DNNs to exploit huge datasets is thought to differ from many

other commonly employed supervised learning methods such as Support Vector Machines

(SVMs). Figure 47 shows a schematic depicting the expected performance of DNNs of

different sizes with the number of data samples and compares them to supervised learning

algorithms such as SVMs or ensemble methods. When the amount of data is small, DNNs

offer no substantial benefit over these other methods and often perform worse. However,

large DNNs seem to be able to exploit additional data in a way other methods cannot. The

fact that one does not have to hand engineer features makes the DNN even more well suited

for handling large datasets. Recent theoretical results suggest that as long as a DNN is large

enough, it should generalize well and not overfit (Advani and Saxe, 2017). In the data-rich

world we live in (at least in the context of images, videos, and natural language), this is a

recipe for success. In other areas where data is more limited, deep learning architectures

have (at least so far) been less successful.

3. Neural networks scale up well computationally

A final feature that is thought to underlie the success of modern neural networks is that they

can harness the immense increase in computational capability that has occurred over the last

few decades. The architecture of neural networks naturally lends itself to parallelization and

the exploitation of fast but specialized processors such as graphical processing units (GPUs).

Google and NVIDIA set on a course to develop TPUs (tensor processing units) which will

be specifically designed for the mathematical operations underlying deep learning

Mehta et al. Page 90

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

architectures. The layered architecture of neural networks also makes it easy to use modern

techniques such as automatic differentiation that make it easy to quickly deploy them.

Algorithms such as stochastic gradient descent and the use of mini-batches make it easy to

parallelize code and train much larger DNNs than was thought possible fifteen years ago.

Furthermore, many of these computational gains are quickly incorporated into modern

packages with industrial resources. This makes it easy to perform numerical experiments on

large datasets, leading to further engineering gains.

C. Limitations of supervised learning with deep networks

Like all statistical methods, supervised learning using neural networks has important

limitations. This is especially important when one seeks to apply these methods, especially

to physics problems. Like all tools, DNNs are not a universal solution. Often, the same or

better performance on a task can be achieved by using a few hand-engineered features (or

even a collection of random features). This is especially important for hard physics problems

where data (or Monte-Carlo samples) may be hard to come by.

Here we list some of the important limitations of supervised neural network based models.

• Need labeled data.—Like all supervised learning methods, DNNs for

supervised learning require labeled data. Often, labeled data is harder to acquire

than unlabeled data (e.g. one must pay for human experts to label images).

• Supervised neural networks are extremely data intensive.—DNNs are data

hungry. They perform best when data is plentiful. This is doubly so for

supervised methods where the data must also be labeled. The utility of DNNs is

extremely limited if data is hard to acquire or the datasets are small (hundreds to

a few thousand samples). In this case, the performance of other methods that

utilize hand-engineered features can exceed that of DNNs.

• Homogeneous data.—Almost all DNNs deal with homogeneous data of one

type. It is very hard to design architectures that mix and match data types (i.e.

some continuous variables, some discrete variables, some time series). In

applications beyond images, video, and language, this is often what is required.

In contrast, ensemble models like random forests or gradient-boosted trees have

no difficulty handling mixed data types.

• Many physics problems are not about prediction.—In physics, we are often

not interested in solving prediction tasks such as classification. Instead, we want

to learn something about the underlying distribution that generates the data. In

this case, it is often difficult to cast these ideas in a supervised learning setting.

While the problems are related, it’s possible to make good predictions with a

“wrong” model. The model might or might not be useful for understanding the

physics.

Some of these remarks are particular to DNNs, others are shared by all supervised learning

methods. This motivates the use of unsupervised methods which in part circumnavigate

these problems.

Mehta et al. Page 91

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

XII. DIMENSIONAL REDUCTION AND DATA VISUALIZATION

Unsupervised learning is concerned with discovering structure in unlabeled data. In this

section, we will begin our foray into unsupervised learning by way of data visualization.

Data visualization methods are important for modeling as they can be used to identify

correlated or redundant features along with irrelevant features (noise) from raw or processed

data. Conceivably, being able to identify and capture such characteristics in a dataset can

help in designing better predictive models. For data involving a relatively small number of

features, studying pair-wise correlations (i.e. pairwise scatter plots of all features) may

suffice in performing a complete analysis. This rapidly becomes impractical for datasets

involving a large number of measured featured (such as images). Thus, in practice, we often

have to perform dimensional reduction, namely, project or embed the data onto a lower

dimensional space, which we refer to as the latent space. As we will discuss, part of the

complication of dimensional reduction lies in the fact that low-dimensional representations

of high-dimensional data necessarily incurs information lost. Below, we introduce some

common linear and nonlinear methods for performing dimensional reduction with

applications in data visualization of high-dimensional data.

A. Some of the challenges of high-dimensional data

Before we begin exploring some specific dimensional reduction techniques, it is useful to

highlight some of the generic difficulties encountered when dealing with high-dimensional

data.

a. High-dimensional data lives near the edge of sample space.

Geometry in high-dimensional space can be counterintuitive. One example that is pertinent

to machine learning is the following. Consider data distributed uniformly at random in a D-

dimensional hypercube 𝒞 = −e/2, e/2 D, where e is the edge length. Consider also a D-

dimensional hypersphere 𝒮 of radius e/2 centered at the origin and contained within 𝒞. The

probability that a data point x drawn uniformly at random in 𝒞 is contained within 𝒮 is well

approximated by the ratio of the volume of S to that of 𝒞: p x 2 < e/2 1/2 D. Thus, as the

dimension of the feature space D increases, p goes to zeroexponentially fast. In other words,

most of the data will concentrate outside the hypersphere, in the corners of the hypercube. In

physics, this basic observation underlies many properties of ideal gases such as the Maxwell

distribution and the equipartition theorem (see Chapter 3 of (Sethna, 2006) for instance).

b. Real-world data vs. uniform distribution.

Fortunately, real-world data is not random or uniformly distributed! In fact, real data usually

lives in a much lower dimensional space than the original space in which the features are

being measured. This is sometimes referred to as the “blessing of non-uniformity” (in

opposition to the curse of dimensionality). Data will typically be locally smooth, meaning

that a local variation of the data will not incur a change in the target variable (Bishop, 2006).

This idea is central to statistical physics and field theories, where properties of systems with

Mehta et al. Page 92

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

an astronomical number of degrees of freedom can be well characterized by low-

dimensional “order parameters” or effective degrees of freedom. Another instantiation of

this idea is manifest in the description of the bulk properties of a gas of weakly interacting

particles, which can be simply described by the thermodynamic variables (temperature,

pressure, etc.) that enter the equation of state rather than the enormous number of dynamical

variables (i.e. position and momentum) of each particle in the gas.

c. Intrinsic dimensionality and the crowding problem.

A recurrent objective of dimensional reduction techniques is to preserve the relative pairwise

distances (or defined similarities) between data points from the original space to the latent

space. This is a natural requirement, since we would like for nearby data points (as measured

in the original space) to remain close-by after the corresponding mapping to the latent space.

Consider the example of the “Swiss roll” presented in FIG. 48a. There, the relevant structure

of the data corresponds to nearby points with similar colors and is encoded in the “unrolled”

data in the latent space, see FIG. 48b. Clearly, in this example a two-dimensional space is

sufficient to capture almost the entirety of the information in the data. A concept which

stems from signal processing that is relevant to our current exposition is that of the intrinsic

dimensionality of the data. Qualitatively, it refers to the minimum number of dimensions

required to capture the signal in the data. In the case of the Swiss roll, it is 2 since the Swiss

roll can effectively be parametrized using only two parameters, i.e. X ∈ {(x1 sin(x1), x1

cos(x1), x2)}. The minimum number of parameters required for such a parametrization is the

intrinsic dimensionality of the data (Bennett, 1969). Attempting to represent data in a space

of dimensionality lower than its intrinsic dimensionality can lead to a “crowding” problem

(Maaten and Hinton, 2008) (see schematic, FIG. 49). In short, because we are attempting to

satisfy too many constraints (e.g. preserve all relative distances of the original space), this

results in a trivial solution for the latent space where all mapped data points collapse to the

center of the map.

To alleviate this, one needs to weaken the constraints imposed on the visualization scheme.

Powerful methods such as t-distributed stochastic embedding (Maaten and Hinton, 2008) (in

short, t-SNE, see section XII.D) and uniform manifold approximation and projection

(UMAP) (McInnes et al., 2018) have been devised to circumvent this issue in various ways.

B. Principal component analysis (PCA)

A ubiquitous method for dimensional reduction, data visualization and analysis is Principal

Component Analysis (PCA). The goal of PCA is to perform an orthogonal transformation of

the data in order to find high-variance directions. PCA is inspired by the observation that in

many cases, the relevant information in a signal is contained in the directions with largest14

variance (see FIG. 50). Directions with small variance are ascribed to “noise” and can

potentially be removed or ignored.

14This assumes that the features are measured and compared using the same units.

Mehta et al. Page 93

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Surprisingly, such PCA-based projections often capture a lot of the large scale structure of

many datasets. For example, Figure 51 shows the projection of samples drawn from the 2D

Ising model at various temperatures on the first two principal components. Despite living in

a 1600 dimensional space (the samples are 40 40 spin configurations), a single principal

component (i.e. a single direction in this 1600 dimensional space) can capture 50% of the

variability contained in our samples. In fact, one can verify that this direction weights all

1600 spins nearly equally and thus corresponds to the magnetization order parameter. Thus,

even without any prior physical knowledge, one can extract relevant order parameters using

a simple PCA-based projection. Recently, a correspondence between PCA and

Renormalization Group flows across the phase transition in the 2D Ising model (Foreman et
al., 2017) and in a more general setting (Bradde and Bialek, 2017) has been proposed. In

statistical physics, PCA has also found application in detecting phase transitions (Wetzel,

2017), e.g. in the XY model on frustrated triangular and union jack lattices (Wang and Zhai,

2017). PCA was also used to classify dislocation patterns in crystals (Papanikolaou et al.,
2017; Wang and Zhai, 2018), and to find correlations in the shear flow of athermal

amorphous solids (Ruscher and Rottler, 2018). PCA is widely employed in biological

physics when working with high-dimensional data. Physics has also inspired PCA-based

algorithms to infer relevant features in unlabelled data (Bény, 2018). Concretely, consider N

data points, {x1, …. xN} that live in a p-dimensional feature space ℝp. Without loss of

generality, we assume that the empirical mean x = N−1∑i xi of these data points is zero15.

Denote the N × p design matrix as X = [x1, x2, …; xN]T whose rows are the data points and

columns correspond to different features. The p × p (symmetric) covariance matrix is

therefore

Σ X = 1
N − 1 XTX . (129)

Notice that the j-th diagonal entry of Σ(X) corresponds to the variance of the j-th feature and

Σ(X)ij measures the covariance (i.e. connected correlation in the language of physics)

between feature i and feature j.

We are interested in finding a new basis for the data that emphasizes highly variable

directions while reducing redundancy between basis vectors. In particular, we will look for a

linear transformation that reduces the covariance between different features. To do so, we

first perform singular value decomposition (SVD) on the design matrix X, namely, X = USV
T, where S is a diagonal matrix of singular value si, the orthogonal matrix U contains (as its

columns) the left singular vectors of X, and similarly V contains (as its columns) the right

singular vectors of X. With this, one can rewrite the covariance matrix as

15We can always center around the mean: x xi − x

Mehta et al. Page 94

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Σ X = 1
N − 1VSUTUSVT

= V S2

N − 1 VT

≡ VΛVT .

(130)

where Λ is a diagonal matrix with eigenvalues λi in the decreasing order along the diagonal

(i.e. eigendecomposition). It is clear that the right singular vectors of X (i.e. the columns of

V) are principal directions of Σ(X), and the singular values of X are related to the

eigenvalues of the covariance matrix Σ(X) via λi = si
2/ N − 1 . To reduce the dimensionality

of data from p to p < p, we first construct the p × p projection matrix V p′ by selecting the

singular components with the p largest singular values. The projection of the data from p to

a p dimensional space is simply Y = XV p′. The same idea is central to matrix-product-state-

like techniques used to compress the number of components in quantum wavefunctions in

studies of low-dimensional many-body lattice systems.

The singular vector with the largest singular value (i.e the largest variance) is referred to as

the first principal component; the singular vector with the second largest singular value as

the second principal component, and so on. An important quantity is the ratio λi/∑i = 1
p λi

which is referred as the percentage of the explained variance contained in a principal

component (see FIG. 51.b).

It is common in data visualization to present the data projected on the first few principal

components. This is valid as long as a large part of the variance is explained in those

components. Low values of explained variance may imply that the intrinsic dimensionality

of the data is high or simply that it cannot be captured by a linear representation. For a

detailed introduction to PCA, see the tutorials by Shlens (Shlens, 2014) and Bishop (Bishop,

2006).

C. Multidimensional scaling

Multidimensional scaling (MDS) is a non-linear dimensional reduction technique which

preserves the pairwise distance or dissimilarity dij between data points (Cox and Cox, 2000).

Moving forward, we use the term “distance” and “dissimilarity” interchangeably. There are

two types of MDS: metric and non-metric. In metric MDS, the distance is computed under a

pre-defined metric and the latent coordinates Y are obtained by minimizing the difference

between the distance measured in the original space (dij(X)) and that in the latent space

(dij(Y)):

Y = arg min
Y i < j

wi j di j X − di j Y , (131)

Mehta et al. Page 95

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where wij ≥0 are weight values. The weight matrix wij is a set of free parameters that specify

the level of confidence (or precision) in the value of dij(X). If Euclidean metric is used, MDS

gives the same result as PCA and is usually referred to as classical scaling (Torgerson,

1958). Thus MDS is often considered as a generalization of PCA. In non-metric MDS, dij

can be any distance matrix. The objective function is then to preserve the ordination in the

data, i.e. if d12(X) < d13(X) in the original space, then in the latent space we should have

d12(Y) < d13(Y).

Both MDS and PCA can be implemented using standard Python packages such as Scikit.

MDS algorithms typically have a scaling of 𝒪 N3 where N corresponds to the number of

data points, and are thus very limited in their application to large datasets. However,

samplebased methods have been introduce to reduce this scaling to 𝒪 N log N (Yang et al.,

2006). In the case of PCA, a complete decomposition has a scaling of 𝒪 N p2 + p3 , where p

is the number of features. Note that the first term Np2 is due to the computation of

covariance matrix Eq.(129) while the second, p3, stems from eigenvalue decomposition.

Nothe that PCA can be improved to bear complexity 𝒪 N p2 + p if only the first few

principal components are desired (using iterative approaches). PCA and MDS are often

among the first data visualization techniques one resorts to.

D. t-SNE

It is often desirable to preserve local structures in high-dimensional datasets. However, when

dealing with datasets having clusters delimitated by complicated surfaces or datasets with a

large number of clusters, preserving local structures becomes difficult using linear

techniques such as PCA. Many non-linear techniques such as non-classical MDS (Cox and

Cox, 2000), self-organizing map (Kohonen, 1998), Isomap (Tenenbaum et al., 2000) and

Locally Linear Embedding (Roweis and Saul, 2000) have been proposed and to address this

class of problems. These techniques are generally good at preserving local structures in the

data but typically fail to capture structures at the larger scale such as the clusters in which

the data is organized (Maaten and Hinton, 2008).

Recently, t-stochastic neighbor embedding (t-SNE) has emerged as one of the go-to methods

for visualizing high-dimensional data. It has been shown to offer insightful visualization for

many benchmark high-dimensional datasets (Maaten and Hinton, 2008). t-SNE is a non-

parametric16 method that constructs non-linear embeddings. Each high-dimensional training

point is mapped to low-dimensional embedding coordinates, which are optimized in a way

to preserve the local structure in the data.

When used appropriately, t-SNE is a powerful technique for unraveling the hidden structure

of high-dimensional datasets while at the same time preserving locality. In physics, t-SNE

has recently been used to reduce the dimensionality and classify spin configurations,

generated with the help of Monte Carlo simulations, for the Ising (Carrasquilla and Melko,

16It does not explicitly parametrize feature extraction required to compute the embedding coordinates. Thus it cannot be applied to
find the coordinate of new data points.

Mehta et al. Page 96

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2017) and Fermi-Hubbard models at finite temperatures (Ch’ng et al., 2017). It was also

applied to study clustering transitions in glass-like problems in the context of quantum

control (Day et al., 2019).

The idea of stochastic neighbor embedding is to associate a probability distribution to the

neighborhood of each data (note x ∈ ℝp, p is the number of features):

pi j =
exp − xi − x j

2/2σi
2

k ≠ i
exp − xi − xk

2/2σi
2 , (132)

where pi|j can be interpreted as the likelihood that xj is xi’s neighbor (thus we take pi|i = 0).

σi are free band-width parameters that are usually determined by fixing the local entropy

H(pi) of each data point:

H pi ≡ −
j

p j i log2 p j i . (133)

The local entropy is then set to equal a constant across all data points ∑ = 2
H pi , where Σ is

called the perplexity. The perplexity constraint determines σi∀ i and implies that points in

regions of high-density will have smaller σi.

Using Gaussian likelihoods in pi|j implies that only points that are nearby xi contribute to its

probability distribution. While this ensures that the similarity for nearby points is well

represented, this can be a problem for points that are far away from xi (i.e. outliers): they

have exponentially vanishing contributions to the distribution, which in turn means that their

embedding coordinates are ambiguous (Maaten and Hinton, 2008). One way around this is

to define a symmetrized distribution pij ≡ (pi|j + pj|i)/(2N). This guarantees that

∑ j pi j > 1/ 2N for all data points xi, resulting in each data point xi making a significant

contribution to the cost function to be defined below.

t-SNE constructs a similar probability distribution qij in a low dimensional latent space (with

coordinates Y = yi , yi ∈ ℝp′, where pʹ < p is the dimension of the latent space):

qi j =
(1 + yi − y j

2)−1

k ≠ i
(1 + yi − yk

2)−1 . (134)

The crucial point to note is that qij is chosen to be a long tail distribution. This preserves

short distance information (relative neighborhoods) while strongly repelling two points that

are far apart in the original space (see FIG. 52). In order to find the latent space coordinates

yi, t-SNE minimizes the Kullback-Leibler divergence between qij and pij:

Mehta et al. Page 97

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

𝒞 Y = DKL p q ≡
i j

pi jlog
pi j
qi j

. (135)

This minimization is done via gradient descent (see section IV). We can gain further insights

on what the embedding cost-function 𝒞 is capturing by computing the gradient of (135) with

respect to yi explicitly:

∂yi
𝒞 =

j ≠ i
4pi jqi jZi yi − y j −

j ≠ i
4qi j

2 Zi yi − y j ,

= Fattractive, i − Frepulsive, i,

(136)

where Zi = 1/(∑k ≠ i (1 + yk − yi
2)−1). We have separated the gradient of point yi into an

attractive Fattractive and repulsive term Frepulsive. Notice that Fattractive,i induces a significant

attractive force only between points that are nearby point i in the original space since it

involves the pij term. Finding the embedding coordinates yi is thus equivalent to finding the

equilibrium configuration of particles interacting through the forces in (136).

Below, we list some important properties that one should bear in mind when analyzing t-

SNE plots.

• t-SNE can rotate data. The KL divergence is invariant under rotations in the

latent space, since it only depends on the distance between points. For this

reason, t-SNE plots that are rotations of each other should be considered

equivalent.

• t-SNE results are stochastic. In applying gradient descent the solution will

depend on the initial seed. Thus, the map obtained may vary depending on the

seed used and different t-SNE runs will give slightly different results.

• t-SNE generally preserves short distance information. As a rule of thumb, one

should expect that nearby points on the t-SNE map are also closeby in the

original space, i.e. t-SNE tends to preserve or-dination (but not actual distances).

For a pictorial explanation of this, we refer the reader to Figure 52.

• Scales are deformed in t-SNE. Since a scale-free distribution is used in the latent

space, one should not put too much emphasis on the meaning of the size of any

clusters observed in the latent space.

• t-SNE is computationally intensive. Finally, a direct implementation of t-SNE

has an algorithmic complexity of 𝒪 N2 which is only applicable to small to

medium data sets. Improved scaling of the form 𝒪 N log N can be achieved at the

cost of approximating Eq. (135) by using the Barnes-Hut method (Van Der

Maaten, 2014) for N -body simulations (Barnes and Hut, 1986). More recently

extremely efficient t-SNE implementation making use of fast Fourier transforms

Mehta et al. Page 98

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

for kernel summations in (136) have been made available on https://github.com/

KlugerLab/FIt-SNE, (Linderman et al., 2017).

As an illustration, in Figure 53 we applied t-SNE to a Gaussian mixture model consisting of

thirty Gaussians, whose means are uniformly distributed in fortydimensional space. We

compared the results to a random two-dimensional projection and PCA. It is clear that unlike

more naïve dimensional reduction techniques, both PCA and t-SNE can identify the

presence of well-formed clusters. The t-SNE visualization cleanly separates all the clusters

while certain clusters blend together in the PCA plot. This is a direct consequence of the fact

that t-SNE keeps nearby points close together while repelling points that are far apart.

Figure 54 shows t-SNE and PCA plots for the MNIST dataset of ten handwritten numerical

digits (0–9). It is clear that the non-linear nature of t-SNE makes it much better at capturing

and visualizing the complicated correlations between digits, compared to PCA.

XIII. CLUSTERING

In this section, we continue our discussion of unsupervised learning methods. Unsupervised

learning is concerned with discovering structure in unlabeled data (for instance learning

local structures for data visualization, see section XII). The lack of labels make unsupervised

learning much more difficult and subtle than its supervised counterpart. What is somewhat

surprising is that even without labels it is still possible to uncover and exploit the hidden

structure in the data. Perhaps, the simplest example of unsupervised learning is clustering.

The aim of clustering is to group unlabelled data into clusters according to some similarity

or distance measure. Informally, a cluster is thought of as a set of points sharing some

pattern or structure.

Clustering finds many applications throughout data mining (Larsen and Aone, 1999), data

compression and signal processing (Gersho and Gray, 2012; MacKay, 2003). Clustering can

be used to identify coarse features or high level structures in an unlabelled dataset. The

technique also finds many applications in physical sciences, ranging from detecting celestial

emission sources in astronomical surveys (Sander et al., 1998) to inferring groups of genes

and proteins with similar functions in biology (Eisen et al., 1998), and building

entanglement classifiers (Lu et al., 2017). Clustering is perhaps the simplest way to look for

hidden structure in a dataset and for this reason, is among the most widely used and

employed data analysis and machine learning techniques.

The field of clustering is vast and there exists a flurry of clustering methods suited for

different purposes. Some common considerations one has to take into account when

choosing a particular method is the distribution of the clusters (overlapping/noisy clusters vs.

well-separated clusters), the geometry of the data (flat vs. non-flat), the cluster size

distribution (multiple sizes vs. uniform sizes), the dimensionality of the data (low vs. high

dimensional) and the computational efficiency of the desired method (small vs. large

dataset).

We begin section XIII.A with a focus on popular practical clustering methods such as K-

means clustering, hierarchical clustering and density clustering. Our goal is to highlight the

Mehta et al. Page 99

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/KlugerLab/FIt-SNE
https://github.com/KlugerLab/FIt-SNE

strength, weaknesses and differences between these techniques, while laying out some of the

theoretical framework required for clustering analysis. There exist many more clustering

methods beyond those discussed in this section17. The methods we discuss were chosen for

their pedagogical value and/or their applicability to problems in physics.

In section XIII.B we discuss gaussian mixture models and the formulation of clustering

through latent variable models. This section introduces many of the methods we will

encounter when discussing other unsupervised learning methods later in the review. Finally,

in section XIII.C we discuss the problem of clustering in high-dimensional data and possible

ways to tackle this difficult problem. The reader is also urged to experiment with various

clustering methods using Notebook 15.

A. Practical clustering methods

Throughout this section we focus on the Euclidean distance as a similarity measure. Other

measures may be better suited for specific problems. We refer the enthusiast reader to

(Rokach and Maimon, 2005) for a more indepth discussion of the different possible

similarity measures.

1. K-means—We begin our discussion with K-means clustering since this method is

simple to implement and understand, and covers the core concepts of clustering. Consider a

set of N unlabelled observations xn n = 1
N where xn ∈ ℝp and where p is the number of

features. Also consider a set of K cluster centers called the cluster means: μk k = 1
K , with

μk ∈ ℝp, which we’ll compute “emperically” in the cluserting procedure. The cluster means

can be thought of as the representatives of each cluster, to which data points are assigned

(see FIG. 55). K-means clustering can be formulated as follows: given a fixed integer K, find

the cluster means {µ} and the data point assignments in order to minimize the following

objective function:

𝒞 x, μ =
k = 1

K

n = 1

N
rnk xn − μk

2, (137)

where rnk ϵ {0, 1} is a binary variable called the assignment. The assignment rnk is 1 if xn is

assigned to cluster k and 0 otherwise. Notice that ∑k rnk = 1 ∀ n and ∑nrnk ≡ Nk, the number

of points assigned to cluster k. The minimization of this objective function can be

understood as trying to find the best cluster means such that the variance within each cluster

is minimized. In physical terms, 𝒞 is equivalent to the sum of the moments of inertia of

every cluster. Indeed, as we will see below, the cluster means µk correspond to the centers of

mass of their respective cluster.

K-means algorithm.: The K-means algorithm alternates between two steps:

17Our complementary Python notebook introduces some of these other methods.

Mehta et al. Page 100

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

1. Expectation: Given a set of assignments {rnk}, minimize C with respect to µk.

Taking a simple derivative and setting it to zero yields the following update rule:

μk = 1
Nk n

rnkxn . (138)

2. Maximization: Given a set of cluster means {µk}, find the assignments {rnk}

which minimizes 𝒞. Clearly, this is achieved by assigning each data point to their

nearest cluster-mean:

rnk = 1 if k = argmink′ xn − μk′
2

0 otherwise
(139)

K-means clustering consists in alternating between these two steps until some convergence

criterion is met. Practically, the algorithm should terminate when the change in the objective

function from one iteration to another becomes smaller than a pre-specified threshold. A

simple example of K-means is presented in FIG. 55.

A nice property of the K-means algorithm is that it is guaranteed to converge. To see this,

one can verify explicitly (by taking second-order derivatives) that the expectation step

always decreases 𝒞. This is also true for the assignment step. Thus, since 𝒞 is bounded from

below, the two-step iteration of K-means always converges to a local minimum of 𝒞. Since

𝒞 is generally a non-convex function, in practice one usually needs to run the algorithm with

different initial random cluster center initializations and post-select the best local minimum.

A simple implementation of K-means has an average computational complexity which

scales linearly in the size of the data set (more specifically the complexity is 𝒪 KN per

iteration) and is thus scalable to very large datasets.

As we will see in section XIII.B, K-means is a hard-assignment limit of the Gaussian

mixture model where all cluster variances are assumed to be the same. This highlights a

common drawback of K-means: if the true clusters have very different variances (spreads),

K-means can lead to spurious results since the underlying assumption is that the latent

model has uniform variances.

2. Hierarchical clustering: Agglomerative methods—Agglomerative clustering is

a bottom up approach that starts from small initial clusters which are then progressively

merged to form larger clusters. The merging process generates a hierarchy of clusters that

can be visualized in the form of a dendrogram (see FIG. 56). This hierarchy can be useful to

analyze the relation between clusters and the subcomponents of individual clusters.

Agglomerative methods are usually specified by defining a distance measure between

clusters18. We denote the distance between clusters X and Y by d X, Y ∈ ℝ. Different

choices of distance result in different clustering algorithms. At each step, the two clusters

18Note that this measure need not be a metric.

Mehta et al. Page 101

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

that are the closest with respect to the distance measure are merged until a single cluster is

left.

Agglomerative clustering algorithm: Agglomerative clustering algorithms can thus be

summarized as follows:

1. Initialize each point to its own cluster.

2. Given a set of K clusters X1 , X2 , …, XK merge clusters until one cluster is left

(K = 1):

a. Find the closest pair of clusters Xi, X j : i, j = argmin i′, j′ d Xi′, X j′

b. Merge the pair. Update: K ← K ‒ 1

Here we list a few of the most popular in agglomerative methods, often called linkage

method in the clustering literature.

1. Single-linkage: the distance between clusters i and j is defined as the minimum

distance between two elements of the different clusters

d Xi, X j = min
xi ∈ Xi, x j ∈ X j

xi − x j 2 . (140)

2. Complete linkage: the distance between clusters i and j is defined as the

maximum distance two elements of the different clusters

d Xi, X j = max
xi ∈ Xi, x j ∈ X j

xi − x j 2 (141)

3. Average linkage: average distance betwwen point of different clusters

d Xi, X j = 1
Xi ⋅ X j xi ∈ Xi, x j ∈ X j

xi − x j 2 (142)

4. Ward’s linkage: This distance measure is analogous to the K-means method as it

seeks total inertia. The distance measure is the “error squared” before and after

merging which simplifies to:

d Xi, X j =
Xi X j

Xi ∪ X j
μi − μ j

2, (143)

where µj is the center of cluster j.

A common drawback of hierarchical methods is that they do not scale well: at every step, a

distance matrix between all clusters must be updated/computed. Efficient implementations

Mehta et al. Page 102

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

achieve a typical computational complexity of 𝒪 N2 (Müllner, 2011), making the method

suitable for small to medium-size datasets. A simple but major speed-up for the method is to

initialize the clusters with K-means using a large K (but still a small fraction of N) and then

proceed with hierarchical clustering. This has the advantage of preserving the large-scale

structure of the hierarchy while making use of the linear scaling of K-means. In this way,

hierarchical clustering may be applied to very large datasets.

3. Density-based (DB) clustering—Density clustering makes the intuitive assumption

that clusters are defined by regions of space with higher density of data points. Data points

that constitute noise or that are outliers are expected to form regions of low density. Density

clustering has the advantage of being able to consider clusters of multiple shapes and sizes

while identifying outliers. The method is also suitable for large-scale applications.

The core assumption of DB clustering is that a relative local density estimation of the data is

possible. In other words, it is possible to order points according to their densities. Density

estimates are usually accurate for low-dimensional data but become unreliable for high-

dimensional data due to large sampling noise. Here, for brevity, we confine our discussion to

one of the most widely used density clustering algorithms, DBSCAN. We have also had

great success with another recently introduced variant of DB clustering (Rodriguez and

Laio, 2014) that is similar in spirit which the reader is urged to consult. One of the authors

(A. D.) has also created a Python package, https://pypi.org/project/fdc/, which makes use of

accurate density estimates via kernel methods combined with agglomerative clustering to

produce fast and accur GitHub repository).

DBSCAN algorithm.: Here we describe the most prominent DB clustering algorithm:

DBSCAN, or density-based spatial clustering of applications with noise (Ester et al., 1996).

Consider once again a set of N data points X ≡ xn n = 1
N .

We start by defining the ε-neighborhood of point xn as follows:

Nε xn = x ∈ X d x, xn < ε . (144)

Nε(xn) are the data points that are at a distance smaller than ε from xn. As before, we

consider d(·,·) to be the Euclidean metric (which yields spherical neighborhoods, see Figure

57) but other metrics may be better suited depending on the specific data. Nε(xn) can be seen

as a crude estimate of local density. xn is considered to be a core-point if at least minPts are

in its ε-neighborhood. minPts is a free parameter of the algorithm that sets the scale of the

size of the smallest cluster one should expect. Finally, a point xi is said to be density-
reachable if it is in the ε-neighborhood of a core-point. From these definitions, the algorithm

can be simply formulated (see also Figure 57):

→ Until all points in X have been visited; do

− Pick a point xi that has not been visited

Mehta et al. Page 103

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://pypi.org/project/fdc/

− Mark xi as a visited point

− If xi is a core point; then

• Find the set 𝒞 of all points that are density reachable from xi.

• 𝒞 now forms a cluster. Mark all points within that cluster as being visited

→ Return the cluster assignments 𝒞1, ⋅ ⋅ ⋅ , 𝒞k, with k the number of clusters. Points that

have not been assigned to a cluster are considered noise or outliers.

Note that DBSCAN does not require the user to specify the number of clusters but only ε
and minPts. While, it is common to heuristically fix these parameters, methods such as

cross-validation can be used for their determination. Finally, we note that DBSCAN is very

efficient since efficient implementations have a computational cost of 𝒪 N log N .

B. Clustering and Latent Variables via the Gaussian Mixture Models—In the

previous section, we introduced several practical methods for clustering. In this section, we

will approach clustering from a more abstract vantage point, and in the process, introduce

many of the core ideas underlying unsupervised learning. A central concept in many

unsupervised learning techniques is the idea of a latent or hidden variable. Even though

latent variables are not directly observable, they still influence the visible structure of the

data. For example, in the context of clustering we can think of the cluster identity of each

datapoint (i.e. which cluster does a datapoint belong to) as a latent variable. And even

though we cannot see the cluster label explicitly, we know that points in the same cluster

tend to be closer together. The latent variables in our data (cluster identity) are a way of

representing and abstracting the correlations between datapoints.

In this language, we can think of clustering as an algorithm to learn the most probable value

of a latent variable (cluster identity) associated with each datapoint. Calculating this latent

variable requires additional assumptions about the structure of our dataset. Like all

unsupervised learning algorithms, in clustering we must make an assumption about the

underlying probability distribution from which the data was generated. Our model for how

the data is generated is called the generative model. In clustering, we assume that data points

are assigned a cluster, with each cluster characterized by some cluster-specific probability

distribution (e.g. a Gaussian with some mean and variance that characterizes the cluster). We

then specify a procedure for finding the value of the latent variable. This is often done by

choosing the values of the latent variable that minimize some cost function.

One common choice for a class of cost functions for many unsupervised learning problems

is Maximum Like-lihood Estimation (MLE), see Secs. V and VI. In MLE, we choose the

values of the latent variables that maximize the likelihood of the observed data under our

generative model (i.e. maximize the probability of getting the observed dataset under our

generative model). Such MLE equations often give rise to the kind of Expectation Maxi-

mization (EM) equations that we first encountered in the last section in the context of K-

means clustering.

Mehta et al. Page 104

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gaussian Mixtures models (GMM) are a generative model often used in the context of

clustering. In GMM, points are drawn from one of K Gaussians, each with its own mean µk

and covariance matrix Σk,

𝒩 x μ, Σ exp − 1
2 x − μ Σ−1 x − μ T . (145)

Let us denote the probability that a point is drawn from mixture k by πk. Then, the

probability of generating a point x in a GMM is given by

p x μk, Σk , πk =
k = 1

K
𝒩 x μk, Σk πk . (146)

Given a dataset X = {x1, …, xN}, we can write the likelihood of the dataset as

p X μk, Σk , πk =
i = 1

N
p xi μk, Σk , πk (147)

For future reference, let us denote the set of parameters (of K Gaussians in the model) {µk,

Σk, πk} by θ.

To see how we can use GMM and MLE to perform clustering, we introduce discrete binary

K-dimensional latent variables z for each data point x whose k-th component is 1 if point x
was generated from the k-th Gaussian and zero otherwise (these are often called “one-hot

variables”). For instance if we were considering a Gaussian mixture with K = 3, we would

have three possible values for z ≡ (z1, z2, z3) : (1, 0, 0), (0, 1, 0) and (0, 0, 1). We cannot

directly observe the variable z. It is a latent variable that encodes the cluster identity of point

x. Let us also denote all the N latent variables corresponding to a dataset X by Z.

Viewing the GMM as a generative model, we can write the probability p(x|z) of observing a

data point x given z as

p x z; μk, Σk =
k = 1

K
𝒩 x μk, Σk

zk (148)

as well as the probability of observing a given value of latent variable

p z πk =
k = 1

K
πk

zk . (149)

Mehta et al. Page 105

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Using Bayes’ rule, we can write the joint probability of a clustering assignment z and a data

point x given the GMM parameters as

p x, z; θ = p x z; μk, Σk p z πk . (150)

We can also use Bayes rule to rearrange this expression to give the conditional probability of

the data point x being in the k-th cluster, γ(zk), given model parameters θ as

γ zk ≡ p zk = 1 x; θ =
πk𝒩 x μk, Σk

∑ j = 1
K π j𝒩 x μ j, Σ j

. (151)

The γ(zk) are often referred to as the “responsibility” that mixture k takes for explaining x.

Just like in our discussion of soft-max classifiers, this can be made into a “hard-assignment”

by assigning each point to the cluster with the largest probability: arg maxk γ(zk) over the

responsibilities.

The complication is of course that we do not know the parameters θ of the underlying GMM

but instead must also learn them from the dataset X. As discussed above, ideally we could do

this by choosing the parameters that maximize the likelihood (or equivalently the log-

likelihood) of the data

θ = arg max
θ

log p X θ (152)

where θ = {µk, Σk, πk}. Once we know the MLEs θ , we could use Eq. (151) to calculate the

optimal hard cluster assignment argmaxkγ zk where γ zk = p zk = 1| x; θ .

In practice, due to the complexity of Eq. (147), it is almost impossible to find the global

maximum of the like-lihood function. Instead, we must settle for a local maximum. One

approach to finding a local maximum of the likelihood is to use a method like stochastic

gradient descent on the negative log-likelihood, cf. Sec IV. Here, we introduce an alternative,

powerful approach for finding local minima in latent variable models using an iterative

procedure called Expectation Maximization (EM). Given an initial guess for the parameters

θ(0), the EM algorithm iteratively generates new estimates for the parameters θ(1), θ(2), …
Importantly, the likelihood is guaranteed to be non-decreasing under these iterations and

hence EM converges to a local maximum of the likelihood (Neal and Hinton, 1998).

The central observation underlying EM is that it is often much easier to calculate the

conditional likelihoods of the latent variables p t Z = p Z |X; θ t given some choice of

parameters, and the maximum of the expected log likelihood given an assignment of the

latent variables: θ t + 1 = argmaxθE
p Z |X; θ t logp X, Z; θ . To get an intuition for this later

quantity notice that we can write

Mehta et al. Page 106

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

𝔼
p t log p X, Z; θ =

i = 1

N

k = 1

K
γik

t log𝒩 xi μk, Σk + log πk , (153)

where we have used the shorthand γik
t = p zik |X; θ t with zik the k-th component of zi.

Taking the derivative of this equation with respect to µk, Σk, and πk (subject to the constraint

∑k πk = 1) and setting this to zero yields the intuitive equations

μk
t + 1 = i

N γik
t xi

iγik
t

Σk
t + 1 = i

N γik
t xi − μk xi − μk

T

iγik
t

πk
t + 1 = 1

N k
γik

t

(154)

These are just the usual estimates for the mean and variance, with each data point weighed

according to our current best guess for the probability that it belongs to cluster k. We can

then use our new estimate θ(t+1) to calculate responsibility γik
t + 1 and repeat the process.

This is essentially the K -Means algorithm discussed in the first section.

This discussion of the Gaussian mixture model introduces several concepts that we will

return to repeatedly in the context of unsupervised learning. First, it is often useful to think

of the visible correlations between features in the data as resulting from hidden or latent

variables. Second, we will often posit a generative model that encodes the structure we think

exists in the data and then find parameters that maximize the likelihood of the observed data.

Third, often we will not be able to directly estimate the MLE, and will have to instead look

for a computationally efficient way to find a local minimum of the likelihood.

C. Clustering in high dimensions—Clustering data in high-dimension can be very

challenging. One major problem that is aggravated in high-dimensions is the generic

accumulation of noise due to random measurement error for each feature. This in turn leads

to increased errors for pairwise similarity and distance measures and thus tends to “blur”

distances between data points (Domingos, 2012; Kriegel et al., 2009; Zimek et al., 2012).

Many clustering algorithms rely on the explicit use of a similarity measure or distance

metrics that weigh all features equally. For this reason, one must be careful when using an

off-the-shelf method in high dimensions.

In order to perform clustering on high-dimensional data, it is often useful to denoise the data

before proceeding with using a standard clustering method such as K-means (Kriegel et al.,
2009). Figure 54 illustrates an application of denoising to high-dimensional data. PCA

Mehta et al. Page 107

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(section XII.B) was used to denoise the MNIST dataset by projecting the 784 original

dimensions onto the 40 dimensions with the largest principal components. The resulting

features were then used to construct a Euclidean distance matrix which was used by t-SNE

to compute the two-dimensional embedding that is presented. Using t-SNE directly on

original data leads to a “blurring” of the clusters (the reader is encouraged to test this

themselves).

However, simple feature selection or feature denoising (using PCA for instance) can

sometimes be insufficient for learning clusters due to the presence of large variations in the

signal and noise of the features that are relevant for identifying the underlying clusters

(Kriegel et al., 2009). Recent promising work suggests that one way to overcome these

limitations is to learn the latent space and the cluster labels at the same time (Xie et al.,
2016).

Finally we end the clustering section with a short discussion on clustering validation, which

can be particularly difficult for high-dimensional data. Often clustering validation, i.e.

verifying whether the obtained labels are “valid” is done by direct visual inspection. That is,

the data is represented in a low-dimensional space and the cluster labels obtained are

visually inspected to make sure that different labels organize into distinct “blobs”. For high-

dimensional data, this is done by performing dimensional reduction (section XII). However,

this can lead to the appearance of spurious clusters since dimensional reduction inevitably

loses information about the original data. Thus, these methods should be used with care

when trying to validate clusters [see (Wattenberg et al., 2016) for an interactive discussion

on how t-SNE can sometime be misleading and how to effectively use it].

A lot of work has been done to devise ways of validating clusters based on various metrics

and measures (Kriegel et al., 2009). Perhaps one of the most intuitive way of defining a good

clustering is by measuring how well clusters generalize. Clustering methods based on

leveraging powerful classifiers to measure the generalization errors of the clusters have been

developed by some of the authors (Day and Mehta, 2018), see https://pypi.org/project/hal-x/.

We believe this represents an especially promising research direction in high-dimensional

clustering. Finally, we emphasize that this discussion is far from exhaustive and we refer the

reader to (Rokach and Maimon, 2005), Chapter 15, for an in-depth survey of the various

validation techniques.

XIV. VARIATIONAL METHODS AND MEAN-FIELD THEORY (MFT)

A common thread in many unsupervised learning tasks is accurately representing the

underlying probability distribution from which a dataset is drawn. Unsupervised learning of

high-dimensional, complex distributions presents a new set of technical and computational

challenges that are different from those we encountered in a supervised learning setting.

When dealing with complicated probability distributions, it is often much easier to learn the

relative weights of different states or data points (ratio of probabilities), than absolute
probabilities. In physics, this is the familiar statement that the weights of a Boltzmann

distribution are much easier to calculate than the partition function. The relative probability

Mehta et al. Page 108

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://pypi.org/project/hal-x/

of two configurations, x1 and x2, are proportional to the difference between their Boltzmann

weights

p x1
p x2

= e
−β E x1 − E x2 , (155)

where as is usual in statistical mechanics β is the inverse temperature and E(x; θ) is the

energy of state x given some parameters (couplings) θ. However, calculating the absolute

weight of a configuration requires knowledge of the partition function

Z p = Trxe−βE x , (156)

(where the trace is taken over all possible configurations x) since

p x = e−βE x

Z p
. (157)

In general, calculating the partition function Zp is analytically and computationally

intractable.

For example, for the Ising model with N binary spins, the trace involves calculating a sum

over 2N terms, which is a difficult task for most energy functions. For this reason, physicists

(and machine learning scientists) have developed various numerical and computational

methods for evaluating such partition functions. One approach is to use Monte-Carlo based

methods to draw samples from the underlying distribution (this can be done knowing only

the relative probabilities) and then use these samples to numerically estimate the partition

function. This is the philosophy behind powerful methods such as Markov Chain Monte

Carlo (MCMC) (Andrieu et al., 2003) and annealed importance sampling (Neal and Hinton,

1998) which are widely used in both the statistical physics and machine learning

communities. An alternative approach – which we focus on here – is to approximate the the

probability distribution p(x) and partition function using a “variational distribution” q(x; θq)

whose partition function we can calculate exactly. The variational parameters θq are chosen

to make the variational distribution as close to the true distribution as possible (how this is

done is the focus of much of this section).

One of the most-widely applied examples of a variational method in statistical physics is

Mean-Field Theory (MFT). MFT can be naturally understood as a procedure for

approximating the true distribution of the system by a factorized distribution. The deep

connection between MFT and variational methods is discussed below. These variational

MFT methods have been extended to understand more complicated spin models (also called

graphical models in the ML literature) and form the basis of powerful set of techniques that

go under the name of Belief Propagation and Survey Propagation (MacKay, 2003;

Wainwright et al., 2008; Yedidia et al., 2003).

Mehta et al. Page 109

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Variational methods are also widely used in ML to approximate complex probabilistic

models. For example, below we show how the Expectation Maximization (EM) procedure,

which we discussed in the context of Gaussian Mixture Models for clustering, is actually a

general method that can be derived for any latent (hidden) variable model using a variational

procedure (Neal and Hinton, 1998). This section serves as an introduction to this powerful

class of variational techniques. For readers interested in an in-depth discussion on variational

inference for probabilistic graphical models, we recommend the great treatise written by

Michael I. Jordan and others(Jordan et al., 1999), the more physics oriented discussion in

(Yedidia, 2001; Yedidia et al., 2003), as well as David MacKay’s outstanding book

(MacKay, 2003).

A. Variational mean-field theory for the Ising model

Ising models are a major paradigm in statistical physics. Historically introduced to study

magnetism, it was quickly realized that their predictive power applies to a variety of

interacting many-particle systems. Ising models are now understood to serve as minimal

models for complex phenomena such as certain classes of phase transitions. In the Ising

model, degrees of freedom called spins assume discrete, binary values, e.g. si = ±1. Each

spin variable si lives on a lattice (or, in general, a graph), the sites of which are labeled by i =

1, 2 …, N. Despite the extreme simplicity relative to real-world systems, Ising models

exhibit a high level of intrinsic complexity, and the degrees of freedom can become

correlated in sophisticated ways. Often, spins interact spatially locally, and respond to

externally applied magnetic fields.

A spin configuration s specifies the values si of the spins at every lattice site. We can assign

an “energy” to every such configuration

E s, J = − 1
2 i, j

Ji jsis j −
i

hisi, (158)

where hi is a local magnetic field applied to the spin si, and Jij is the interaction strength

between the spins si and sj. In textbook examples, the coupling parameters J = (J, h) are

typically uniform or, in studies of disordered systems, (Ji, hi) are drawn from some

probability distribution (i.e. quenched disorder).

The probability of finding the system in a given spin configuration at temperature β−1 is

given by

p s β, J = 1
Zp J e−βE s, J ,

Z p β, J =
si = ± 1

e−βE s, J ,

(159)

Mehta et al. Page 110

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

with ∑
si = ± 1 denoting the sum over all possible configurations of the spin variables. We

write Zp to emphasize that this is the partition function corresponding to the probability

distribution p(s|β, J), which will become important later. For a fixed number of lattice sites

N, there are 2N possible configurations, a number that grows exponentially with the system

size. Therefore, it is not in general feasible to evaluate the partition function Zp(β, J) in

closed form. This represents a major practical obstacle for extracting predictions from

physical theories since the partition function is directly related to the free-energy through the

expression

βFp J = − log Z p β, J = β E s, J p − H p, (160)

with

H p = −
si = ± 1

p s β, J log p s β, J (161)

the entropy of the probability distribution p s | β, J .

Even though the true probability distribution p s | β, J may be a very complicated object, we

can still make progress by approximating p s | β, J by a variational distribution q(s, θ) which

captures the essential features of interest, with θ some parameters that define our variational

ansatz. The name variational distribution comes from the fact that we are going to vary the

parameters θ to make q(s, θ) as close to p s | β, J as possible. The functional form of q(s, θ)

is based on an “educated guess”, which oftentimes comes from our intuition about the

problem. We can also define a variational free-energy

βFq θ, J = β E s, J q − Hq, (162)

where E s, J q is the expectation value of the energy E(s, J) with respect to the distribution

q(s, θ), and Hq is the entropy of q(s, θ).

Before proceeding further, it is helpful to introduce a new quantity: the Kullback-Leibler

divergence (KL-divergence or relative entropy) between two distributions p(x) and q(x). The

KL-divergence measures the dissimilarity between the two distributions and is given by

DKL q p = Trxq x log q x
p x , (163)

which is the expectation w.r.t. q of the logarithmic difference between the two distributions p
and q. The trace Trx denotes a sum over all possible configurations x. Two important

properties of the KL-divergence are (i) positivity: DKL p | |q ≥ 0 with equality if and only if

Mehta et al. Page 111

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

p = q (in the sense of probability distributions), and (ii)DKL p | |q ≠ DKL q | | p , that is the

KL-divergence is not symmetric in its arguments.

Variational mean-field theory is a systematic way for constructing such an approximate

distribution q(s, θ). The main idea is to choose parameters that minimize the difference

between the variational free-energy Fq(J, θ) and the true free-energy Fp J | β . We will show

in Section XIV.B below that the difference between these two free-energies is actually the

KL-divergence:

Fq J, θ = Fp J, β + DKL q p . (164)

This equality, when combined with the non-negativity of the KL-divergence has important

consequences. First, it shows that the variational free-energy is always larger than the true

free-energy, Fq J, θ ≥ Fp J , with equality if and only if q = p (the latter inequality is found

in many physics textbooks and is known as the Gibbs inequality). Second, finding the best

variational free-energy is equivalent to minimizing the KL divergence DKL q | | p .

Armed with these observations, let us now derive a MFT of the Ising model using variational

methods. In the simplest MFT of the Ising model, the variational distribution is chosen so

that all spins are independent:

q s, θ = 1
Zq

exp
i

θisi =
i

e
θisi

2cosh θi
. (165)

In other words, we have chosen a distribution q which factorizes on every lattice site. An

important property of this functional form is that we can analytically find a closed-form

expression for the variational partition function Zq. This simplicity also comes at a cost:

ignoring correlations between spins. These correlations become less and less important in

higher dimensions and the MFT ansatz becomes more accurate.

To evaluate the variational free-energy, we make use of Eq. (162). First, we need the entropy

Hq of the distribution q. Since q factorizes over the lattice sites, the entropy separates into a

sum of one-body terms

Hq θ = −
si = ± 1

q s, θ log q s, θ

= −
i

qilog qi + 1 − qi log 1 − qi ,

(166)

Mehta et al. Page 112

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where qi = e
θi

2 cosh θi
 is the probability that spin si is in the +1 state. Next, we need to evaluate

the average of the Ising energy E(s, J) with respect to the variational distribution q.

Although the energy contains bilinear terms, we can still evaluate this average easily,

because the spins are independent (uncorrelated) in the q distribution. The mean value of

spin si in the q distribution, also known as the on-site magnetization, is given by

mi = si q
=

si = ± 1
si

e
θisi

2 cosh θi
= tanh θi . (167)

Since the spins are independent, we have

E s, J q = − 1
2 i, j

Ji jmim j −
i

himi . (168)

The total variational free-energy is

βFq J, θ = β E s, J q − Hq,

and minimizing with respect to the variational parameters θ, we obtain

∂
∂θi

βFq J, θ = 2
dqi
dθi

−β
j

Ji jm j + hi + θi . (169)

Setting this equation to zero, we arrive at

θi = β
j

Ji jm j θ j + hi . (170)

For the special case of a uniform field hi = h and uniform nearest neighbor couplings Jij = J,

by symmetry the variational parameters for all the spins are identical, with θi = θ for all i.
Then, the mean-field equations reduce to their familiar textbook form (Sethna, 2006), m =

tanh(θ) and θ = β(zJm(θ) + h), where z is the coordination number of the lattice (i.e. the

number of nearest neighbors).

Equations (167) and (170) form a closed system, known as the mean-field equations for the

Ising model. To find a solution to these equations, one method is to iterate through and

update each θi, once at a time, in an asyn-chronous fashion. Once can see the emerging

relationship of this approach to solving the MFT equations to Expectation Maximization

(EM) procedure first introduced in the context of the K-means algorithm in Sec. XIII.A. To

make this explicit, let us spell out the iterative procedure to find the solutions to Eq. (170).

Mehta et al. Page 113

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We start by initializing our variational parameters to some θ(0) and repeat the following two

steps until convergence:

1. Expectation: Given a set of assignments at iteration t, θ(t), calculate the

corresponding magnetizations m(t) using Eq. (167)

2. Maximization: Given a set of magnetizations mt, find new assignments θ(t+1)

which minimize the variational free energy Fq. From, Eq. (170) this is just

θi
t + 1 = β

j
Ji jm j

t + hi . (171)

From these equations, it is clear that we can think of the MFT of the Ising model as an EM-

like procedure similar to the one we used for K-means clustering and Gaussian Mixture

Models in Sec. XIII.

As is well known in statistical physics, even though MFT is not exact, it can often yield

qualitatively and even quantitatively precise predictions (especially in high dimensions). The

discrepancy between the true physics and MFT predictions stems from the fact that the

variational distribution q we chose cannot capture correlations between the spins. For

instance, it predicts the wrong value for the critical temperature for the two-dimensional

Ising model. It even erroneously predicts the existence of a phase transition in one

dimension at a non-zero temperature. We refer the interested reader to standard textbooks on

statistical physics for a detailed analysis of applicability of MFT to the Ising model.

However, we emphasize that the failure of any particular variational ansatz does not

compromise the usefulness of the approach. In some cases, one can consider changing the

variational ansatz to improve the predictive properties of the corresponding variational MFT

(Yedidia, 2001; Yedidia et al., 2003). The take-home message is that variational MFT is a

powerful tool but one that must be applied and interpreted with care.

B. Expectation Maximization (EM)

Ideas along the lines of variational MFT have been independently developed in statistics and

imported into machine learning to perform maximum likelihood (ML) estimates. In this

section, we explicitly derive the Expectation Maximization (EM) algorithm and demonstrate

further its close relation to variational MFT (Neal and Hinton, 1998). We will focus on latent

variable models where some of the variables are hidden and cannot be directly observed.

This often makes maximum likelihood estimation difficult to implement. EM gets around

this difficulty by using an iterative two-step procedure, closely related to variational free-

energy based approximation schemes in statistical physics.

To set the stage for the following discussion, let x be the set of visible variables we can

directly observe and z be the set of latent or hidden variables that we cannot directly observe.

Denote the underlying probability distribution from which x and z are drawn by p(z, x |θ),

with θ representing all relevant parameters. Given a dataset x, we wish to find the maximum

likelihood estimate of the parameters θ that maximizes the probability of the observed data.

Mehta et al. Page 114

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

As in variational MFT, we view θ as variational parameters chosen to maximize the log-

likelihood L θ = log p x |θ Px
, where the expectation is taken with respect to the marginal

distributions of x. Algorithmically, this can be done by iterating the variational parameters

θ(t) in a series of steps (t = 1, 2, …) starting from some arbitrary initial value θ(0):

1. Expectation step (E step): Given the known values of observed variable x and the current

estimate of parameter θt−1, find the probability distribution of the latent variable z:

qt − 1 z = p z |θ t − 1 , x (172)

2. Maximization step (M step): Re-estimate the parameter θ(t) to be those with maximum

likelihood, assuming qt−1(z) found in the previous step is the true distribution of hidden

variable z:

θt = arg max
θ

log p z, x θ qt − 1
(173)

It was shown (Dempster et al., 1977) that each EM iteration increases the true log-likelihood

L(θ), or at worst leaves it unchanged. In most models, this iteration procedure converges to a

local maximum of L(θ).

To see how EM is actually performed and related to variational MFT, we make use of KL-

divergence between two distributions introduced in the last section. Recall that our goal is to

maximize the log-likelihood L(θ). With data z missing, we surely cannot just maximize L(θ)

directly since parameter θ might couple both z and x EM circumvents this by optimizing

another objective function, Fq(θ), constructed based on estimates of the hidden variable

distribution q(z|x). Indeed, the function optimized is none other than the variational free
energy we encountered in the previous section:

Fq θ : = − log p z, x θ q, Px
− Hq Px

, (174)

where Hq is the Shannon entropy (defined in Eq. (161)) of q(z|x). One can define the true

free-energy Fp(θ) as the negative log-likelihood of the observed data:

−Fp θ = L θ = log p x θ Px
. (175)

In the language of statistical physics, Fp(θ) is the true free-energy while Fq(θ) is the

variational free-energy we would like to minimize (see Table I). Note that we have chosen to

employ a physics sign convention here of defining the free-energy as minus log of the

partition function.

Mehta et al. Page 115

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In the ML literature, this minus sign is often omitted (Neal and Hinton, 1998) and this can

lead to some confusion. Our goal is to choose θ so that our variational free-energy Fq(θ) is

as close to the true free-energy Fp(θ) as possible. The difference between these free-energies

can be written as

Fq θ − Fp θ = f q x, θ − f p x, θ
Px

, (176)

where

f q x, θ − f p x, θ

= log p x θ −
z

q z x log p z, x θ

+
z

q z x log q z x

=
z

q z x log p x θ −
z

q z x log p z, x θ

+
z

q z x log q z x

= −
z

q z x log p z, x θ
p x θ +

z
q z x log p z

=
z

q z x log q z x
p z x, θ

= DKL q z x p z x, θ ≥ 0

where we have used Bayes’ theorem p(z|x,θ) = p(z, x|θ)/p(x|θ). Since the KL-divergence is

always positive, this shows that the variational free-energy Fq is always an upper bound of

the true free-energy Fp. In physics, this result is known as Gibbs’ inequality.

From Eq. (174) and the fact that the the entropy term in Eq. (174) does not depend on θ, we

can immediately see that the maximization step (M-step) in Eq. (173) is equivalent to

minimizing the variational free-energy Fq(θ). Surprisingly, the expectation step (E-step) can

also viewed as the optimization of this variational free-energy. Concretely, one can show that

the distribution of hidden variables z given the observed variable x and the current estimate

of parameter θ, Eq. (172), is the unique probability q(z) that minimizes Fq(θ) (now seen as a

functional of q). This can be proved by taking the functional derivative of Eq. (174), plus a

Lagrange multiplier that encodes ∑zq z = 1, with respect to q(z). Summing things up, we

can re-write EM in the following form (Neal and Hinton, 1998):

1. Expectation step: Construct the approximating probability distribution of

unobserved z given the values of observed variable x and parameter estimate θ(t−1):

qt − 1 z = arg min
q

Fq θ t − 1 (177)

Mehta et al. Page 116

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2. Maximization step: Fix q, update the variational parameters:

θ t = arg max
θ

− Fqt − 1
θ . (178)

To recapitulate, EM implements ML estimation even with missing or hidden variables

through optimizing a lower bound of the true log-likelihood. In statistical physics, this is

reminiscent of optimizing a variational free-energy which is a lower bound of true free-

energy due to Gibbs inequality. In Fig. 59, we show pictorially how EM works. The E-step

can be seen as representing the unobserved variable z by a probability distribution q(z). This

probability is used to construct an alternative objective function ‒Fq(θ), which is then

maximized with respect to θ in the M-step. By construction, maxi-mizing the negative

variational free-energy is equivalent to doing ML estimation on the joint data (i.e. both

observed and unobserved). The name “M-step” is intuitive since the parameters θ are found

by maximizing ‒Fq(θ). The name “E-step” comes from the fact that one usually doesn’t

need to construct the probability of missing datas explicitly, but rather need only compute

the “expected” sufficient statistics over these data, cf. Fig. 59.

On the practical side, EM has been demonstrated to be extremely useful in parameter

estimation, particularly in hidden Markov models and Bayesian networks (see, for example,

(Barber, 2012; Wainwright et al., 2008)). Some of the authors have used EM in biophysics,

to design algorithms which establish the equivalence of niche theory and the Minimum

Environmental Perturbation Principle (Marsland III et al., 2019). One of the striking

advantages of EM is that it is conceptually simple and easy to implement (see Notebook 16).

In many cases, implementation of EM is guaranteed to increase the likelihood

monotonically, which could be a perk during debugging. For readers interested in an

overview on applications of EM, we recommend (Do and Batzoglou, 2008).

Finally for advanced readers familiar with the physics of disordered systems, we note that it

is possible to construct a one-to-one dictionary between EM for latent variable models and

the MFT of spin systems with quenched disorder. In a disordered spin systems, the Ising

couplings J are commonly taken to be quenched random variables drawn from some

underlying probability distribution. In the EM procedure, the quenched disorder is provided

by the observed data points x which are drawn from some underlying probability distribution

that characterizes the data. The spins s are like the hidden or latent variables z. Similar

analogues can be found for all the variational MFT quantities (see Table I). This striking

correspondence offers a glimpse into the deep connection between statistical mechanics and

unsupervised latent variable models – a connection that we will repeatedly exploit to gain

more intuition for the energy-based unsupervised models considered in the next few

chapters.

Mehta et al. Page 117

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

XV. ENERGY BASED MODELS: MAXIMUM ENTROPY (MAXENT)

PRINCIPLE, GENERATIVE MODELS, AND BOLTZMANN LEARNING

Most of the models discussed in the previous sections (e.g. linear and logistic regression,

ensemble models, and supervised neural networks) are discriminative – they are designed to

perceive differences between groups or categories of data. For example, recognizing

differences between images of cats and images of dogs allows a discriminative model to

label an image as “cat” or “dog”. Discriminative models form the core techniques of most

supervised learning methods. However, discriminative methods have several limitations.

First, like all supervised learning methods, they require labeled data. Second, there are tasks

that discriminative approaches simply cannot accomplish, such as drawing new examples

from an unknown probability distribution. A model that can learn to represent and sample

from a probability distribution is called generative. For example, a generative model for

images would learn to draw new examples of cats and dogs given a dataset of images of cats

and dogs. Similarly, given samples generated from one phase of an Ising model we may

want to generate new samples from that phase. Such tasks are clearly beyond the scope of

discriminative models like the ensemble models and DNNs discussed so far in the review.

Instead, we must turn to a new class of machine learning methods.

The goal of this section is to introduce the reader to energy-based generative models. As we

will see, energy-based models are closely related to the kinds of models commonly

encountered in statistical physics. We will draw upon many techniques that have their origin

in statistical mechanics (e.g. Monte-Carlo methods). The section starts with a brief overview

of generative models, highlighting the similarities and differences with the supervised

learning methods encountered in earlier sections. Next, we introduce perhaps the simplest

kind of generative models – Maximum Entropy (MaxEnt) models. MaxEnt models have no

latent (or hidden) variables, making them ideal for introducing the key concepts and tools

that underlie energy-based generative models. We then present an extended discussion of

how to train energy-based models. Much of this discussion will also be applicable to more

complicated energy-based models such as Restricted Boltzmann Machines (RBMs) and the

deep models discussed in the next section.

A. An overview of energy-based generative models

Generative models are a machine learning technique that allows to learn how to generate

new examples similar to those found in a training dataset. The core idea of most generative

models is to learn a parametric model for the probability distribution from which the data

was drawn. Once we have learned a model, we can generate new examples by sampling

from the learned generative model (see Fig. 60). As in statistical physics, this sampling is

often done using Markov Chain Monte Carlo (MCMC) methods. A review of MCMC

methods is beyond the scope of this discussion: for a concise and beautiful introduction to

MCMC-inspired methods that bridges both statistical physics and ML the reader is

encouraged to consult Chapters 29–32 of David MacKay’s book (MacKay, 2003) as well as

the review by Michael I. Jordan and collaborators (Andrieu et al., 2003).

Mehta et al. Page 118

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The added complexity of learning models directly from samples introduces many of the

same fundamental tensions we encountered when discussing discriminative models. The

ability to generate new examples requires models to be able to “generalize” beyond the

examples they have been trained on, that is to generate new samples that are not samples of

the training set. The models must be expressive enough to capture the complex correlations

present in the underlying data distribution, but the amount of data we have is finite which

can give rise to overfitting.

In practice, most generative models that are used in machine learning are flexible enough

that, with a sufficient number of parameters, they can approximate any probability

distribution. For this reason, there are three axes on which we can differentiate classes of

generative models:

• The first axis is how easy the model is to train – both in terms of computational

time and the complexity of writing code for the algorithm.

• The second axis is how well the model generalizes from the training set to the

test set.

• The third axis is which characteristics of the data distribution the model is

capable of and focuses on capturing.

All generative models must balance these competing requirements and generative models

differ in the tradeoffs they choose. Simpler models capture less structure about the

underlying distributions but are often easier to train. More complicated models can capture

this structure but may overfit to the training data.

One of the fundamental reasons that energy-based models have been less widely-employed

than their discriminative counterparts is that the training procedure for these models differs

significantly from those for supervised neural networks models. Though both employ

gradient-descent based procedures for minimizing a cost function (one common choice for

generative models is the negative log-likelihood function), energy-based models do not use

backpropagation (see Sec. IX.D) and automatic differentiation for computing gradients.

Rather, one must turn to ideas inspired by MCMC based methods in physics and statistics

that sometimes go under the name “Boltzmann Learning” (discussed below). As a result,

training energy-based models requires additional tools that are not immediately available in

packages such as PyTorch and TensorFlow.

The open-source package – Paysage – that is built on top of PyTorch bridges this gap by

providing the toolset for training energy-based models (Paysage is maintained by

Unlearn.AI – a company affiliated with two of the authors (CKF and PM)). Paysage makes it

easy to quickly code and deploy energy-based models such as Restricted Boltzmann

Machines (RBMs) and Stacked RBMs – a “deep” unsupervised model. The package

includes unpublished training methods that significantly improve the training performance,

can be applied with various datatypes, and can be employed on GPUs. We make use of this

package extensively in the next two sections and the accompanying Python notebooks. For

example, Fig. 60 (and the accompanying Notebook 17) show how the Paysage package can

Mehta et al. Page 119

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

be used to quickly code and train a variety of energy-based models on the MNIST

handwritten digit dataset.

Finally, we note that generative models at their most basic level are complex

parametrizations of the probability distribution the data is drawn from. For this reason,

generative models can do much more than just generate new examples. They can be used to

perform a multitude of other tasks that require sampling from a complex probability

distribution including “de-noising”, filling in missing data, and even discrimination (Hinton,

2012). The versatility of generative models is one of the major appeals of these unsupervised

learning methods.

B. Maximum entropy models: the simplest energy-based generative models

Maximum Entropy (MaxEnt) models are one of the simplest classes of energy-based

generative models. Max-Ent models have their origin in a series of beautiful papers by

Jaynes that reformulated statistical mechanics in information theoretic terms (Jaynes,

1957a,b). Recently, the flood of new, large scale datasets has resulted in a resurgence of

interest in MaxEnt models in many fields including physics (especially biological physics),

computational neuroscience, and ecology (Elith et al., 2011; Schneidman et al., 2006; Weigt

et al., 2009). MaxEnt models are often presented as the class of generative models that make

the least assumptions about the underlying data. However, as we have tried to emphasize

throughout the review, all ML and statistical models require assumptions, and MaxEnt

models are no different. Overlooking this can sometimes lead to misleading conclusions, and

it is important to be cognizant of these implicit assumptions (Aitchison et al., 2016; Schwab

et al., 2014).

1. MaxEnt models in statistical mechanics

MaxEnt models were introduced by E. T. Jaynes in a two-part paper in 1957 entitled

“Information theory and statistical mechanics” (Jaynes, 1957a,b). In these incredible papers,

Jaynes showed that it was possible to rederive the Boltzmann distribution (and the idea of

generalized ensembles) entirely from information theoretic arguments. Quoting from the

abstract, Jaynes considered “statistical mechanics as a form of statistical inference rather

than as a physical theory” (portending the close connection between statistical physics and

machine learning). Jaynes showed that the Boltzmann distribution could be viewed as

resulting from a statistical inference procedure for learning probability distributions

describing physical systems where one only has partial information about the system

(usually the average energy).

The key quantity in MaxEnt models is the information theoretic, or Shannon, entropy, a

concept introduced by Shannon in his landmark treatise on information theory (Shannon,

1949). The Shannon entropy quantifies the statistical uncertainty one has about the value of

a random variable x drawn from a probability distribution p(x). The Shannon entropy of the

distribution is defined as

Sp = − Trxp x log p x (179)

Mehta et al. Page 120

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where the trace is a sum/integral over all possible values a variable can take. Jaynes showed

that the Boltz-mann distribution follows from the Principle of Maximum Entropy. A

physical system should be described by the probability distribution with the largest entropy

subject to certain constraints (often provided by measuring the average value of conserved,

extensive quantities such as the energy, particle number, etc.) The principle uniquely

specifies a procedure for parametrizing the functional form of the probability distribution.

Once we have specified and learned this form we can, of course, generate new examples by

sampling this distribution.

Let us illustrate how this works in more detail. Suppose that we have chosen a set of

functions {fi(x)} whose average value we want to fix to some observed values f i obs. The

Principle of Maximum Entropy states that we should choose the distribution p(x) with the

largest uncertainty (i.e. largest Shannon entropy Sp), subject to the constraints that the model

averages match the observed averages:

f i model = dx f i x p x = f i obs . (180)

We can formulate the Principle of Maximum Entropy as an optimization problem using the

method of Lagrange multipliers by minimizing:

ℒ p = − Sp +
i

λi f i obs − dx f i x p x

+ γ 1 − dxp x ,

where the first set of constraints enforce the requirement for the averages and the last

constraint enforces the normalization that the trace over the probability distribution equals

one. We can solve for p(x) by taking the functional derivative and setting it to zero

0 = δℒ
δp = log p x + 1 −

i
λi f i x − γ .

The general form of the maximum entropy distribution is then given by

p x = 1
Z e

Σiλi f i x
(181)

where Z λi = ∫ dx e
∑i λi f i x

 is the partition function.

The maximum entropy distribution is clearly just the usual Boltzmann distribution with

energy E x = − ∑i λi f i x . The values of the Lagrange multipliers are chosen to match the

observed averages for the set of functions {fi(x)} whose average value is being fixed:

Mehta et al. Page 121

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

f i model = dxp x f i x = ∂ log Z
∂λi

= f i obs . (182)

In other words, the parameters of the distribution can be chosen such that

∂λi
log Z = f i data . (183)

To gain more intuition for the MaxEnt distribution, it is helpful to relate the Lagrange

multipliers to the familiar thermodynamic quantities we use to describe physical systems

(Jaynes, 1957a). Our x denotes the microscopic state of the system, i.e. the MaxEnt

distribution is a probability distribution over microscopic states. However, in

thermodynamics we only have access to average quantities. If we know only the average

energy E x obs, the MaxEnt procedure tells us to maximize the entropy subject to the

average energy constraint. This yields

p x = 1
Z e−βE x , (184)

where we have identified the Lagrange multiplier conjugate to the energy λ1 = −β = 1/kBT
with the (negative) inverse temperature. Now, suppose we also constrain the particle number

N x obs. Then, an almost identical calculation yields a MaxEnt distribution of the

functional form

p x = 1
Z e−β E x − μN x , (185)

where we have rewritten our Lagrange multipliers in the familiar thermodynamic notation

λ1 = −β and λ2 = µ/β. Since this is just the Boltzmann distribution, we can also relate the

partition function in our MaxEnt model to the thermodynamic free-energy via F = −β−1 log

Z. The choice of which quantities to constrain is equivalent to working in different thermo-

dynamic ensembles.

2. From statistical mechanics to machine learning

The MaxEnt idea also provides a general procedure for learning a generative model from

data. The key difference between MaxEnt models in (theoretical) physics and ML is that in

ML we have no direct access to observed values f i obs. Instead, these averages must be

directly estimated from data (samples). To denote this difference, we will call empirical

averages calculated from data as f i data. We can think of MaxEnt as a statistical inference

procedure simply by replacing f i obs by f i data above.

Mehta et al. Page 122

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

This subtle change has important implications for training MaxEnt models. First, since we

do not know these averages exactly, but must estimate them from the data, our training

procedures must be careful not to overfit to the observations (our samples might not be

reflective of the true values of these statistics). Second, the averages of certain functions fi

are easier to estimate from limited data than others. This is often an important consideration

when formulating which MaxEnt model to fit to the data. Finally, we note that unlike in

physics where conservation laws often suggest the functions fi whose averages we hold fix,

ML offers no comparable guide for how to choose the fi we care about. For these reasons,

choosing the {fi} is often far from straightforward. As a final point, we note that here we

have presented a physics-based perspective for justifying the MaxEnt procedure. We

mention in passing that the MaxEnt in ML is also closely related to ideas from Bayesian

inference (Jaynes, 1968, 2003) and this latter point of view is more common in discussions

of MaxEnt in the statistics and ML literature.

3. Generalized Ising Models from MaxEnt

The form of a MaxEnt model is completely specified once we choose the averages {fi} we

wish to constrain. One common choice often used in MaxEnt modeling is to constrain the

first two moments of a distribution. When our random variables x are continuous, the

corresponding MaxEnt distribution is a multi-dimensional Gaussian. If the x are binary

(discrete), then the corresponding Max-Ent distribution is a generalized Ising (Potts) model

with all-to-all couplings.

To see this, consider a random variable x with first and second moments xi data and

xix j data, respectively. According to the Principle of Maximum Entropy, we should choose

to model this variable using a Boltzmann distribution with constraints on the first and second

moments. Let ai be the Lagrange multiplier associated with xi data and Jij/2 be the Lagrange

multiplier associated with xix j data. Using Eq. (182), it is easy to verify that the energy

function

E x = −
i

aixi − 1
2 i j

Ji jxix j (186)

satisfies the above constraints.

Partition functions for maximum entropy models are often intractable to compute.

Therefore, it is helpful to consider two special cases where x has different support (different

kinds of data). First, consider the case that the random variables x ∈ ℝn are real numbers. In

this case we can compute the partition function directly:

Z = dx e
aTx + 1

2xTJx
= 2π ndetJ−1e

− 1
2aTJ−1a

. (187)

Mehta et al. Page 123

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The resulting probability density function is,

p x = Z−1e−E x

= 1
2π ndetJ−1e

1
2aTJ−1a + aTx + 1

2xTJx

= 1
2π ndetΣ

e
− 1

2 x − μ TΣ−1 x − μ
,

(188)

where µ = ‒J −1a and Σ = ‒J −1. This, of course, is the normalized, multi-dimensional

Gaussian distribution.

Second, consider the case that the random variable x is binary with xi ∈ {‒1, +1}. The

energy function takes the same form as Eq. (186), but the partition function can no longer be

computed in a closed form. This model is known as the Ising model in the physics literature,

and is often called a Markov Random Field in the machine learning literature. It is well

known to physicists that calculating the partition function for the Ising Model is intractable.

For this reason, the best we can do is estimate it using numerical techniques such MCMC

methods or approximate methods like variational MFT methods, see Sec. XIV. Finally, we

note that in ML it is common to use binary variables which take on values in xi ∈ {0, 1}

rather than {±1}. This can sometimes be a source of confusion when translating between

ML and physics literatures and can lead to confusion when using ML packages for physics

problems.

C. Cost functions for training energy-based models

The MaxEnt procedure gives us a way of parametrizing an energy-based generative model.

For any energy-based generative model, the energy function E(x, {θi} depends on some

parameters θi – couplings in the language of statistical physics – that must be inferred

directly from the data. For example, for the MaxEnt models the {θi} are just the Lagrange

multipliers {λi} introduced in the last section. The goal of the training procedure is to use

the available training data to fit these parameters.

Like in many other ML techniques, we will fit these couplings by minimizing a cost function

using stochastic gradient descent (cf. Sec. IV). Such a procedure naturally separates into two

parts: choosing an appropriate cost function, and calculating the gradient of the cost function

with respect to the model parameters. Formulating a cost function for generative models is a

little bit trickier than for supervised, discriminative models. The objective of discriminative

models is straightforward – predict the label from the features. However, what we mean by a

“good” generative model is much harder to define using a cost function. We would like the

model to generate examples similar to those we find in the training dataset. However, we

would also like the model to be able to generalize – we do not want the model to reproduce

“spurious details” that are particular to the training dataset. Un-like for discriminative

models, there is no straightforward idea like cross-validation on the data labels that neatly

Mehta et al. Page 124

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

addresses this issue. For this reason, formulating cost functions for generative models is

subtle and represents an important and interesting open area of research.

Calculating the gradients of energy-based models also turns out to be different than for

discriminative models, such as deep neural networks. Rather than relying on automatic

differentiation techniques and backpropagation (see Sec. IX.D), calculating the gradient

requires drawing on intuitions from MCMC-based methods. Below, we provide an in-depth

discussion of Boltzmann learning for energy-based generative models, focusing on MaxEnt

models. We put the emphasis on training procedures that generalize to more complicated

generative models with latent variables such as RBMs discussed in the next section.

Therefore, we largely ignore the incredibly rich physics-based literature on fitting Ising-like

MaxEnt models (see the recent reviews (Baldassi et al., 2018; Nguyen et al., 2017) and

references therein).

1. Maximum likelihood

By far the most common approach used for training a generative model is to maximize the

log-likelihood of the training data set. Recall, that the log-likelihood characterizes the log-

probability of generating the observed data using our generative model. By choosing the

negative log-likelihood as the cost function, the learning procedure tries to find parameters

that maximize the probability of the data. This cost function is intuitive and has been the

work-horse of most generative modeling. However, we note that the Maximum Likelihood

estimation (MLE) procedure has some important limitations that we will return to in Sec.

XVII.

In what follows, we employ a general notation that is applicable to all energy-based models,

not just the Max-Ent models introduced above. The reason for this is that much of this

discussion does not rely on the specific form of the energy function but only on the fact that

our generative model takes a Boltzmann form. We denote the generative model by the

probability distribution pθ(x) and its corresponding partition function by log Z({θi}). In

MLE, the parameters of the model are fit by maximizing the log-likelihood:

ℒ θi = log pθ x data
= − E x; θi data − log Z θi ,

(189)

where we have set β = 1. In writing this expression we made use of two facts: (i) our

generative distribution is of the Boltzmann form, and (ii) the partition function does not

depend on the data:

log Z θi data = log Z θi . (190)

Mehta et al. Page 125

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2. Regularization

Just as for discriminative models like linear and logistic regression, it is common to

supplement the log-likelihood with additional regularization terms (see Secs. VI and VII).

Instead of minimizing the negative log-likelihood, one minimizes a cost function of the form

−ℒ θi + Ereg θi , (191)

where Ereg({θi}) is an additional regularization term that prevents overfitting. From a

Bayesian perspective, this new term can be viewed as encoding a (negative) log-prior on

model parameters and performing a maximum-a-posteriori (MAP) estimate instead of a

MLE (see corresponding discussion in Sec. VI).

As we saw by studying linear regression, different forms of regularization give rise to

different kinds of properties. A common choice for the regularization function are the sums

of the L1 or L2 norms of the parameters

Ereg θi = Λ
i

θi
α, α = 1, 2 (192)

with Λ controlling the regularization strength. For Λ = 0, there is no regularization and we

are simply performing MLE. In contrast, a choice of large Λ will force many parameters to

be close to or exactly zero. Just as in regression, an L1 penalty enforces sparsity, with many

of the θi set to zero, and L2 regularization shrinks the size of the parameters towards zero.

One challenge of generative models is that it is often difficult to choose the regularization

strength Λ. Recall that, for linear and logistic regression, Λ is chosen to maximize the out-

of-sample performance on a validation dataset (i.e. cross-validation). However, for

generative models our data are usually unlabeled. Therefore, choosing a regularization

strength is more subtle and there exists no universal procedure for choosing Λ. One common

strategy is to divide the data into a training set and a validation set and monitor a summary

statistic such as the log-likelihood, energy distance (Székely, 2003), or variational free-

energy of the generative model on the training and validation sets (the variational free-

energy was discussed extensively in Sec. XIV) (Hinton, 2012). If the gap between the

training and validation datasets starts growing, one is probably overfitting the model even if

the log-likelihood of the training dataset is still increasing. This also gives a procedure for

“early stopping” – a regularization procedure we introduced in the context of discriminative

models. In practice, when using such regularizers it is important to try many different values

of Λ and then try to use a proxy statistic for overfitting to evaluate the optimal choice of Λ.

D. Computing gradients

We still need to specify a procedure for minimizing the cost function. One powerful and

common choice that is widely employed when training energy-based models is stochastic

gradient descent (SGD) (see Sec. IV). Performing MLE using SGD requires calculating the

gradient of the log-likelihood Eq. (189) with respect to the parameters θi. To simplify

Mehta et al. Page 126

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

notation and gain intuition, it is helpful to define “operators” Oi(x), conjugate to the

parameters θi

Oi x =
∂E x; θi

∂θi
. (193)

Since the partition function is just the cumulant generating function for the Boltzmann

distribution, we know that the usual statistical mechanics relationships between expectation

values and derivatives of the log-partition function hold:

Oi x model = Trxpθ x Oi x = −
∂log Z θi

∂θi
. (194)

In terms of the operators {Oi(x)}, the gradient of Eq. (189) takes the form (Ackley et al.,
1987)

−
∂ℒ θi

∂θi
= 〈

∂E x; θi
∂θi

〉
data

+
∂log Z θi

∂θi

= Oi x data − Oi x model .

(195)

These equations have a simple and beautiful interpretation. The gradient of the log-

likelihood with respect to a model parameter is a difference of moments – one calculated

directly from the data and one calculated from our model using the current model

parameters. The datadependent term is known as the positive phase of the gradient and the

model-dependent term is known as the negative phase of the gradient. This derivation also

gives an intuitive explanation for likelihood-based training procedures. The gradient acts on

the model to lower the energy of configurations that are near observed data points while

raising the energy of configurations that are far from observed data points. Finally, we note

that all information about the data only enters the training procedure through the

expectations Oi x data and our generative model is blind to information beyond what is

contained in these expectations.

To use SGD, we must still calculate the expectation values that appear in Eq. (195). The

positive phase of the gradient – the expectation values with respect to the data – can be

easily calculated using samples from the training dataset. However, the negative phase – the

expectation values with respect to the model – is generally much more difficult to compute.

We will see that in almost all cases, we will have to resort to either numerical or

approximate methods. The fundamental reason for this is that it is impossible to calculate the

partition function exactly for most interesting models in both physics and ML.

Mehta et al. Page 127

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

There are exceptional cases in which we can calculate expectation values analytically. When

this happens, the generative model is said to have a Tractable Likelihood. One example of a

generative model with a Tractable Likelihood is the Gaussian MaxEnt model for real valued

data discussed in Eq. (188). The parameters/Lagrange multipliers for this model are the local

fields a and the pairwise coupling matrix J. In this case, the usual manipulations involving

Gaussian integrals allow us to exactly find the parameters µ = −J −1a and Σ = −J −1, yielding

the familiar expressions µ = 〈x〉 data and Σ = x‐ x data x − x data
T

data. These are the

standard estimates for the sample mean and covariance matrix. Converting back to the

Lagrange multipliers yields

J = − 〈 x − x data x − x data
T〉data

−1 . (196)

Returning to the generic case where most energy-based models have intractable likelihoods,

we must estimate expectation values numerically. One way to do this is draw samples

𝒮model = xi′ from the model pθ(x) and evaluate arbitrary expectation values using these

samples:

f x model = dxpθ x f x ≈
xi′ ∈ 𝒮model

f xi′ . (197)

The samples from the model xi′ ∈ 𝒮model are often referred to as fantasy particles in the ML

literature and can be generated using simple MCMC algorithms such as Metropolis-Hasting

which are covered in most modern statistical physics classes. However, if the reader is

unfamiliar with MCMC methods or wants a quick refresher, we recommend the concise and

beautiful discussion of MCMC methods from both the physics and ML point-of-view in

Chapters 29–32 of David MacKay’s masterful book (MacKay, 2003).

Finally, we note that once we have the fantasy particles from the model, we can also easily

calculate the gradient of any expectation value f x model using what is commonly called

the “log-derivative trick” in ML (Fu, 2006; Kleijnen and Rubinstein, 1996):

∂
∂θi

f x model = dx
∂ pθ x

∂θi
f x

= 〈
∂ log pθ x

∂θi
f x 〉

model

= 〈Oi x f x 〉model

≈
x j′ ∈ 𝒮model

Oi x j f (x j′) .

(198)

Mehta et al. Page 128

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

This expression allows us to take gradients of more complex cost functions beyond the MLE

procedure discussed here.

E. Summary of the training procedure

We now summarize the discussion above and present a general procedure for training an

energy based model using SGD on the cost function (see Sec. IV). Our goal is to fit the

parameters of a model pλ θi = Z−1e
−E x, θi . Training the model involves the following

steps:

1. Read a minibatch of data, {x}.

2. Generate fantasy particles x′ ∼ pλ using an MCMC algorithm (e.g., Metropolis-

Hastings).

3. Compute the gradient of log-likelihood using these samples and Eq. (195), where

the averages are taken over the minibatch of data and the fantasy particles from

the model, respectively.

4. Use the gradient as input to one of the gradient based optimizers discussed in

section Sec. IV.

In practice, it is helpful to supplement this basic procedure with some tricks that help

training. As with discriminative neural networks, it is important to initialize the parameters

properly and print summary statistics during the training procedure on the training and

validation sets to prevent overfitting. These and many other “cheap tricks” have been nicely

summarized in a short note from the Hinton group (Hinton, 2012).

A major computational and practical limitation of these methods is that it is often hard to

draw samples from generative models. MCMC methods often have long mixing-times (the

time one has to run the Markov chain to get uncorrelated samples) and this can result in

biased sampling. Luckily, we often do not need to know the gradients exactly for training

ML models (recall that noisy gradient estimates often help the convergence of gradient

descent algorithms), and we can significantly reduce the computational expense by running

MCMC for a reasonable time window. We will exploit this observation extensively in the

next section when we discuss how to train more complex energy-based models with hidden

variables.

XVI. DEEP GENERATIVE MODELS: HIDDEN VARIABLES AND

RESTRICTED BOLTZMANN MACHINES (RBMS)

The last section introduced many of the core ideas behind energy-based generative models.

Here, we extend this discussion to energy-based models that include latent or hidden

variables.

Including latent variables in generative models greatly enhances their expressive power –

allowing the model to represent sophisticated correlations between visible features without

sacrificing trainability. By having multiple layers of latent variables, we can even construct

Mehta et al. Page 129

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

powerful deep generative models that possess many of the same desirable properties as deep,

discriminative neural networks.

We begin with a discussion that tries to provide a simple intuition for why latent variables

are such a powerful tool for generative models. Next, we introduce a powerful class of latent

variable models called Restricted Boltzmann Machines (RBMs) and discuss techniques for

training these models. After that, we introduce Deep Boltzmann Machines (DBMs), which

have multiple layers of latent variables. We then introduce the new Paysage package for

training energy-based models and demonstrate how to use it on the MNIST dataset and

samples from the Ising model. We conclude by discussing recent physics literature related to

energy-based generative models.

A. Why hidden (latent) variables?

Latent or hidden variables are a powerful yet elegant way to encode sophisticated

correlations between observable features. The underlying reason for this is that

marginalizing over a subset of variables – “integrating out” degrees of freedom in the

language of physics – induces complex interactions between the remaining variables. The

idea that integrating out variables can lead to complex correlations is a familiar component

of many physical theories. For example, when considering free electrons living on a lattice,

integrating out phonons gives rise to higher-order electron-electron interactions (e.g.

superconducting or magnetic correlations). More generally, in the Wilsonian renormalization

group paradigm, all effective field theories can be thought of as arising from integrating out

high-energy degrees of freedom (Wilson and Kogut, 1974).

Generative models with latent variables run this logic in reverse – encode complex

interactions between visible variables by introducing additional, hidden variables that

interact with visible degrees of freedom in a simple manner, yet still reproduce the complex

correlations between visible degrees in the data once marginalized over (integrated out).

This allows us to encode complex higher-order interactions between the visible variables

using simpler interactions at the cost of introducing new latent variables/degrees of freedom.

This trick is also widely exploited in physics (e.g. in the Hubbard-Stratonovich

transformation (Hubbard, 1959; Stratonovich, 1957) or the introduction of ghost fields in

gauge theory (Faddeev and Popov, 1967)).

To make these ideas more concrete, let us revisit the pairwise Ising model introduced in the

discussion of Max-Ent models, see Eq. (186). The model is described by a Boltzmann

distribution with energy

E v = −
i

aivi − 1
2 i j

viJi jv j, (199)

where Jij is a symmetric coupling matrix that encodes the pairwise constraints and ai enforce

the single-variable constraint.

Mehta et al. Page 130

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Our goal is to replace the complicated interactions between the visible variables vi encoded

by Jij, by interactions with a new set of latent variables hµ. In order to do this, it is helpful to

rewrite the coupling matrix in a slightly different form. Using SVD, we can always express

the coupling matrix in the form Ji j = ∑μ = 1
N W iμW jμ, where {Wiµ}i are appropriately

normalized singular vectors. In terms of Wiµ, the energy takes the form

EHop v = −
i

aivi − 1
2 i jμ

viW iμW jμv j . (200)

We note that in the special case when both vi ∈ {−1, +1} and Wiµ ∈ {−1, +1} are binary

variables, a model with this form of the energy function is known as the Hopfield model
(Amit et al., 1985; Hopfield, 1982). The Hopfield model has played an extremely important

role in statistical physics, computational neuroscience, and machine learning, and a full

discussion of its properties is well beyond the scope of this review [see (Amit, 1992) for a

beautiful discussion that combines all these perspectives]. Therefore, here we refer to all

energy functions of the form Eq. (200) as (generalized) Hopfield models, even for the case

when the Wiµ are continuous variables.

We now “decouple” the visible variables vi by introducing a set of normally, distributed

continuous latent variables hµ (in condensed matter language we perform a Hubbard-

Stratonovich transformation). Using the usual identity for Gaussian integrals, we can rewrite

the Boltz-mann distribution for the generalized Hopfield model as

p v = e
Σiaivi + 1

2Σi jμviWiμW jμv j

Z

=

e
Σiaivi

μ

dhμe
− 1

2Σμhμ
2 − ΣiviWiμhμ

Z

=
dh e−E v, h

Z

(201)

where E(v, h) is a joint energy functional of both the latent and visible variables of the form

E v, h = −
i

aivi + 1
2 μ

hμ
2 −

iμ
viW iμhμ . (202)

We can also use the energy function E(v, h) to define a new energy-based model p(v, h) on

both the latent and visible variables

Mehta et al. Page 131

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

p v, h = e−E v, h

Z′ . (203)

Marginalizing over latent variables of course gives us back the generalized Hopfield model

(Barra et al., 2012)

p v = dhp v, h = e
−EHop v

Z . (204)

Notice that E(v, h) contains no direct interactions between visible degrees of freedom (or

between hidden degree of freedom). Instead, the complex correlations between the vi are

encoded in the interaction between the visible vi and latent variables hµ. It turns out that the

model presented here is a special case of a more general class of powerful energy-based

models called Restricted Boltzmann Machines (RBMs).

B. Restricted Boltzmann Machines (RBMs)

A Restricted Boltzmann Machine (RBM) is an energy-based model with both visible and

hidden units where the visible and hidden units interact with each other but do not interact

among themselves. The energy function of an RBM takes the general functional form

E v, h = −
i

ai vi −
μ

bμ hμ −
iμ

W iμvihμ, (205)

where ai(·) and bµ(·) are functions that we are free to choose. The most common choice is:

ai vi =

aivi, if vi ∈ 0, 1 is binary

vi
2

2σi
2, if vi ∈ ℝ is continuous,

and

bμ hμ =

bμhμ, if hμ ∈ 0, 1 is binary

hμ
2

2σμ
2 , if hμ ∈ ℝ is continuous .

For this choice of ai(·) and bµ(·), layers consisting of discrete binary units are often called

Bernoulli layers, and layers consisting of continuous variables are often called Gaussian

layers. The basic bipartite structure of an RBM – i.e., a visible and hidden layer that interact

with each other but not among themselves – is often depicted using a graph of the form

shown in Fig. 61.

Mehta et al. Page 132

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

An RBM can have different properties depending on whether the hidden and visible layers

are taken to be Bernoulli or Gaussian. The most common choice is to have both the visible

and hidden units be Bernoulli. This is what is typically meant by an RBM. However, other

combinations are also possible and used in the ML literature. When all the units are

continuous, the RBM reduces to a multi-dimensional Gaussian with a very particular

correlation structure. When the hidden units are continuous and the visible units are discrete,

the RBM is equivalent to a generalized Hopfield model (see discussion above). When the the

visible units are continuous and the hidden units are discrete, the RBM is often called a

Gaussian Bernoulli Restricted Boltzmann Machine (Dahl et al., 2010; Hinton and

Salakhutdinov, 2006). It is even possible to perform multi-modal learning with a mixture of

continuous and discrete variables. For all these architectures, the important point is that all

interactions occur only between the visible and hidden units and there are no interactions

between units within the hidden or visible layers, see Fig. 61. This is analogous to Quantum

Electrodynamics, where a free fermion and a free photon interact with one another but not

among themselves.

Specifying a generative model with this bipartite interaction structure has two major

advantages: (i) it enables capturing both pairwise and higher-order correlations between the

visible units and (ii) it makes it easier to sample from the model using an MCMC method

known as block Gibbs sampling, which in turn makes the model easier to train.

Before discussing training, it is worth better understanding the kind of correlations that can

be captured using an RBM. To do so, we can marginalize over the hidden units and ask

about the resulting distribution over just the visible units

p v = d h p v, h = d h e−E v, h

Z (206)

where the integral should be replaced by a trace in all expressions for discrete units.

We can also define a marginal energy using the expression

p v = e−E v

Z . (207)

Combining these equations,

E v = − log dhe−E v, h

= −
i

ai vi −
μ

log dhμe
bμ hμ + ∑i viWiμhμ

Mehta et al. Page 133

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

To understand what correlations are captured by p(v) it is helpful to introduce the

distribution

qμ hμ = e
bμ hμ

Z (208)

of hidden units hµ, ignoring the interactions between v and h, and the cumulant generating

function

Kμ t = log dhμqμ hμ e
thμ =

n
κμ

n tn
n! . (209)

Kµ(t) is defined such that the nth cumulant is κμ
n = ∂t

nKμ|t = 0.

The cumulant generating function appears in the marginal free-energy of the visible units,

which can be rewritten (up to a constant term) as:

E v = −
i

ai vi −
μ

Kμ
i

W iμvi

= −
i

ai vi −
μ n

κμ
n iW iμvi

n

n!

= −
i

ai vi −
i μ

κμ
1 W iμ vi

− 1
2 i j μ

κμ
2 W iμW jμ viv j + …

(210)

We see that the marginal energy includes all orders of interactions between the visible units,

with the n-th order cumulants of qµ(hµ) weighting the n-th order interactions between the

visible units. In the case of the Hop-field model we discussed previously, qµ(hµ) is a standard

Gaussian distribution where the mean is κμ
1 = 0, the variance is κμ

2 = 1, and all higher-order

cumulants are zero. Plugging these cumulants into Eq. (210) recovers Eq. (202).

These calculations make clear the underlying reason for the incredible representational

power of RBMs with a Bernoulli hidden layer. Each hidden unit can encode interactions of

arbitrarily high order. By combining many different hidden units, we can encode very

complex interactions at all orders. Moreover, we can learn which order of correlations/

interactions are important directly from the data instead of having to specify them ahead of

time as we did in the MaxEnt models. This highlights the power of generative models with

even the simplest interactions between visible and latent variables to encode, learn, and

represent complex correlations present in the data.

Mehta et al. Page 134

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

C. Training RBMs

RBMs are a special class of energy-based generative models, which can be trained using the

Maximum Like-lihood Estimation (MLE) procedure described in detail in Sec. XV. To

briefly recap, first, we must choose a cost function – for MLE this is just the negative log-

likelihood with or without an additional regularization term to prevent overfitting. We then

minimize this cost function using one of the Stochastic Gradient Descent (SGD) methods

described in Sec. IV.

The gradient itself can be calculated using Eq. (195). For example, for the Bernoulli-

Bernoulli RBM in

Eq. (205) we have

∂ℒ W iμ, ai, bμ
∂W iμ

= vihμ data − vihμ model

∂ℒ W iμ, ai, bμ
∂ai

= vi data − vi model

∂ℒ W iμ, ai, bμ
∂bμ

= hμ data − hμ model,

(211)

where the positive expectation with respect to the data is understood to mean sampling from

the model while clamping the visible units to their observed values in the data. As before,

calculating the negative phase of the gradient (i.e. the expectation value with respect to the

model) requires that we draw samples from the model. Luckily, the bipartite form of the

interactions in RBMs were specifically chosen with this in mind.

1. Gibbs sampling and contrastive divergence (CD)

The bipartite interaction structure of an RBM makes it possible to calculate expectation

values using a Markov Chain Monte Carlo (MCMC) method known as Gibbs sampling. The

key reason for this is that since there are no interactions of visible units with themselves or

hidden units with themselves, the visible and hidden units of an RBM are conditionally

independent:

p v|h =
i

p vi h

p h|v =
μ

p hμ v ,

(212)

with

Mehta et al. Page 135

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

p vi = 1 h = σ(ai +
μ

W iμhμ)

p hμ = 1 v = σ(bμ +
i

W iμvi)

(213)

and where σ(z) = 1/(1 + e−z) is the sigmoid function.

Using these expressions it is easy to compute expectation values with respect to the data.

The input to gradient descent is a minibatch of observed data. For each sample in the

minibatch, we simply clamp the visible units to the observed values and apply Eq. (213)

using the probability for the hidden variables. We then average over all samples in the

minibatch to calculate expectation values with respect to the data. To calculate expectation

values with respect to the model, we use (block) Gibbs sampling. The idea behind (block)

Gibbs sampling is to iteratively sample from the conditional distributions ht+1 ~ p(h|vt) and

vt+1 ~ p(v|ht+1) (see Figure 62, top). Since the units are conditionally independent, each step

of this iteration can be performed by simply drawing random numbers. The samples are

guaranteed to converge to the equilibrium distribution of the model in the limit that t →∞.

At the end of the Gibbs sampling procedure, one ends up with a minibatch of samples

(fantasy particles).

One drawback of Gibbs sampling is that it may take many back and forth iterations to draw

an independent sample. For this reason, the Hinton group introduced an approximate Gibbs

sampling technique called Contrastive Divergence (CD) (Hinton, 2002; Hinton et al., 2006).

In CD-n, we just perform n iterations of (block) Gibbs sampling, with n often taken to be as

small as 1 (see Figure 62)! The price for this truncation is, of course, that we are not drawing

samples from the true model distribution. But for our purpose – using the expectations to

estimate the gradient for SGD – CD-n has proven to work reasonably well. As long as the

approximate gradients are reasonably correlated with the true gradient, SGD will move in a

reasonable direction. CD-n of course does come at a price. Truncating the Gibbs sampler

prevents sampling far away from the starting point, which for CD-n are the data points in the

minibatch. Therefore, our generative model will be much more accurate around regions of

feature space close to our training data. Thus, as is often the case in ML, CD-n sacrifices the

ability to generalize to some extent in order to make the model easier to train.

Some of these undesirable features can be tempered by using a slightly different variant of

CD called Persistent Contrastive Divergence (PCD) (Tieleman and Hinton, 2009). In PCD,

rather than restarting the Gibbs sampler from the data at each gradient descent step, we start

the Gibbs sampling at the fantasy particles in the last gradient descent step (see Fig. 62).

Since parameters change slowly compared to the Gibbs sampling, samples that are high

probability at one step of the SGD are also likely to be high probability at the next step. This

ensures that PCD does not introduce large errors in the estimation of the gradients. The

advantage of using fantasy particles to initialize the Gibbs sampler is to allow PCD to

explore parts of the feature space that are much further from the training dataset than one

could reach with ordinary CD.

Mehta et al. Page 136

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We note that, in applications using RBMs as a variational ansatz for quantum states, Gibbs

sampling is not necessarily the best option for training, and in practice parallel tempering or

other Metropolis schemes can outperform Gibbs sampling. In fact, Gibbs sampling is not

even feasible with complex-valued weights required for quantum wavefucntions, whereas

Metropolis schemes might be feasible (Carleo, 2018).

2. Practical Considerations

The previous section gave an overview of how to train RBMs. However, there are many

“tricks of the trade” that are missing from this discussion. Luckily, a succinct summary of

these has been compiled by Geoff Hinton and published as a note that readers interested in

training RBMs are urged to consult (Hinton, 2012).

For completeness, we briefly list some of the important points here:

• Initialization.——The model must be initialized. Hinton suggests taking the weights

Wiµ from a Gaussian with mean zero and standard deviation σ = 0.01 (Hinton, 2012). An

alternative initialization scheme proposed by Glorot and Bengio instead chooses the

standard deviation to scale with the size of the layers: σ = 2/ Nv + Nh where Nv and Nh are

number of visible and hidden units respectively (Glorot and Bengio, 2010). The bias of the

hidden units is initialized to zero while the bias of the visible units is typically taken to be

inversely proportional to the mean activation, ai = vi data
−1 .

• Regularization.——One can of course use an L1 or L2 penalty, typically only on the

weight parameters, not the biases. Alternatively, Dropout has been shown to decrease

overfitting when trainingwith CD and PCD, which results in more interpretable learned

features.

• Learning Rates.——Typically, it is helpful to reduce the learning rate in later stages of

training.

• Updates for CD and PCD.——There are several computational tricks one can use for

speeding up the alternating updates in CD and PCD, see Section 3 in (Hinton, 2012).

D. Deep Boltzmann Machine

In this section, we introduce Deep Boltzmann Machines (DBMs). Unlike RBMs, DBMs

possess multiple hidden layers and were the first models rebranded as “deep learning”

(Hinton et al., 2006; Hinton and Salakhutdinov, 2006) 19. Many of the advantages that are

thought to stem from having deep layers were already discussed in Sec. XI in the context of

discriminative DNNs. Here, we revisit many of the same themes with emphasis on energy-

based models.

An RBM is composed of two layers of neurons that are connected via an undirected graph,

see Fig. 61. As a result, it is possible to perform sampling v ~ p(v|h) and inference h ~ p(h|v)

19Technically, these were Deep Belief Networks where only the top layer was undirected

Mehta et al. Page 137

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

with the same model. As with the Hopfield model, we can view each of the hidden units as

representative of a pattern, or feature, that could be present in the data. 20 The inference step

involves assigning a probability to each of these features that expresses the degree to which

each feature is present in a given data sample. In an RBM, hidden units do not influence

each other during the inference step, i.e. hidden units are conditionally independent given

the visible units. There are a number of reasons why this is unsatisfactory. One reason is the

desire for sparse distributed representations, where each observed visible vector will

strongly activate a few (i.e. more than one but only a very small fraction) of the hidden units.

In the brain, this is thought to be achieved by inhibitory lateral connections between

neurons. However, adding lateral intra-layer connections between the hidden units makes the

distribution difficult to sample from, so we need to come up with another way of creating

connections between the hidden units.

With the Hopfield model, we saw that pairwise linear connections between neurons can be

mediated through another layer. Therefore, a simple way to allow for effective connections

between the hidden units is to add another layer of hidden units. Rather than just having two

layers, one visible and one hidden, we can add additional layers of latent variables to

account for the correlations between hidden units. Ideally, as one adds more and more

layers, one might hope that the correlations between hidden variables become smaller and

smaller deeper into the network. This basic logic is reminiscent of renormalization

procedures that seek to decorrelate layers at each step (Li and Wang, 2018; Mehta and

Schwab, 2014; Vidal, 2007). The price of adding additional layers is that the models become

harder to train.

Training DBMs is more subtle than RBMs due to the difficulty of propagating information

from visible to hidden units. However, Hinton and collaborators realized that some of these

problems could be alleviated via a layerwise procedure. Rather than attempting to the train

the whole DBM at once, we can think of the DBM as a stack of RBMs (see Fig. 63). One

first trains the bottom two layers of the DBM – treating it as if it is a standalone RBM. Once

this bottom RBM is trained, we can generate “samples” from the hidden layer and use these

samples as an input to the next RBM (consisting of the first and second hidden layer –

purple hexagons and green squares in Fig. 63). This procedure can then be repeated to

pretrain all layers of the DBM.

This pretraining initializes the weights so that SGD can be used effectively when the

network is trained in a supervised fashion. In particular, the pretraining helps the gradients to

stay well behaved rather than vanish or blow up – a problem that we discussed extensively in

the earlier sections on DNNs. It is worth noting that once pretrained, we can use the usual

Boltzmann learning rules in Eq. (195) to fine-tune the weights and improve the performance

of the DBM (Hinton et al., 2006; Hinton and Salakhutdinov, 2006). As we demonstrate in

the next section, the Paysage package presented here can be used to both construct and train

DBMs using such a pretraining procedure.

20In general, one should instead think of activity patterns of hidden units representing features in the data.

Mehta et al. Page 138

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

E. Example: Using Paysage for MNIST

In this section, we demonstrate how to use the new open source package Paysage (French

for landscape) for training unsupervised energy-based models on the MNIST dataset.

Paysage’s documentation is available on GitHub under https://github.com/drckf/paysage/

tree/master/docs. The package was developed by one of the authors (CKF) along with his

colleagues at Unlearn.AI and makes it easy to build, train, and deploy energy-based

generative models with different architectures.

Below, we show how to build and train four different kinds of models: (i) a “Hopfield” type

RBM with Gaussian hidden units and Bernoulli (binary) visible units, (ii) a conventional

RBM where both the visible and hidden units are Bernoulli, (iii) a conventional RBM with

an additional L1-penalty that enforces sparsity, and (iv) a Deep Boltzmann Machine (DBM)

with three Bernoulli layers with L1 penalty each. In the following, we demonstrate the

simplicity of using Paysage walking the reader step-by-step through short snippets of code.

We kick off by loading the required packages. Note that Paysage requires Python 3.6 or

higher (see additional guides to install the package in Notebook 17). We also fix the seed of

the random number generator to ensure reproducibility of our numerical experiment.

from __future__ import print_function, division

import os

import paysage

from paysage.models.model import Model # model constructor

from paysage import optimizers # optimizer

from paysage.layers import BernoulliLayer, GaussianLayer # layers

from paysage.batch import DataShuffler, HDFBatch # data handler

from paysage.fit import ProgressMonitor, SequentialMC, SGD,

LayerwisePretrain, pcd

from paysage.schedules import PowerLawDecay # hyperparameter schedule

from paysage.models.model_utils import State

from paysage.penalties import l1_penalty # regularization

fix random seed to ensure deterministic behavior

paysage.backends.set_seed(137)

We want to study the MNIST digit dataset. A preprocessed version of the data is

conveniently built into Paysage, and our first task is to download it. To this end, let us fetch

the directory Paysage was installed in and print it:

download and preprocess MNIST data in Paysage

fetch paysage directory

paysage_path=os.path.dirname(os.path.dirname(paysage.__file__))

mnist_path=os.path.join(paysage_path, “mnist”, “mnist.h5”)

shuffled_mnist_path=os.path.join(paysage_path, “mnist”, “shuffled_mnist.h5”)

Mehta et al. Page 139

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/drckf/paysage/tree/master/docs
https://github.com/drckf/paysage/tree/master/docs

print path to Paysage directory

print(paysage_path)

To download the data, open up a terminal and navigate to the Paysage directory to run

python mnist/download_mnist.py. We can also check if the data have been successfully

downloaded:

check if data has been loaded

if not os.path.exists(mnist_path):

 raise IOError(“{} does not exist. run mnist/download_mnist.py to fetch

from the web”.format(mnist_path)

)

If this is the first time using the data set, we need to shuffle it. This step is necessary, since

we shall shortly employ SGD-based algorithms in the training process (cf. Sec. IV) which

requires using small minibatches of data to compute the gradient at each step. If the data

have an order, then the estimates for the gradients computed from the minibatches will be

biased. Shuffling the data ensures that the gradient estimates are unbiased (though still

noisy). The data can be compressed by setting complevel to a value greater than 0, but we do

not use that here.

set up minibatch data generator

shuffle data if running for the first time

if not os.path.exists(shuffled_mnist_path):

 DataShuffler(mnist_path,shuffled_mnist_path,complevel=0).shuffle()

Next, we create a python generator, which splits the data into a training and validation sets,

and separates them into minibatches of size batch_size. Before we begin training, we set

data to training mode.

batch size

batch_size=100

create data generator object with minibathces

data=HDFBatch(shuffled_mnist_path,’train/images’, batch_size,

 transform=paysage.preprocess.binarize_color,train_fraction=0.95)

reset the data generator in training mode

data.reset_generator(mode=’train’)

To monitor the progress of performance metrics during training, we define the variable

performance which tells Paysage to measure the reconstruction error from the validation set.

Possible metrics include the reconstruction error (used in this example) and metrics related

to difference in the energy of random samples and samples from the model (see https://

Mehta et al. Page 140

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/drckf/paysage/blob/master/docs/metrics.md

github.com/drckf/paysage/blob/master/docs/metrics.md in Paysage documentation for a

complete list).

the reconstruction error will be computed from the validation set

performance=ProgressMonitor(data,metrics=[’ReconstructionError’])

Having loaded and preprocessed the data, we now move on to construct a hopfield model. To

do this, we use the Model class with a visible BernoulliLayer and a hidden GaussianLayer.

Note that the visible layer has the same size as the input data points, which is read off

data.ncols. The number of hidden units is num_hidden_units. We also standardize the mean

and variance of the Gaussian layer setting them to zero and unity, respectively (the

nomenclature of Paysage here is inspired by the terminology in Variational Autoencoders,

cf. Sec. XVII).

create hopfield model

hidden units

num_hidden_units=200

set up the model

hopfield=Model([BernoulliLayer(data.ncols), # visible layer

 GaussianLayer(num_hidden_units) # hidden layer

])

set mean and standard deviation of hidden layer to to 0 and 1, respectively

hopfield.layers[1].set_fixed_params([’loc’, ’log_var’])

We choose to train the model with the Adam optimizer. To ensure convergence, we attenuate

the learning_rate hyperparameter according to a PowerLawDecay schedule: learning_rate(t)
=initial/(1+coefficient×t). It will prove convenient to define the function Adam_optimizer

for this purpose.

set up an optimizer method (ADAM in this case)

def ADAM_optimizer(initial,coefficient):

 # define learning rate attenuation schedule

 learning_rate=PowerLawDecay(initial=initial,coefficient=coefficient)

 # return optimizer object

 return optimizers.ADAM(stepsize=learning_rate)

Next, we have to create the model. First, we initialize the model using the initialize function

method which accepts the data as a required argument. We choose the initialization routine

glorot, cf. discussion in Sec XVI.C.2. Second, we define an optimizer calling the function

Adam_optimizer, and store the object under the name opt. To create an MCMC sampler, we

use the method from_batch of the SequentialMC class, passing the model and the data. Next,

we create an SGD object called trainer to train the model using Persistent Contrastive

Divergence (pcd) with a fixed number of monte_carlo_steps. We can also monitor the

Mehta et al. Page 141

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/drckf/paysage/blob/master/docs/metrics.md

reconstruction error during training. Last, we train the model in epochs (cf. variable

num_epochs), calling the train() method of trainer. These steps are universal for shallow

generative models, and it is convenient to combine them in the function train_model, which

we shall use repeatedly.

define function to compile and train model

num_epochs=20 # training epochs

monte_carlo_steps=1 # number of MC sampling steps

def train_model(model,num_epochs,monte_carlo_steps,performance):

 # make a simple guess for the initial parameters of the model

 model.initialize(data,method=’glorot_normal’)

 # set optimizer

 opt=ADAM_optimizer(1E-2,1.0)

 # set up a Monte Carlo sampler

 sampler=SequentialMC.from_batch(model,data)

 # use persistent contrastive divergence to fit the model

 trainer=SGD(model,data,opt,num_epochs,sampler,

 method=pcd,mcsteps=monte_carlo_steps,monitor=performance)

 # train model

 trainer.train()

train hopfield model

train_model(hopfield,num_epochs,monte_carlo_steps,performance)

Let us now show how to build a few more generative models with Paysage. We can easily

create a Bernoulli RBM and train it using the functions defined above as follows:

Bernoulli RBM

rbm = Model([BernoulliLayer(data.ncols), # visible layer

 BernoulliLayer(num_hidden_units) # hidden layer

])

train Bernoulli RBM

train_model(rbm,num_epochs,monte_carlo_steps,performance)

Constructing a Bernoulli RBM with L1 regularization is also straightforward in Paysage,

using the add_penalty method which accepts a dictionary as an input. Some layers may have

multiple properties (such as the location and scale parameters of a Gaussian layer) so the

dictionary key specifies which property the penalty should be applied to

Bernoulli RBM with L1 regularizer

rbm_L1 = Model([BernoulliLayer(data.ncols), # visible layer

 BernoulliLayer(num_hidden_units) # hidden layer

])

Mehta et al. Page 142

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

add an L1 penalty to the weights

rbm_L1.weights[0].add_penalty({’matrix’:l1_penalty(1e-3)})

train Bernoulli RBM with L1 regularizer

train_model(rbm_L1,num_epochs,monte_carlo_steps,performance)

To define a deep Boltzmann machine (DBM), we just add more layers, and an L1 penalty for

every layer.

Deep Boltzmann Machine

set up the model

dbm_L1 = Model([BernoulliLayer(data.ncols), # visible layer

 BernoulliLayer(num_hidden_units), # hidden layer 1

 BernoulliLayer(num_hidden_units) # hidden layer 2

])

add an L1 penalty to the weights

for weight in dbm_L1.weights:

 weight.add_penalty({’matrix’:l1_penalty(1e-3)})

Recalling the essential trick with layer-wise pre-training to prepare the weights of the DBM,

we define a pretrainer as an object of the LayerwisePretrain class (see code snippet below).

This results in a slight modification of the function train_model.

add pre-training

def train_model(model,num_epochs,monte_carlo_steps, performance):

 # make a simple guess for the initial parameters of the model

 model.initialize(data,method=’glorot_normal’)

 # set SGD retrain optimizer

 opt=ADAM_optimizer(1E-2,1.0)

 # set up a Monte Carlo sampler

 sampler = SequentialMC.from_batch(model, data)

 # check if model is deep

 is_deep = model.num_layers > 2

 if is_deep:

 print(“layerwise pretraining”)

 pretrainer = LayerwisePretrain(model, data, opt, num_epochs,

 method=pcd, mcsteps=monte_carlo_steps,

 metrics=[’ReconstructionError’])

 pretrainer.train()

 # reset the optimizer using a lower learning rate

 opt = ADAM_optimizer(initial/10.0, coefficient)

 print(“use persistent contrastive divergence to fit the model”)

 # use persistent contrastive divergence to fit the model

 trainer=SGD(model,data,opt,num_epochs,sampler,

Mehta et al. Page 143

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

 method=pcd,mcsteps=monte_carlo_steps,monitor=performance)

 # train model

 trainer.train()

train DBM

train_model(dbm_L1,num_epochs,monte_carlo_steps,performance)

Having trained our models, let us see how they perform by computing some reconstructions

and fantasy particles from the validation data. Recall that a reconstruction v′ of a given data

point x is computed in two steps: (i) we fix the visible layer v = x to be the data, and use

MCMC sampling to find the state of the hidden layer h which maximizes the probability

distribution p(h|v). (ii) fixing the same obtained state h, we find the reconstruction v′ of the

original data point which maximizes the probability p(v′|h). In the case of a DBM, the

forward pass continues until we reach the last of the hidden layers, and the backward pass

goes in reverse. A configuration sampled from an RBM needs to specify the values of both

the visible and hidden units. Since the data only specify the visible units, we need to

initialize some hidden unit values. The visible and hidden units are stored in a State object.

To compute reconstructions, we define an MCMC sampler based on the trained model. The

stating point for the MCMC sampler is set using the set_state() method. To compute

reconstructions, we need to keep the probability distribution learned by the generative model

fixed which is done with the help of the deterministic_iteration function method, that takes

in its first argument the number of passes (1 for a single v → h → v′ pass), and the state of

the sampler sampler.state as required arguments. We can combine these steps in the function

compute_reconstructions. Figure 60 shows the result.

compute reconstructions

def compute_reconstructions(model, data):

 “““

 Computes reconstructions of the input data.

 Input v -> h -> v’ (one pass up one pass down)

 Args:

 model: a model

 data: a tensor of shape (num_samples, num_visible_units)

 Returns:

 tensor of shape (num_samples, num_visible_units)

 “““

 # a configuration sampled from an RBM needs to specify the values

 # of both the visible and hidden units

 # since the data only specify the visible units, we need to initialize

 # some hidden unit values

 # the visible and hidden units are stored in a State object

 data_state=State.from_visible(data,model)

 # define MC sampler

 sampler=SequentialMC(model)

 # define a starting point for MC sampler

Mehta et al. Page 144

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

 sampler.set_state(data_state)

 # compute reconstructions

 recons=model.deterministic_iteration(1,sampler.state).units[0]

 #

 return paysage.backends.to_numpy_array(recons)

Once we have the trained models ready, we can use MCMC to draw samples from the

corresponding probability distributions, the so-called fantasy particles. To this end, let us

draw a random_sample from the validation data and compute the model_state. Next, we

define an MCMC sampler based on the model, and set its state to model_state. To compute

the fantasy particles, we do layer-wise Gibbs sampling for a total of n_steps equilibration

steps. The last step (controlled by the boolean mean_field) is a final mean-field iteration [see

the tricks discussed in (Hinton, 2012)]. Figure 64 shows the result.

compute fantasy particles

def compute_fantasy_particles(model,data,num_steps,mean_field=True):

 “““

 Draws samples from the model using Gibbs sampling Markov Chain Monte

Carlo.

 Starts from randomly initialized points.

 Args:

 model: a model

 data: a tensor of shape (num_samples, num_visible_units)

 num_steps (int): the number of update steps

 mean_field (bool; optional): run a final mean field step to compute

probabilities

 Returns:

 tensor of shape (num_samples, num_visible_units)

 “““

 # compute random data sample

 random_sample=model.random(data)

 # get model state from visible layer

 model_state=State.from_visible(random_sample,model)

 # define MC sampler

 sampler=SequentialMC(model)

 # change sampler state

 sampler.set_state(model_state)

 # does n_steps forward and backward passes

 sampler.update_state(num_steps)

 if mean_field: # see Hinton’s 2012 paper: trick (practical guide for

training)

 fantasy_particles=model.mean_field_iteration(1,sampler.state).units[0]

 else:

 fantasy_particles=sampler.state.units[0]

Mehta et al. Page 145

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

 #

 return paysage.backends.to_numpy_array(fantasy_particles)

One can use generative models to reduce the noise in images (de-noising). Let us randomly

flip a fraction, fraction_to_flip, of the black&white bits in the validation data, and use the

models defined above to reconstruct (de-noise) the digit images. Figure 65 shows the result.

denoise MNIST images

get validation data

examples = data.get(mode=’validate’) # shape (batch_size, 784)

reset data generator to beginning of the validation set

data.reset_generator(mode=’validate’)

add some noise to the examples by randomly flipping some pixels 0 -> 1 and

1 -> 0

fraction_to_flip=0.15

create flipping mask

flip_mask=paysage.backends.rand_like(examples) < fraction_to_flip

compute noisy data

noisy_data=(1-flip_mask) * examples + flip_mask * (1 - examples)

define number of digits to display

num_to_display=8

compute de-noised images

hopfield_denoised=compute_reconstructions(hopfield,noisy_data[:num_to_display

])

rbm_denoised=compute_reconstructions(rbm,noisy_data[:num_to_display])

rbmL1_denoised=compute_reconstructions(rbmL1,noisy_data[:num_to_display])

dbm_L1_denoised=compute_reconstructions(dbm_L1,noisy_data[:num_to_display])

The full code used to generate Figs. 60, 64 and 65 is available in Notebook 17.

F. Example: Using Paysage for the Ising Model

We can also use Paysage to analyze the 2D Ising data set. In previous sections, we used our

knowledge of the critical point at Tc/J ≈ 2.26 (see Onsager’s solution) to label the spin

configurations and study the problem of classifying the states according to their phase of

matter. However, in more complicated models, where the precise position of Tc is not

known, one cannot label the states with such an accuracy, if at all.

As we explained, generative models can be used to learn a variational approximation for the

probability distribution that generated the data points. By using only the 2D spin

configurations, we now attempt to train a Bernoulli RBM, the fantasy particles of which are

thermal Ising configurations. Unlike in previous studies of the Ising dataset, here we perform

the analysis at a fixed temperature T. We can then apply our model at three different values

T = 1.75, 2.25, 2.75 in the ordered, nearcritical and disordered regions, respectively.

Mehta et al. Page 146

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We define a Deep Boltzmann machine with two hidden layers of Nhidden and Nhidden/10

units, respectively, and apply L1 regularization to all weights. As in the MNIST problem

above, we use layer-wise pre-training, and deploy Persistent Contrastive Divergence to train

the DBM using ADAM.

One of the lessons from this problem is that this task is computationally intensive, see

Notebook 17. The training time on present-day laptops easily exceeds that of previous

studies from this review. Thus, we encourage the interested reader to try GPU-based training

and study the resulting speed-up.

Figures 66, 67 and 68 show the results of the numerical experiment at T/J = 1.75, 2.25, 2.75

respectively, for a DBM with Nhidden = 800. Looking at the reconstructions and the fantasy

particles, we see that our DBM works well in the disordered and critical regions. However,

the chosen layer architecture is not optimal for T = 1.75 in the ordered phase, presumably

due to effects related to symmetry breaking.

G. Generative models in physics

Generative models have been studied and used extensively in the context of physics. For

instance, in Biophysics, dynamic Boltzmann distributions have been used as effective

models in chemical kinetics (Ernst et al., 2018). In Statistical Physics, they were used to

identify criticality in the Ising model (Morningstar and Melko, 2017). In parallel, tools from

Statistical Physics have been applied to analyze the learning ability of RBMs (Decelle et al.,
2018; Huang, 2017b), characterizing the sparsity of the weights, the effective temperature,

the non-linearities in the activation functions of hidden units, and the adaptation of fields

maintaining the activity in the visible layer (Tubiana and Monasson, 2017). Spin glass

theory motivated a deterministic framework for the training, evaluation, and use of RBMs

(Tramel et al., 2017); it was demonstrated that the training process in RBMs itself exhibits

phase transitions (Barra et al., 2016, 2017); learning in RBMs was studied in the context of

equilibrium (Cossu et al., 2018; Funai and Giataganas, 2018) and nonequilibrium (Salazar,

2017) thermodynamics, and spectral dynamics (Decelle et al., 2017); mean-field theory

found application in analyzing DBMs (Huang, 2017a). Another interesting direction of

research is the use of generative models to improve Monte Carlo algorithms (Cristoforetti et
al., 2017; Nagai et al., 2017; Tanaka and Tomiya, 2017b; Wang, 2017). Ideas from quantum

mechanics have been put forward to introduce improved speed-up in certain parts of the

learning algorithms for Helmholtz machines (Benedetti et al., 2016, 2017).

At the same time, generative models have applications in the study of quantum systems too.

Most notably, RBM-inspired variational ansatzes were used to learn both complex-valued

wavefunctions and the realvalued probability distribution associated with the absolute square

of a quantum state (Carleo et al., 2018; Carleo and Troyer, 2017; Freitas et al., 2018;

Nomura et al., 2017; Torlai et al., 2018) and, in this context, RBMs are sometimes called

Born machines (Cheng et al., 2017). Further applications include the detection of order in

low-energy product states (Rao et al., 2017), and learning Einstein-Podolsky-Rosen

correlations on an RBM (Weinstein, 2017). Inspired by the success of tensor networks in

physics, the latter have been used as a basis for both generative and discriminative learning

Mehta et al. Page 147

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(Huggins et al., 2019): RBMs (Chen et al., 2018) were used to extract the spatial geometry

from entanglement (You et al., 2017), and generative models based on matrix product states

have been developed (Han et al., 2017). Last but not least, Quantum entanglement was

studied using RBM-encoded states (Deng et al., 2017) and tensor product based generative

models have been used to understand MNIST and other ML datasets (Stoudenmire and

Schwab, 2016).

XVII. VARIATIONAL AUTOENCODERS (VAES) AND GENERATIVE

ADVERSARIAL NETWORKS (GANS)

In the previous two sections, we considered energy-based generative models. Here, we

extend our discussion to two new generative model frameworks that have gained wide

appeal in the the last few years: generative adversarial networks (GANs) (Goodfellow, 2016;

Good-fellow et al., 2014; Radford et al., 2015) and variational autoencoders (VAEs)

(Kingma and Welling, 2013). Un-like energy-based models, both these generative modeling

frameworks are based on differentiable neural networks and consequently can be trained

using backpropagation-based methods. VAEs, in particular, can be easily implemented and

trained using high-level packages such as Keras making them an easy-to-deploy generative

frame-work. These models also differ from the energy-based models in that they do not

directly seek to maximize like-lihood. GANs, for example, employ a novel cost function

based on adversarial learning (a concept we motivate and explain below). Finally we note

that VAEs and GANs are already starting to make their way into physics (Heimel et al.,
2018; Liu et al., 2017; Rocchetto et al., 2018; Wetzel, 2017) and astronomy (Ravanbakhsh et
al., 2017), and methods from physics may prove useful for furthering our understanding of

these methods (Alemi and Abbara, 2017). More generally, GANs have found important

applications in many artistic and image manipulation tasks (see references in (Goodfellow,

2016)).

The section is organized as follows. We start by motivating adversarial learning by

discussing the limitations of maximum likelihood based approaches. We then give a high-

level introduction to the main idea behind generative adversarial networks and discuss how

they overcome some of these limitations, simultaneously highlighting both the power of

GANs and some of the difficulties. We then show how VAEs integrate the variational

methods introduced in Sec. XIV with deep, differentiable neural networks to build more

powerful generative models that move beyond the Expectation Maximization (EM). We then

briefly discuss VAEs from an information theoretic perspective, before discussing practical

tips for implementing and training VAEs. We conclude by using VAEs on examples using

the Ising and MNIST datasets (see also Notebooks 19 and 20).

A. The limitations of maximizing Likelihood

The Kullback-Leibler (KL)-divergence plays a central role in many generative models.

Developing an intuition about KL-divergences is one of the keys to understanding why

adversarial learning has proved to be such a powerful method for generative modeling. Here,

we revisit the KL-divergence with an eye towards understanding GANs and motivate

adversarial learning. The KL-divergence measures the similarity between two probability

Mehta et al. Page 148

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

distributions p(x) and q(x). Strictly speaking, the KL divergence is not a metric because it is

not symmetric and does not satisfy the triangle inequality.

Given two distributions, there are two distinct KL-divergences we can construct:

DKL p q = d xp x log p x
q x (214)

DKL q p = d xq x log q x
p x . (215)

A related quantity called the Jensen-Shannon divergence,

DJS p, q = 1
2 DKL p p + q

2 + DKL q p + q
2

does satisfy all of the properties of a squared metric (i.e., the square root of the Jensen-

Shannon divergence is a metric). An important property of the KL-divergence that we will

make use of repeatedly is its positivity: DKL p | |q ≥ 0 with equality if and only if p(x) = q(x)

almost everywhere.

In generative models in ML, the two distributions we are usually concerned with are the

model distribution pθ(x) and the data distribution pdata(x). We of course would like these

models to be as similar as possible. However, as we discuss below, there are many subtleties

about how we measure similarities that can have large consequences for the behavior of

training procedures. Maximizing the log-likelihood of the data under the model is the same

as minimizing the KL divergence between the data distribution and the model distribution

DKL(pdata ||pθ). To see this, we can rewrite the KL divergence as:

DKL pdata pθ = d xpdata x log pdata x
− d xpdata x log pθ x
= − S pdata − log pθ x data

(216)

Rearranging this equation, we have

log pθ v data = − S pdata − DKL pdata pθ (217)

The equivalence follows from the positivity of KL-divergence and the fact that the entropy

of the data distribution is constant. In contrast, the original formulation of GANs minimizes

an upper bound on the Jensen-Shannon divergence between the model distribution pθ(x) and

the data distribution pdata(x) (Goodfellow et al., 2014).

Mehta et al. Page 149

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

This difference in objectives underlies the difference in behavior between GANs and

likelihood based generative models. To see this, we can compare the behavior of the two

KL-divergences DKL(pdata || pθ) and DKL(pθ || pdata). As is evident from Fig. 69 and Fig. 70,

though both of these KL-divergences measure similarities between the two distributions,

they are sensitive to very different things. DKL(pθ||pdata) is insensitive to setting pθ ≈ 0 even

when pdata ≠ 0 whereas DKL(pdata||pθ) punishes this harshly. In contrast, DKL(pdata||pθ) is

insensitive to placing weight in the model distribution in regions where pdata ≈ 0 whereas

DKL(pdata||pθ) punishes this harshly. In other words, DKL(pdata||pθ) prefers models that have

a high probability in regions with lots of training data points whereas DKL(pθ||pdata)

punishes models for putting high probability where there is no data.

In the context of the above discussion, this suggests that the way likelihood-based methods

are most likely to fail, is by improperly “filling in” any low-probability density regions

between peaks in the data distribution. In contrast, at least in principle, the Jensen-Shannon

distribution which underlies GANs is sensitive both to placing weight where there is data

since it has information about DKL(pdata||pθ) and to not placing weight where no data has

been observed (i.e. in low-probability density regions) since it has information about

DKL(pθ||pdata).

In practice, DKL(pdata||pθ) can be calculated easily directly from the data using sampling. On

the other hand, DKL(pθ||pdata) is impossible to compute since we do not know pdata(x). In

particular, this integral cannot be calculated using sampling since we cannot evaluate pdata(x)

at the locations of the fantasy particles. The idea of adversarial learning is to circumnavigate

this difficulty by using an adversarial learning procedure. Recall, that DKL(pθ||pdata) is large

when the model artificially over-weighs low-density regions near real peaks (see Fig. 69).

Adversarial learning accomplishes this same task by teaching a discriminator network to

distinguish between real data points and samples generated from the model. By punishing

the model for generating points that can be easily discriminated from the data, adversarial

learning decreases the weight of regions in the model space that are far away from data

points – regions that inevitably arise when maximizing likelihood. This core intuition

implicitly underlies many adversarial training algorithms (though it has been recently

suggested that this may not be the entire story (Goodfellow, 2016)).

B. Generative models and adversarial learning

Here, we give a brief high-level overview of the basic idea behind GANs. The mathematics

and theory of GANs draws deeply from concepts in Game Theory such as Nash Equilibrium

that are foreign to most physicists. For this reason, a comprehensive discussion of GANs is

beyond the scope of the review. Readers interested in learning more are directed to the

comprehensive tutorial by Goodfellow (Goodfellow, 2016). GANs are also notorious for

being hard to train. For this reason, readers wishing to play with GANs should also consider

the very nice practical discussion entitled “How to train a GAN” (affectionately labeled

“ganhacks”) available at https://github.com/soumith/ganhacks.

The central idea of GANs is to construct two differentiable neural networks (see Fig. 71).

The first neural network, usually a (de)convolutional network based on the DCGAN

architecture (Radford et al., 2015), approximates a generator function G (z; θG) that takes as

Mehta et al. Page 150

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/soumith/ganhacks

input a z sampled from some prior on the latent space, and outputs a x from the model. The

second network approximates a discriminator function D(x; θD) that is designed to

distinguish between x from the data and samples generated by the model: x = G(z; θG). The

scalar D(x) represents the probability that x came from the data rather than the model pθG.

We train D to distinguish actual data points from synthetic examples and the generative

network to fool the discriminative network.

To define the cost function for training, it is useful to define the functional

V D, G = 𝔼x pdata
log D x

+ 𝔼z pprior
log 1 − D G z .

(218)

In the version of GANs most amenable to theoretical analysis – though not the version

usually implemented in practice – we take the cost function for the discriminator and

generators to be 𝒞 G = − 𝒞 D = 1
2V D, G . This choice of cost functions corresponds to

what is called a zero-sum game. Since the discriminator is maximized, we can write a cost

function for the generator as

𝒞 G = max
D

V G, D . (219)

It turns out that this cost function is related to the Jensen-Shannon Divergence in a simple

manner (Goodfellow, 2016; Goodfellow et al., 2014):

𝒞 G = − log 4 + 2DJS pdata, pθG
. (220)

This brings us back full circle to the discussion in the last section on KL-divergences.

C. Variational Autoencoders (VAEs)

We now turn our attention to another class of powerful latent-variable, generative models

called Variational Autoencoders (VAEs). VAEs exploit the variational/mean-field theory

ideas presented in Sec. XIV to build complex generative models using deep neural networks

(DNNs). The central idea behind VAEs is to represent the map from latent variables to

observable variables using a DNN. The use of latent variables is a common theme in many

of the generative models we have encountered in unsupervised learning tasks from Gaussian

Mixture Models (see Sec. XIII) to Restricted Boltzmann Machines. However, in VAEs this

mapping, p(x|z, θ) is much less restrictive and much more complicated since it takes the

form of a DNN. This added complexity means we can-not use techniques such as

Expectation Maximization to train the model and instead must rely of methods based on

backpropagation.

Mehta et al. Page 151

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

1. VAEs as variational models

We start by discussing VAEs from a variational perspective. We will make extensive use of

the concepts introduced in Sec. XIV and the reader is strongly-encouraged to refresh their

memory of this section before proceeding. A VAE is a latent-variable model pθ(x, z) with a

latent variables z and observed variables x. The latent variables are drawn from some pre-

specified prior distribution p(z). In practice, p(z) is almost always taken to be a multivariate

Gaussian. The conditional distribution pθ(x|z) maps points in the latent space to new

examples (see Fig. 72). This is often called a “stochastic decoder” and defines the generative

model for the data. The reverse mapping that gives the posterior over the latent variables

pθ(z|x) is often called the “stochastic encoder”.

A central challenge in latent variable modeling is to infer the posterior distribution of the

latent variables given a sample from the data. This can in principle be done via Bayes’ rule:

pθ z|x =
p z pθ x|z

pθ x . For some models, we can calculate this analytically. In this case, we can

use techniques like Expectation Maximization (EM) (see Sec. XIV). However, in general

this is intractable since the denominator requires computing a sum over all configurations of

the latent variables, pθ x = ∫ pθ x, z dz = ∫ pθ x|z p z dz (i.e. a partition function in the

language of physics), which is often intractable for large models. In VAEs, where the pθ(x|z)

is modeled using a DNN, this is impossible.

A first attempt to address the issue of computing p(x) could be through importance sampling

(Neal, 2001). That is, we choose a proposal distribution q(z|x) which is easy to sample from,

and rewrite the sum as an expectation with respect to this distribution:

pθ x = pθ x z p z
qϕ z x qϕ z x dz . (221)

Thus, by sampling from qφ(z|x) we can get a Monte Carlo estimate of p(x). However, this

requires generating samples and thus our estimates will be noisy. If our proposal distribution

is poor, the variance in the estimate can be very high.

An alternative approach that avoids these sampling issues is to use the variational approach

discussed in Sec. XIV. We know from Eq. (162) that we can write the log-likelihood as

log p x = DKL qϕ z x pθ z x, θ − Fqϕ
x , (222)

where the variational free energy is defined as

−Fqϕ
x ≡ 𝔼qϕ z x log pθ x, z − DKL qϕ z x p z . (223)

Mehta et al. Page 152

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In writing this term, we have used Bayes rule and Eq. (174). Since the KL-divergence is

strictly positive, the (negative) variational free energy is a lower-bound on the log-likelihood.

For this reason, in the VAE literature, it is often called the Evidence Lower BOund or

ELBO.

Equation (223) has a beautiful interpretation. The first term in this equation can be viewed as

a “reconstruction error”, where we start with data x, encode it into the latent representation

using our approximate posterior qφ(z|x), and then evaluate the log probability of the original

data given the inferred latents. For binary variables, this is just the cross-entropy which we

first encountered when studying logistic regression, cf. Sec. VII. The second term acts as a

regularizer and encourages the posterior distributions to be close to p(z). By maximizing the

ELBO, we minimize the KL-divergence between the approximate and true posterior. By

choosing a tractable qϕ(z|x), we make this feasible (see Fig. 72).

2. Training via the reparametrization trick

VAEs train models by minimizing the variational free energy (maximizing the ELBO).

Training a VAE is some-what complicated because we must simultaneously learn two sets of

parameters: the parameters θ that define our generative model pθ(x, z) as well as the

variational parameters ϕ in qϕ(z|x). The basic approach will be the same as for all DNN

models: we will use gradient descent with the variational free energy as the objective (cost)

function. For a dataset ℒ, we can write our cost function as

𝒞θ, ϕ ℒ =
x ∈ ℒ

−Fqϕ
x . (224)

Taking the gradient with respect to θ is easy since only the first term in Eq. (223) depends

on θ,

𝒞θ, ϕ x = 𝔼qϕ z x ∇θlog pθ x, z
∇θlog pθ x, z

(225)

where in the second line we have replaced the expectation value with a single Monte-Carlo

sample z drawn from qϕ(z|x) (see Fig. XVII.C.2). When pθ(x|z) is approximated by a neural

network, this can be calculated using backpropagation with the reconstruction error as the

objective function.

On the other hand, calculating the gradient with respect to the parameters ϕ is more

complicated since ϕ also appears in the expectation value 𝔼qϕ z|x . Ideally, we would like to

also use backpropagation to calculate this as well. It turns out that this can be done by a

simple change of variables that often goes under the name the “reparameterization trick”

(Kingma and Welling, 2013; Rezende et al., 2014). The basic idea is to change variables so

that ϕ no longer appears in the distribution we are taking an expectation value with respect

Mehta et al. Page 153

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

to. To do this, we express the random variable z qϕ z|x as some differentiable and invertible

transformation of another random variable ∈:

z = g ϵ, ϕ, x , (226)

where the distribution of ∈ is independent of x and ϕ. Then, we can replace expectation

values over qϕ(z|x) by expectation values over pz

𝔼qϕ z x f z = 𝔼pϵ
f z . (227)

Evaluating the derivative then becomes quite straight forward since

∇ϕ𝔼qϕ z x f z 𝔼pϵ
∇ϕ f z . (228)

Of course, when we do this we still need to be able to calculate the Jacobian of this change

of variables

dϕ x, ϕ = Det ∂z
∂ϵ (229)

since

log qϕ z x = log p ϵ − log dϕ x, ϕ . (230)

Since we can calculate gradients, we can now use back-propagation on the full the ELBO

objective function (we return to this below when we discuss concrete architectures and

implementations of VAE).

One of the problems that commonly occurs when training VAEs by performing a stochastic

optimization of the ELBO (variational free energy) is that it often gets stuck in undesirable

local minima, especially at the beginning of the training procedure (Bowman et al., 2015;

Kingma et al., 2017; Sønderby et al., 2016). The underlying reason for this is that the ELBO

objective function can be improved in two qualitatively different ways corresponding to each

of the two terms in Eq. (223): by minimizing the reconstruction error or by making the

posterior distribution qϕ(z|x) to be close to p(z) (Of course, the goal is to do both!). For

complex datasets, at the beginning of training when the reconstruction error is extremely

poor, the model often quickly learns to make q(z|x) ≈ p(z) and gets stuck in this local

minimum. For this reason, in practice it is found that it makes sense to modify the ELBO

objective to use an optimization schedule of the form

Mehta et al. Page 154

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

𝔼qϕ z x log pθ x, z − βDKL qϕ z x p z (231)

where β is slowly annealed from 0 to 1 (Bowman et al., 2015; Sønderby et al., 2016). An

alternative regularization is the “method of free bits”: modifying the objective function of

ELBO to ensure that on average qϕ(z|x) has at least λ natural units of information about p(z)

(see Kingma Ph.D thesis (Kingma et al., 2017) for details).

These observations hints at the more general connection between VAEs and information

theory that we turn to in the next section.

3. Connection to the information bottleneck

There is a fundamental connection between the variational autoencoder objective and the

information bottleneck (IB) for lossy compression (Tishby et al., 2000). The information

bottleneck imagines we have input data x that is correlated with another variable of interest,

y, and we are given access to the joint distribution, p(x, y). Our task is to take x as input and

compress it in such a way as to retain as much information as possible about the relevance

variable, y. To do this, Tishby et al. propose to maximize the objective function

LIB = I y; z − βI x; z (232)

over a stochastic encoding distribution q(z|x), where z is our compression of the input, and β
is a tradeoff parameter that sets the relative preference of compression and accuracy, and I(y;

z) is the mutual information between y and z. Note that we choose a slightly different but

equivalent form of the objective relative to Tishby et al.. This objective is only known to

have a closed-form solution when x and y are jointly Gaussian (Chechik et al., 2005).

Otherwise, the optimization can be performed through a Blahut-Arimoto type iterative

update scheme (Arimoto, 1972; Blahut, 1972). However, this is only guaranteed to converge

to a local optimum. A significant difficulty in implementing IB is that it requires knowledge

of the joint distribution p(x, y) and that we must be able to compute the mutual information,

a notoriously difficult quantity to estimate from samples. Hence, IB has in recent years been

utilized less than it might otherwise.

To address these problems, variational approximations to the IB objective function have

been developed (Alemi et al., 2016; Chalk et al., 2016). These approximations, when applied

to a particular choice of p(x, y) give the same objective as the variational autoencoder. Here

we follow the exposition from Alemi et al.(Alemi et al., 2016). To see this, consider a

dataset of N points, xi. We set x = i and y = xi in the IB objective, similar to (Slonim et al.,
2005; Strouse and Schwab, 2017). We choose p(i) = 1/N and p(x|i) = δ(x ‒ xi). That is, we

would like to find a compression of the data that preserves information about data point

location while reducing information about data point identity.

Mehta et al. Page 155

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Imagine that we are unable to directly work with the decoder p(x|z). The first approximation

replaces the exact decoder inside the logarithm with an approximation, q(x|z). Due to the

positivity of KL-divergence, namely,

DKL p x z q x z ≥ 0

dxp x z log p x z ≥ dxp x z log q x z ,

(233)

we have

I x; z = dxdzp x p z x log p x z
p x

≥ dxdzp x p z x log q x z + H p x

≥ dxdzp x p z x log q x z ,

(234)

where Hp(x) ≥ 0 is the Shannon entropy of x. This quantity can be estimated from data

samples (i, xi) after drawing from p(z|i) = p(z|xi). Similarly, we can replace the prior

distribution of the encoding, p(z) = ∫ dx p(x)q(z|x) which is typically intractable, with a

tractable q(z) to get

I i; z ≤ 1
N i

∫ dzp z xi log
p z xi

q z (235)

Putting these two bounds Eqs. (234) and (235) together and note that x = i and y = xi, we get

an upper bound for the IB objective that takes the same form as the VAE objective Eq. (231)

we saw earlier:

LIB = I x; z − βI y; z

≤ ∫ dxp x 𝔼p z x log q x z

(236)

−β 1
N i

DKL p z xi q z . (237)

Note that in Eq. (236) we have a conditional distribution of x given z but not their joint

distribution inside the expectation, which was the case in Eq. (231). This is due to that we

dropped the entropy term pertaining to x, which is irrelevant in the optimization procedure.

In fact, this objective has been explored and is called a β-VAE (Higgins et al., 2016). It’s

interesting to note that in the case of IB, the variational approximations are with respect to

Mehta et al. Page 156

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the decoder and prior, whereas in the VAE, the variational approximations are with respect

to the encoder.

D. VAE with Gaussian latent variables and Gaussian encoder

Our discussion of VAEs thus far has been quite abstract. In this section, we discuss one of

the most widely employed VAE architectures: a VAE with factorized Gaussian posteriors,

qϕ z|x = 𝒩 z, μ x , diag σ2 x and standard normal latent variables p z = 𝒩 0, I . The

training and implementation simplifies greatly here because we can analytically workout the

term DKL(qϕ(z|x)|p(z)).

1. Implementing the Gaussian VAE

We now show how we can combine analytic expressions for the KL-divergence with

backpropagation to efficiently implement a Gaussian VAE. We start by first deriving analytic

expressions for DKL(qϕ(z|x)|p(z)) in terms of the means µ(x) and variances σ2(x). This is just

a simple exercise in Gaussian integrals. For notational convenience, we drop the x-

dependence of the means µ(x), variances σ2(x), and qϕ(x). A straight-forward calculation

gives

dzqϕ z log p z = 𝒩 z, μ x , diag σ2 x log 𝒩 0, I

= − J
2log 2π − 1

2 j = 1

J
(μ j

2 + log σ j
2),

(238)

where J is the dimension of the latent space. An almost identical calculation yields

dzqϕ z log qϕ z = − J
2log 2π − 1

2 j = 1

J
(1 + σ j

2) . (239)

Combining these equations gives

−DKL qϕ z x p z = 1
2 j = 1

J
(1 + log σ j

2 x − μ j
2 x − σ j

2 x) . (240)

This analytic expression allows us to implement the Gaussian VAE in a straight forward way

using neural networks. The computational graph for this implementation is shown in Fig. 74.

Notice that since the parameters are all compositions of differentiable functions, we can use

standard backpropagation algorithms to train VAEs.

2. VAEs for the MNIST dataset

In Notebook 19, we have implemented a VAE using Keras and trained it using the MNIST

dataset. The basic architecture is the one describe above. All figures were generated with a

Mehta et al. Page 157

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

VAE that has a latent space of dimension 2. The architecture of both the encoder and

decoder is a Multi-layer Perceptron (MLPs) – neural networks with a single hidden layer.

For this example, we take the dimension of the hidden layer for both neural networks to be

256. We trained the VAE using the RMS-prop optimizer for 50 epochs.

We can visualize the embedding in the latent space by plotting z of the test set and coloring

the points by digit identity [0–9] (see Figure XVII.D.2). Notice that in general, digits that are

similar end up being closer to each other in the latent space. However, this is not always the

case (see bright green points for example). This is a general feature of these low-

dimensional embeddings and we saw a similar phenomenon when we examined t-SNE in

Section XII.

The real advantage that VAEs offer over embeddings such as t-SNE is that they are

generative models. Given a set of examples, we can generate new examples – or fantasy

particles as they are commonly called in ML – by sampling the latent space z and then using

the decoder to map these latent variables to new examples. The results of this procedure are

shown in Figure XVII.D.2. In the top figure, we sample the latent space uniformly in a 5 × 5

grid. Notice that this results in extremely similar examples through much of the latent space.

The underlying reason for this is that uniform sampling does not respect the underlying

Gausssian structure of the latent space z. In the bottom figure, we perform a uniform

sampling on the probability p(z) and mapped this back to the latent space using the inverse

Cumulative Distribution Function (CDF) of the Gaussian. We see that the diversity of the

generated examples is much higher for this sampling procedure.

This example is indicative of a more general problem: once we have learned a generative

model how should we sample latent spaces (White, 2016). This is especially important in

high-dimensional spaces where direct visualization is not possible. Often certain directions

in the latent space can have different meanings. A particularly striking visual illustration is

the “smile vector” that interpolates between smiling and frowning faces (White, 2016).

3. VAEs for the 2D Ising model

In Notebook 20, we used an almost identical architecture (though coded in a slightly

different way) to train a VAE on the Ising dataset discussed through out the review. The only

differences between the two VAEs are that the visible layer of the Ising VAE now has 1600

units (our samples are 40 40 instead of the 28 28 MNIST images) and we have changed the

standard deviation of the Gaussian of the latent variables p(z) from σ = 1 to σ = 0.2.

We once again visualize the embedding learned by the VAE by plotting z and coloring the

points by the temperature at which the sample was drawn (see Figure XVII.D.3 top). Notice

that the latent space has learned a lot of the physics of the Ising model. For example, the first

VAE dimension is just the magnetization (Fig. XVII.D.3 bottom). This is not surprising

since we saw in Section XII that the first principal component of a PCA also corresponded

to the magnetization.

We now ask how well the VAE can generate new examples (see Fig. 78). We see that the

examples look quite different from real Ising configurations – they lack the large scale

Mehta et al. Page 158

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

patchiness seen in the critical region. They mostly turn out to be unstructured speckles that

reflect only the average probability that a pixel is on in a region. This is not surprising since

our VAE has no spatial structure, has only two latent dimensions, and the cost function does

not know about “correlations between spins” : there is very little information about

correlations in the binary cross-entropy which we use to measure recon-struction errors. The

reader is encouraged to play with the corresponding notebook and generate examples as we

change the latent dimension and/or choose modified architectures such as decoders based on

CNNs instead of MLPs.

This example also shows how much easier it is to dis-criminate between labeled data than it

is to learn how to generate new examples from an unlabeled dataset. This is true in all

spheres of machine learning. This is also one of the reasons that generative models are one

of the cutting edge areas of modern Machine Learning research and there are likely to be a

barrage of new techniques for generative modeling in the next few years.

XVIII. OUTLOOK

In this review, we have attempted to give the reader the intellectual and practical tools to

engage with Machine Learning (ML), data science, and parts of modern statistics. We have

tried to emphasize that ML differs from ordinary statistics in that the goal is to predict rather

than to fit. For this reason, all the techniques discussed here have to navigate important

tensions that lie at the heart of ML. The most prominent instantiation of these inherent

tradeoffs is the bias-variance tradeoff, which is perhaps the only universal principle in ML.

Identifying how these tradeoffs manifest in a particular algorithm is the key to constructing

and training powerful ML methods.

The immense progress in computing power and the corresponding availability of large

datasets ensure that ML will be an important part of the physics toolkit. In the future, we

expect ML to be a core competency of physicists much like linear algebra, group theory, and

differential equations. We hope that this review will play some small part toward this

aspirational goal.

We wrote this review to provide a relatively concise introduction to ML using ideas and

language familiar to physicists (though the review ended up being almost twice the planned

length). In writing the review, we have tried to accomplish two somewhat disparate tasks.

First, we have tried to highlight more abstract and theoretical considerations to show the

unity of ML and statistical learning. Many ML techniques can be understood by starting

with some key concepts from statistical learning (MLE, bias-variance tradeoff,

regularization) and combining them with core concepts familiar from statistical physics

(Monte-Carlo, gradient descent, variational methods and MFT). Despite the high-level

similarities between all the methods presented here, the way that these concepts manifest in

any given technique is often quite clever and understanding these “hacks” is the key to

understanding why some ML techniques turn out to be so powerful and others not so much.

ML, in this sense, is as much an art as a science. Second, we have tried to give the reader the

practical know-how to start using the tools and concepts from ML for immediately solving

Mehta et al. Page 159

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

problems. We believe the accompanying python notebooks and the emphasis on coding in

python have accomplished this task.

A. Research at the intersection of physics and ML

We hope the review catalyzes more research at the intersection of physics and machine

learning. Here we briefly highlight a few promising research directions. We note that this list

is far from comprehensive.

• Applying ML to solve physics problems.—One theme that has reoccurred through

out the review is that ML is most effective in settings with well defined objectives and lots of

data. For this reason, we expect ML to become a core competency of data rich fields such as

high-energy experiments and astronomy. However, ML may also prove to be useful for

helping further our physical understanding through data-driven approach to other branches

of physics that may not be immediately obvious, such as quantum physics (Dunjko and

Briegel, 2017). For example, recent works have used ideas from ML to investigate disparate

topics such as non-local correlations (Canabarro et al., 2018), disordered materials and

glasses (Schoenholz, 2017), electronic structure calculations (Grisafi et al., 2017) and

numerical analysis of ferromagnetic resonances in thin films (Tomczak and Puszkarski,

2018), designing and analyzing quantum materials by integrating ML with existing

techniques such as Dynamical Mean Field Theory (DMFT) (Arsenault et al., 2014), in the

study of inflation (Rudelius, 2018), and even for experimental learning of quantum states by

using ML to aid in quantum tomography (Rocchetto et al., 2017). For a comprehensive

review of ML methods in seismology, see (Kong et al., 2018).

• Machine Learning on quantum computers.—Another interesting area of research

that is likely to grow is asking if and how quantum computers can help improve state-of-the

art ML algorithms (Arunachalam and de Wolf, 2017; Benedetti et al., 2016, 2017; Bromley

and Rebentrost, 2018; Ciliberto et al., 2017; Daskin, 2018; Innocenti et al., 2018; Mitarai et
al., 2018; Perdomo-Ortiz et al., 2017; Rebentrost et al., 2017; Schuld et al., 2017; Schuld

and Killoran, 2018; Schuld et al., 2015). Concrete examples that seek to extend some of the

basic ideas and methods we introduced in this review to the quantum computing realm

include: algorithms for quantum-assisted gradient descent (Kerenidis and Prakash, 2017;

Rebentrost et al., 2016), classification (Schuld and Petruccione, 2017), and Ridge regression

(Yu et al., 2017). Interest in this field will undoubtedly grow once reliable quantum

computers become available (see also this recent review (Dunjko and Briegel, 2017)).

• Monte-Carlo Methods.—An interesting area that has seen a renewed interest with

Bayesian modeling is the development of new Monte-Carlo methods for sampling complex

probability distributions. Some of the workhorses of modern Machine Learning – Annealed

Importance Sampling (AIS) (Neal, 2001) and Hamiltonian or Hybrid Monte-Carlo (HMC)

(Neal et al., 2011) – are intimately related to physics. As pointed out by Radford Neal, AIS

is just the Jarzynski inequality (Jarzynski, 1997) as a Monte-Carlo method and HMC was

developed by physicists and exploits Hamiltonian dynamics to improve proposal

distributions.

Mehta et al. Page 160

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• Statistical physics style theory of Deep Learning.—Many techniques in ML

have origins in statistical physics. Yet, a physics-style theory of Deep Learning remains

elusive. A key question is to ask when and why these models manage to generalize well.

Physicists are only beginning to ask these questions (Advani and Saxe, 2017; Mehta and

Schwab, 2014; Saxe et al., 2013; Shwartz-Ziv and Tishby, 2017). But right now, it is fair to

say that the insights remain scattered and a cohesive theoretical understanding is lacking.

• Biological physics and ML.—Biological physics is generating ever more datasets in

fields ranging from neuroscience to evolution and immunology. It is likely that ML will be

an important part of the biophysics toolkit in the future. Many of the authors of this review

were inspired to engage with ML for this reason.

• Using ideas from physics to develop new ML algorithms.—Many of the core

ideas of ML from Monte-Carlo techniques to variational methods have their origin in

physics. There has been a tremendous amount of recent work developing tools to understand

physical systems that may be of potential use to ML. For example, in quantum condensed

matter techniques such as DMRG, MERA, etc. have enriched both our practical and

conceptual understandings (Stoudenmire and White, 2012; Vidal, 2007; White, 1992). It will

be interesting to figure how and if these numerical methods can be translated from a physics

to a ML setting. There are tantalizing hints that this is likely to be a fruitful direction (Han et
al., 2017; Stoudenmire, 2018; Stoudenmire and Schwab, 2016).

B. Topics not covered in review

Despite the considerable length of the review, we have had to make many omissions for the

sake of brevity. It is our hope and belief that after reading this review the reader will have the

conceptual and practical knowledge to quickly learn about these other topics. Among the

most prominent topics missing from this review are:

• Temporal/Sequential Data.—We have not covered techniques for dealing with

temporal or sequential data. Here, too there are many connections with statistical physics. A

powerful class of models for sequential data called Hidden Markov Models (Rabiner, 1989)

that utilize dynamical programming techniques have natural statistical physics

interpretations in terms of transfer matrices (see (Mehta et al., 2011) for explicit example of

this). Recently, Recurrent Neural Networks (RNNs) have become an important and powerful

tool for dealing with sequence data (Goodfellow et al., 2016). RNNs generalize many of the

ideas discussed in the DNN section to deal with temporal data.

• Reinforcement Learning.—Many of the most exciting developments in the last five

years have come from combining ideas from reinforcement learning with deep neural

networks (Mnih et al., 2015; Sutton and Barto, 1998). RL traces its origins to behaviourist

psychology, when it was conceived as a way to explain and study reward-based decision

making. RL was put on solid mathematical grounds in the 50’s by Richard Bellman and

collaborators, and has by now become an inseparable part of robotics and artificial

intelligence. RL is a field of Machine Learning, in which an agent learns how to master

performing a specific task through an interaction with its environment. Depending on the

Mehta et al. Page 161

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

reward it receives, the agent chooses to take an action affecting the environment, which in

turn determines the value of the next received reward, and so on. The long-term goal of the

agent is to maximise the cumulative expected return, thus improving its performance in the

longer run. Shadowed by more traditional optimal control algorithms, Reinforcement

Learning has only recently taken off in physics (Albarran-Arriagada et al., 2018; August and

Hernández-Lobato, 2018; Bukov, 2018; Bukov et al., 2018; Cárdenas-López et al., 2017;

Chen et al., 2014; Chen and Xue, 2019; Dunjko et al., 2017; Fösel et al., 2018; Lamata,

2017; Melnikov et al., 2017; Neukart et al., 2017; Niu et al., 2018; Ramezanpour, 2017;

Reddy et al., 2016b; Sriarunothai et al., 2017; Zhang et al., 2018). Of particular interest are

biophysics inspired works that seek to use RL to understand navigation and sensing in

turbulent environments (Colabrese et al., 2017; Masson et al., 2009; Reddy et al., 2016a;

Vergassola et al., 2007).

• Support Vector Machines (SVMs) and Kernel Methods.—SVMs and kernel

methods are a powerful set of techniques that work well when the amount of training data is

limited (Burges, 1998). The mathematics and theory of SVM are very different from

statistical physics and for this reason we chose not to include them here. However, SVMs

and kernel methods have played an extremely important role in ML and are worth

understanding.

C. Rebranding Machine Learning as “Artificial Intelligence”

The immense scientific progress in ML has also been accompanied by a massive public

relations effort centered around Silicon Valley. Starting with the success of ImageNet (the

most prominent early use of GPUs for training large models) and the widespread adoption of

Deep Learning based techniques by the Silicon Valley companies, there has been a

deliberate move to rebrand modern ML as “artificial intelligence” or AI (see graphs in (Katz,

2017)). Recently, computer scientist Michael I. Jordan (who is famously known for his

formalization of variational inference, Bayesian network, and expectation-maximization

algorithm in machine learning research) cautioned that “ This confluence of ideas and
technology trends has been rebranded as “AI” over the past few years. This rebranding is
worthy of some scrutiny “(Jordan, 2018).

AI, by design, is an ambiguous term that mixes aspirations with reality. It also conflates the

statistical ideas that form the basis of modern ML with the more commonplace notions

about what humans and behavioral scientists mean by intelligence (see (Lake et al., 2017)

for an enlightening and important modern discussion of this distinction from a quantitative

cognitive science point of view as well as (Dreyfus, 1965) for a surprisingly relevant

philosophy-based critique from 1965).

Almost all the techniques discussed here rely on optimizing a pre-specified objective

function on a given dataset. Yet, we know that for large, complex models changing the data

distribution or the goal can lead to an immediate degradation of performance. Deep

networks have poor generalizations to even a slightly different context (the infamous

Validation-Test set mismatch). This inability to abstract and generalize is a common

criticism lobbied against branding modern ML techniques as AI (Lake et al., 2017). For all

Mehta et al. Page 162

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

these reasons, we have chosen to use the term Machine Learning rather than artificial

intelligence through out the review.

This is far from the first time we have seen the use of the term artificial intelligence and the

grandiose promises that it implies. In fact, the early 1950’s and 1960’s as well as the early

1980’s saw similar AI bubbles (see this interesting summary by Luke Muehlhauser for Open

Phi-lanthropy (Muehlhauser, 2016)). These AI bubbles have been followed by what have

been dubbed “AI Winters” (McDermott et al., 1985).

The “Singularity” may not be coming but the advances in computing and the availability of

large data sets likely ensure that the kind of statistical learning frameworks discussed are

here to stay. Rather than a general artificial intelligence, the kind of techniques presented

here seem to be best suited for three important tasks: (a) automating prediction from lots of

labeled examples in a narrowly-defined setting (b) learning how to parameterize and capture

the correlations of complex probability distributions, and (c) finding policies for tasks with

well-defined goals and clear rules. We hope that this review has given the reader enough

conceptual tools to start forming their own opinions about reality and hype when it comes to

modern ML research. As Michael I. Joran puts it, “…if the acronym “AI” continues to be
used as placeholder nomenclature going forward, let’s be aware of the very real limitations
of this placeholder. Let’s broaden our scope, tone down the hype and recognize the serious
challenges ahead “(Jordan, 2018).

D. Social Implications of Machine Learning

The last decade has also seen a systematic increase in the use and deployment of Machine

Learning techniques into new areas of life and society. Some of the readers of this review

may currently be (or eventually be) employed in industrial settings that seek to harness ML

for practical purposes. However, caution is in order when applying ML. Without foresight

and accountability, the scale and scope of modern ML algorithms can lead to large scale

unaccountable and undemocratic outcomes that can reinforce or even worsen existing

inequality and inequities. Mathematician and data scientist turned social commentator Cathy

O’Neil has dubbed the indiscriminate use of these Big Data techniques “Weapons of Math

Destruction” (O’Neil, 2017).

When ML is used in a social context, abstract statistical relationships have real social

consequences. False positives can mean the difference between life and death (for example

in the context of “signature drone strikes”) (Mehta, 2015). ML algorithms, like all

techniques, have important limitations and should be employed with great caution. It is our

hope that ML practitioners keep this in mind when working in social settings.

All algorithms involve inherent tradeoffs in fairness, a point formalized by computer

scientist Jon Kleinberg and collaborators in a very interesting recent paper (Kleinberg et al.,
2016). It is far from clear how to make algorithms fair for all people involved. This is even

more true with methods like Deep Learning that are hard to interpret. All ML algorithms

have implicit assumptions and choices reflected in the datasets we use to the kind of

functions we choose to optimize. It is important to remember that there is no “ view from

nowhere” (Adam, 2006; Katz, 2017) – all ML algorithms reflect a point of view and a set of

Mehta et al. Page 163

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

assumptions about the world we live in. For this reason, we hope that ML practitioners and

data scientists will take the time to consider the social consequences of their actions. For

example, developing a Hippocratic Oath for data scientists is now being considered

(Simonite, 2018). Doing no harm seems like a good start for making sure that we harness

ML for the benefit of all members of society.

ACKNOWLEDGMENTS

PM and DJS would like to thank Anirvan Sengupta, Justin Kinney, and Ilya Nemenman for useful conversations
during the ACP working group. The authors are also grateful to all readers who provided valuable feed-back on this
manuscript while it was under peer review. PM, CHW, and AD were supported by Simon’s Foundation in the form
of a Simons Investigator in the MMLS and NIH MIRA program grant: 1R35GM119461. MB acknowledges support
from the Emergent Phenomena in Quantum Systems initiative of the Gordon and Betty Moore Foundation, the ERC
synergy grant UQUAM, and the U.S. Department of Energy, Office of Science, Office of Advanced Scientific
Computing Research, Quantum Algorithm Teams Program. DJS was supported as a Simons Investigator in the
MMLS and by NIH K25 grant GM098875–02. PM and DJS would like to thank the NSF grant: PHYD1066293 for
supporting the Aspen Center for Physics (ACP) for facilitating discussions leading to this work. The authors are
pleased to acknowledge that the computational work reported on in this paper was performed on the Shared
Computing Cluster which is administered by Boston University’s Research Computing Services.

Appendix A:: Overview of the Datasets used in the Review

1. Ising dataset

The Ising dataset we use throughout the review was generated using the standard Metropolis

algorithm to generate a Markov Chain. The full dataset consist of 16 10000 samples of 40 40

spin configurations (i.e. the design matrix has 160000 samples and 1600 features) drawn at

temperatures 0.25, 0.5, 4.0. The samples are drawn for the Boltzmann distribution of the

two-dimensional ferromagnetic Ising model on a 40 40 square lattice with periodic boundary

conditions.

2. SUSY dataset

The SUSY dataset was generated by Baldi et al (Baldi et al., 2014) to explore the efficacy of

using Deep Learning for classifying collision events. The dataset is downloadable from the

UCI Machine Learning Repository, a wonderful resource for interesting datasets. Here we

quote directly from the paper:

The data has been produced using Monte Carlo simulations and contains events

with two leptons (electrons or muons). In high energy physics experiments, such as

the AT-LAS and CMS detectors at the CERN LHC, one major hope is the discovery

of new particles. To accomplish this task, physicists attempt to sift through data

events and classify them as either a signal of some new physics process or particle,

or instead a background event from understood Standard Model processes.

Unfortunately we will never know for sure what underlying physical process

happened (the only information to which we have access are the final state

particles). However, we can attempt to define parts of phase space that will have a

high percentage of signal events. Typically this is done by using a series of simple

requirements on the kinematic quantities of the final state particles, for example

having one or more leptons with large amounts of momentum that is transverse to

Mehta et al. Page 164

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the beam line (pT). Here instead we will use logistic regression in order to attempt

to find out the relative probability that an event is from a signal or a background

event and rather than using the kinematic quantities of final state particles directly

we will use the output of our logistic regression to define a part of phase space that

is enriched in signal events. The dataset we are using has the value of 18 kinematic

variables (“features”) of the event. The first 8 features are direct measurements of

final state particles, in this case the pT, pseudo-rapidity, and azimuthal angle of two

leptons in the event and the amount of missing transverse momentum (MET)

together with its azimuthal angle. The last ten features are functions of the first 8

features; these are high-level features derived by physicists to help discriminate

between the two classes. You can think of them as physicists attempt to use non-

linear functions to classify signal and background events and they have been

developed with a lot of deep thinking on the part of physicist. There is however, an

interest in using deep learning methods to obviate the need for physicists to

manually develop such features. Benchmark results using Bayesian Decision Trees

from a standard physics package and 5-layer neural networks and the dropout

algorithm are presented in the original paper to compare the ability of deep-

learning to bypass the need of using such high level features. We will also explore

this topic in later notebooks. The dataset consists of 5 million events, the first

4,500,000 of which we will use for training the model and the last 500,000

examples will be used as a test set.

3. MNIST Dataset

The MNIST dataset is one of the simplest and most widely used Machine Learning Datasets.

The MNIST dataset consists of hand-written images of numerical characters 0 9 and consists

of a training set of 60,000 examples, and a test set of 10,000 examples (LeCun et al., 1998a).

Information about the MNIST database and its historical importance can be found at Yann

Lecun’s wedsite: http://yann.lecun.com/exdb/mnist/. A brief description from the website:

The original black and white (bilevel) images from NIST were size normalized to

fit in a 20×20 pixel box while preserving their aspect ratio. The resulting images

contain grey levels as a result of the anti-aliasing technique used by the

normalization algorithm. the images were centered in a 28×28 image by computing

the center of mass of the pixels, and translating the image so as to position this

point at the center of the 28×28 field.

The MNIST is often included by default in many modern ML packages.

REFERENCES

Abu-Mostafa, Yaser S, Magdon-Ismail Malik, and Hsuan-Tien Lin (2012), Learning from data, Vol. 4
(AMLBook New York, NY, USA:).

Ackley, David H, Hinton Geoffrey E, and Sejnowski Terrence J (1987), “A learning algorithm for
boltzmann machines,” in Readings in Computer Vision (Elsevier) pp. 522–533.

Adam, Alison (2006), Artificial knowing: Gender and the thinking machine (Routledge).

Advani Madhu, and Ganguli Surya (2016), “Statistical mechanics of optimal convex inference in high
dimensions,” Physical Review X 6 (3), 031034.

Mehta et al. Page 165

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://yann.lecun.com/exdb/mnist/

Advani Madhu, Lahiri Subhaneil, and Ganguli Surya (2013), “Statistical mechanics of complex neural
systems and high dimensional data,” Journal of Statistical Mechanics: Theory and Experiment 2013
(03), P03014.

Advani, Madhu S, and Saxe Andrew M (2017), “High-dimensional dynamics of generalization error in
neural networks,” arXiv preprint arXiv:1710.03667

Aitchison Laurence, Corradi Nicola, and Latham Peter E (2016), “Zipfs law arises naturally when
there are underlying, unobserved variables,” PLoS computational biology 12 (12), e1005110.
[PubMed: 27997544]

Albarran-Arriagada F, Retamal JC, Solano E, and Lamata L (2018), “Measurement-based adaptation
protocol with quantum reinforcement learning,” arXiv:1803.05340

Alemi Alexander A, Ian Fischer, Joshua V Dillon, and Kevin Murphy (2016), “Deep variational
information bottleneck,” arXiv preprint arXiv:1612.00410

Alemi Alireza, and Abbara Alia (2017), “Exponential capacity in an autoencoder neural network with
a hidden layer,” arXiv preprint arXiv:1705.07441

Amit Daniel J (1992), Modeling brain function: The world of attractor neural networks (Cambridge
university press).

Amit Daniel J, Hanoch Gutfreund, and Haim Sompolinsky (1985), “Spin-glass models of neural
networks,” Physical Review A 32 (2), 1007.

Andrieu Christophe, Nando De Freitas Doucet, and Jordan Michael I (2003), “An introduction to
mcmc for machine learning,” Machine learning 50 (1–2), 5–43.

Arai Shunta, Ohzeki Masayuki, and Tanaka Kazuyuki (2017), “Deep neural network detects quantum
phase transition,” arXiv preprint arXiv:1712.00371

Arimoto Suguru (1972), “An algorithm for computing the capacity of arbitrary discrete memoryless
channels,” IEEE Transactions on Information Theory 18 (1), 14–20.

Arsenault Louis-François, Alejandro Lopez-Bezanilla, von Lilienfeld O Anatole, and Millis Andrew J
(2014), “Machine learning for many-body physics: the case of the anderson impurity model,”
Physical Review B 90 (15), 155136.

Arunachalam Srinivasan, and Ronald de Wolf (2017), “A survey of quantum learning theory,” arXiv
preprint arXiv:1701.06806

August Moritz, and José Miguel Hernández-Lobato (2018), “Taking gradients through experiments:
Lstms and memory proximal policy optimization for black-box quantum control,” arXiv:
1802.04063

Baireuther P, TE O’Brien, Tarasinski BCWJ (2017), “Machine-learning-assisted correction of
correlated qubit errors in a topological code,” arXiv preprint arXiv:1705.07855

Baity-Jesi M, Sagun L, Geiger M, Spigler S, Ben Arous G, Cammarota C, LeCun Y, Wyart M, and
Biroli G (2018), “Comparing dynamics: Deep neural networks versus glassy systems,”.

Baldassi Carlo, Gerace Federica, Hilbert J Kappen, Carlo Lucibello, Saglietti Luca, Tartaglione Enzo,
and Zecchina Riccardo (2017), “On the role of synaptic stochasticity in training low-precision
neural networks,” arXiv preprint arXiv:1710.09825

Baldassi Carlo, Gerace Federica, Saglietti Luca, and Zecchina Riccardo (2018), “From inverse
problems to learning: a statistical mechanics approach,” in Journal of Physics: Conference Series,
Vol. 955 (IOP Publishing) p. 012001.

Baldi Pierre, Sadowski Peter, and Whiteson Daniel (2014), “Searching for exotic particles in high-
energy physics with deep learning,” Nature communications 5, 4308.

Barber David (2012), Bayesian reasoning and machine learning (Cambridge University Press).

Barnes Josh, and Hut Piet (1986), “A hierarchical o (n logn) force-calculation algorithm,” nature 324
(6096), 446.

Barra Adriano, Bernacchia Alberto, Santucci Enrica, and Contucci Pierluigi (2012), “On the
equivalence of hopfield networks and boltzmann machines,” Neural Networks 34, 1–9. [PubMed:
22784924]

Barra Adriano, Genovese Giuseppe, Sollich Peter, and Tantari Daniele (2016), “Phase transitions in
restricted boltzmann machines with generic priors,” arXiv preprint arXiv:1612.03132

Mehta et al. Page 166

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Barra Adriano, Genovese Giuseppe, Tantari Daniele, and Sollich Peter (2017), “Phase diagram of
restricted boltzmann machines and generalised hopfield networks with arbitrary priors,” arXiv
preprint arXiv:1702.05882

Battiti Roberto (1992), “First-and second-order methods for learning: between steepest descent and
newton’s method,” Neural computation 4 (2), 141–166.

Benedetti Marcello, John Realpe-Gómez, Rupak Biswas, and Alejandro Perdomo-Ortiz (2016),
“Quantum-assisted learning of graphical models with arbitrary pairwise connectivity,” arXiv
preprint arXiv:1609.02542

Benedetti Marcello, John Realpe-Gómez, and Alejandro Perdomo-Ortiz (2017), “Quantum-assisted
helmholtz machines: A quantum-classical deep learning framework for industrial datasets in near-
term devices,” arXiv preprint arXiv:1708.09784

Bengio Yoshua (2012), “Practical recommendations for gradient-based training of deep architectures,”
in Neural networks: Tricks of the trade (Springer) pp. 437–478.

Bennett Robert (1969), “The intrinsic dimensionality of signal collections,” IEEE Transactions on
Information Theory 15 (5), 517–525.

Bény Cédric (2018), “Inferring relevant features: from qft to pca,” arXiv preprint arXiv:1802.05756

Berger James O, and Bernardo José M (1992), “On the development of the reference prior method,”
Bayesian statistics 4, 35–60.

Bickel Peter J, and Freedman David A (1981), “Some asymptotic theory for the bootstrap,” The
Annals of Statistics, 1196–1217.

Bickel Peter J, Bo Li, Tsybakov Alexandre B, van de Geer Sara A, Bin Yu, Teófilo Valdés, Carlos
Rivero, Jianqing Fan, and Aad van der Vaart (2006), “Regularization in statistics,” Test 15 (2),
271–344.

Bishop CM (2006), Pattern recognition and machine learning (springer).

Bishop Chris M (1995a), “Training with noise is equivalent to tikhonov regularization,” Neural
computation 7 (1), 108–116.

Bishop Christopher M (1995b), Neural networks for pattern recognition (Oxford university press).

Blahut Richard (1972), “Computation of channel capacity and rate-distortion functions,” IEEE
transactions on Information Theory 18 (4), 460–473.

Bottou Léon (2012), “Stochastic gradient descent tricks,” in Neural networks: Tricks of the trade
(Springer) pp. 421–436.

Bowman Samuel R, Luke Vilnis, Oriol Vinyals, Dai Andrew M, Rafal Jozefowicz, and Samy Bengio
(2015), “Generating sentences from a continuous space,” arXiv preprint arXiv:1511.06349

Boyd Stephen, and Vandenberghe Lieven (2004), Convex optimization (Cambridge university press).

Bradde Serena, and Bialek William (2017), “Pca meets rg,” Journal of Statistical Physics 167 (3–4),
462–475. [PubMed: 30034029]

Breiman Leo (1996), “Bagging predictors,” Machine learning 24 (2), 123–140.

Breiman Leo (2001), “Random forests,” Machine learning 45 (1), 5–32.

Breuckmann Nikolas P, and Xiaotong Ni(2017), “Scalable neural network decoders for higher
dimensional quantum codes,” arXiv preprint arXiv:1710.09489

Broecker Peter, Assaad Fakher F, and Simon Trebst (2017), “Quantum phase recognition via
unsupervised machine learning,” arXiv preprint arXiv:1707.00663

Bromley Thomas R, and Patrick Rebentrost (2018), “Batched quantum state exponentiation and
quantum hebbian learning,” arXiv:1803.07039

Bukov Marin (2018), “Reinforcement learning for autonomous preparation of floquet-engineered
states: Inverting the quantum kapitza oscillator,” Phys. Rev. B 98, 224305.

Bukov Marin, Day Alexandre G. R., Sels Dries, Weinberg Phillip, Polkovnikov Anatoli, and Mehta
Pankaj (2018), “Reinforcement learning in different phases of quantum control,” Phys. Rev. X 8,
031086.

Burges Christopher JC (1998), “A tutorial on support vector machines for pattern recognition,” Data
mining and knowledge discovery 2 (2), 121–167.

Caio Marcello D, Marco Caccin, Paul Baireuther, Timo Hyart, and Michel Fruchart (2019), “Machine
learning assisted measurement of local topological invariants,” arXiv preprint arXiv:1901.03346

Mehta et al. Page 167

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Caldeira J, WLK Wu, Nord B, Avestruz C, Trivedi S, and Story KT (2018), “Deepcmb: Lensing
reconstruction of the cosmic microwave background with deep neural networks,” arXiv preprint
arXiv:1810.01483

Canabarro Askery, Brito Samuraí, and Chaves Rafael (2018), “Machine learning non-local
correlations,” arXiv preprint arXiv:1808.07069

Cárdenas-López FA, L Lamata JC Retamal, and Solano E (2017), “Generalized quantum
reinforcement learning with quantum technologies,” arXiv preprint arXiv:1709.07848

Carleo Giuseppe (2018), Private Communication

Carleo Giuseppe, Nomura Yusuke, and Imada Masatoshi (2018), “Constructing exact representations
of quantum many-body systems with deep neural networks,” arXiv preprint arXiv:1802.09558

Carleo Giuseppe, and Troyer Matthias (2017), “Solving the quantum many-body problem with
artificial neural networks,” Science 355 (6325), 602–606. [PubMed: 28183973]

Carrasquilla Juan, and Melko Roger G (2017), “Machine learning phases of matter,” Nature Physics 13
(5), 431.

Chalk Matthew, Marre Olivier, and Tkacik Gasper (2016), “Relevant sparse codes with variational
information bottle-neck,” in Advances in Neural Information Processing Systems, pp. 1957–1965.

Chamberland Christopher, and Ronagh Pooya (2018), “Deep neural decoders for near term fault-
tolerant experiments,” arXiv preprint arXiv:1802.06441

Chechik Gal, Globerson Amir, Tishby Naftali, and Weiss Yair (2005), “Information bottleneck for
gaussian variables,” Journal of machine learning research 6 (Jan), 165–188.

Chen Chunlin, Dong Daoyi, Li Han-Xiong, Chu Jian, and Tarn Tzyh-Jong (2014), “Fidelity-based
probabilistic q-learning for control of quantum systems,” IEEE transactions on neural networks
and learning systems 25 (5), 920–933. [PubMed: 24808038]

Chen Jing, Cheng Song, Xie Haidong, Wang Lei, and Xiang Tao (2018), “Equivalence of restricted
boltzmann machines and tensor network states,” Phys. Rev. B 97, 085104.

Chen Jun-Jie, and Xue Ming (2019), “Manipulation of spin dynamics by deep reinforcement learning
agent,” arXiv preprint arXiv:1901.08748

Chen Tianqi, and Guestrin Carlos (2016), “Xgboost: A scalable tree boosting system,” in Proceedings
of the 22nd acm sigkdd international conference on knowledge discovery and data mining (ACM)
pp. 785–794.

Cheng Song, Chen Jing, and Wang Lei (2017), “Information perspective to probabilistic modeling:
Boltzmann machines versus born machines,” arXiv preprint arXiv:1712.04144

Ch’ng Kelvin, Vazquez Nick, and Khatami Ehsan (2017), “Unsupervised machine learning account of
magnetic transitions in the hubbard model,” arXiv preprint arXiv:1708.03350

Ciliberto Carlo, Herbster Mark, Alessandro Davide Ialongo, Massimiliano Pontil, Rocchetto Andrea,
Severini Simone, and Wossnig Leonard (2017), “Quantum machine learning: a classical
perspective,”

Cohen Nadav, Sharir Or, and Shashua Amnon (2016), “On the expressive power of deep learning: A
tensor analysis,” in Conference on Learning Theory, pp. 698–728.

Colabrese Simona, Gustavsson Kristian, Celani Antonio, and Biferale Luca (2017), “Flow navigation
by smart microswimmers via reinforcement learning,” Physical review letters 118 (15), 158004.
[PubMed: 28452499]

Cossu Guido, Luigi Del Debbio, Tommaso Giani, Khamseh Ava, and Wilson Michael (2018),
“Machine learning determination of dynamical parameters: The ising model case,” arXiv preprint
arXiv:1810.11503

Cox Trevor F, and Michael AA Cox (2000), Multidimensional scaling (CRC press).

Cristoforetti Marco, Jurman Giuseppe, Nardelli Andrea I, and Cesare Furlanello (2017), “Towards
meaningful physics from generative models,” arXiv preprint arXiv:1705.09524

Dahl George, Mohamed Abdel-rahman, Hinton Geoffrey E, et al. (2010), “Phone recognition with the
mean-covariance restricted boltzmann machine,” in Advances in neural information processing
systems, pp. 469–477.

Daskin Ammar (2018), “A quantum implementation model for artificial neural networks,” Quanta, 7–
18.

Mehta et al. Page 168

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Davaasuren Amarsanaa, Suzuki Yasunari, Fujii Keisuke, and Koashi Masato (2018), “General
framework for constructing fast and near-optimal machine-learning-based decoder of the
topological stabilizer codes,” arXiv preprint arXiv:1801.04377

Day Alexandre GR, Bukov Marin, Weinberg Phillip, Mehta Pankaj, and Sels Dries (2019), “Glassy
phase of optimal quantum control,” Physical Review Letters 122 (2), 020601. [PubMed:
30720331]

Day Alexandre GR, and Mehta Pankaj (2018), “Validated agglomerative clustering,” in preparation

Decelle Aurélien, Fissore Giancarlo, and Furtlehner Cyril (2017), “Spectral learning of restricted
boltzmann machines,” arXiv preprint arXiv:1708.02917

Decelle Aurélien, Fissore Giancarlo, and Furtlehner Cyril (2018), “Thermodynamics of restricted
boltzmann machines and related learning dynamics,” arXiv preprint arXiv:1803.01960

Dempster Arthur P, Laird Nan M, and Rubin Donald B (1977), “Maximum likelihood from incomplete
data via the em algorithm,” Journal of the royal statistical society. Series B (methodological), 1–
38.

Deng Dong-Ling, Li Xiaopeng, and Sarma S Das (2017), “Quantum entanglement in neural network
states,” Physical Review X 7 (2), 021021.

Dietterich Thomas G, et al. (2000), “Ensemble methods in machine learning,” Multiple classifier
systems 1857, 1–15.

Do Chuong B, and Serafim Batzoglou (2008), “What is the expectation maximization algorithm?”
Nature biotechnology 26 (8), 897–899.

Domingos Pedro (2012), “A few useful things to know about machine learning,” Communications of
the ACM 55 (10), 78–87.

Donoho David L (2006), “Compressed sensing,” IEEE Transactions on information theory 52 (4),
1289–1306.

Dreyfus Hubert L (1965), “Alchemy and artificial intelligence,”

Du Simon S, Chi Jin, Lee Jason D, Jordan Michael I, Aarti Singh, and Barnabas Poczos (2017),
“Gradient descent can take exponential time to escape saddle points,” in Advances in Neural
Information Processing Systems, pp. 1067–1077.

Duchi John, Hazan Elad, and Singer Yoram (2011), “Adaptive subgradient methods for online learning
and stochastic optimization,” Journal of Machine Learning Research 12 (Jul), 2121–2159.

Dunjko Vedran, and Briegel Hans J (2017), “Machine learning and artificial intelligence in the
quantum domain,” arXiv preprint arXiv:1709.02779

Dunjko Vedran, Liu Yi-Kai, Wu Xingyao, and Taylor Jacob M (2017), “Super-polynomial and
exponential improvements for quantum-enhanced reinforcement learning,” arXiv preprint arXiv:
1710.11160

Efron B (1979), “Bootstrap methods: another look at the jackknife annals of statistics 7: 1–26,” View
Article Pub-Med/NCBI Google Scholar.

Efron Bradley, Hastie Trevor, Johnstone Iain, Tib-shirani Robert, et al. (2004), “Least angle
regression,” The Annals of statistics 32 (2), 407–499.

Eisen Michael B, Spellman Paul T, Brown Patrick O, and David Botstein (1998), “Cluster analysis and
display of genome-wide expression patterns,” Proceedings of the National Academy of Sciences
95 (25), 14863–14868.

Elith Jane, Phillips Steven J, Trevor Hastie, Miroslav Dudík, Yung En Chee, and Colin J Yates (2011),
“A statistical explanation of maxent for ecologists,” Diversity and distributions 17 (1), 43–57.

Ernst Oliver K, Thomas Bartol, Terrence Sejnowski, and Eric Mjolsness (2018), “Learning dynamic
boltzmann distributions as reduced models of spatial chemical kinetics,” arXiv preprint arXiv:
1803.01063

Ester Martin, Kriegel Hans-Peter, Sander Jörg, Xu Xiaowei, et al. (1996), “A density-based algorithm
for discovering clusters in large spatial databases with noise.” in Kdd, Vol. 96, pp. 226–231.

Faddeev Ludvig D, and Popov Victor N (1967), “Feynman diagrams for the yang-mills field,” Physics
Letters B 25 (1), 29–30.

Finol David, Lu Yan, Mahadevan Vijay, and Srivastava Ankit (2018), “Deep convolutional neural
networks for eigenvalue problems in mechanics,” arXiv preprint arXiv:1801.05733

Mehta et al. Page 169

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fisher Charles K, and Pankaj Mehta (2015a), “Bayesian feature selection for high-dimensional linear
regression via the ising approximation with applications to genomics,” Bioin-formatics 31 (11),
1754–1761.

Fisher Charles K, and Pankaj Mehta (2015b), “Bayesian feature selection with strongly regularizing
priors maps to the ising model,” Neural computation 27 (11), 2411–2422. [PubMed: 26378876]

Foreman Sam, Giedt Joel, Meurice Yannick, and Judah Unmuth-Yockey (2017), “Rg inspired machine
learning for lattice field theory,” arXiv preprint arXiv:1710.02079

Fösel Thomas, Tighineanu Petru, Weiss Talitha, and Marquardt Florian (2018), “Reinforcement
learning with neural networks for quantum feedback,” arXiv:1802.05267

Freitas Nahuel, Morigi Giovanna, and Dun-jko Vedran (2018), “Neural network operations and
susukitrotter evolution of neural network states,” arXiv preprint arXiv:1803.02118

Freund Yoav, Schapire Robert, and Abe Naoki (1999), “A short introduction to boosting,” Journal-
Japanese Society For Artificial Intelligence 14 (771–780), 1612.

Freund Yoav, and Schapire Robert E (1995), “A desicion-theoretic generalization of on-line learning
and an application to boosting,” in European conference on computational learning theory
(Springer) pp. 23–37.

Friedman Jerome, Hastie Trevor, and Tibshirani Robert (2001), The elements of statistical learning,
Vol. 1 (Springer series in statistics New York).

Friedman Jerome H (2001), “Greedy function approximation: a gradient boosting machine,” Annals of
statistics, 1189–1232.

Friedman Jerome H (2002), “Stochastic gradient boosting,” Computational Statistics & Data Analysis
38 (4), 367–378.

Friedman Jerome H, Popescu Bogdan E, et al. (2003), “Importance sampled learning ensembles,”
Journal of Machine Learning Research 94305

Fu Michael C (2006), “Gradient estimation,” Handbooks in operations research and management
science 13, 575–616.

Funai Shotaro Shiba, and Dimitrios Giataganas (2018), “Thermodynamics and feature extraction by
machine learning,” arXiv preprint arXiv:1810.08179

Gao Jun, Qiao Lu-Feng, Jiao Zhi-Qiang, Ma Yue-Chi, Hu Cheng-Qiu, Ren Ruo-Jing, Yang Ai-Lin,
Tang Hao, Yung Man-Hong, and Jin Xian-Min (2017), “Experimental machine learning of
quantum states with partial information,” arXiv preprint arXiv:1712.00456

Gao Xun, and Duan Lu-Ming (2017), “Efficient representation of quantum many-body states with
deep neural networks,” arXiv preprint arXiv:1701.05039

Gelman Andrew, Carlin John B, Stern Hal S, Dunson David B, Vehtari Aki, and Rubin Donald B
(2014), Bayesian data analysis, Vol. 2 (CRC press Boca Raton, FL).

Gersho Allen, and Gray Robert M (2012), Vector quantization and signal compression, Vol. 159
(Springer Science & Business Media).

Geurts Pierre, Ernst Damien, and Wehenkel Louis (2006), “Extremely randomized trees,” Machine
learning 63 (1), 3–42.

Glorot Xavier, and Bengio Yoshua (2010), “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, pp. 249–256.

Goldt Sebastian, and Seifert Udo (2017), “Thermodynamic efficiency of learning a rule in neural
networks,” arXiv preprint arXiv:1706.09713

Goodfellow Ian (2016), “Nips 2016 tutorial: Generative adversarial networks,” arXiv preprint arXiv:
1701.00160

Goodfellow Ian, Bengio Yoshua, and Courville Aaron (2016), Deep Learning (MIT Press) http://
www.deeplearningbook.org.

Goodfellow Ian, Jean Pouget-Abadie, Mehdi Mirza, Xu Bing, David Warde-Farley, Sherjil Ozair,
Courville Aaron, and Bengio Yoshua (2014), “Generative adversarial nets,” in Advances in
neural information processing systems, pp. 2672–2680.

Greplova Eliska, Kraglund Andersen Christian, and Klaus Mølmer (2017), “Quantum parameter
estimation with a neural network,” arXiv preprint arXiv:1711.05238

Mehta et al. Page 170

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Grisafi Andrea, Wilkins David M, Gábor Csányi, and Ceriotti Michele (2017), “Symmetry-adapted
machine-learning for tensorial properties of atomistic systems,” arXiv preprint arXiv:1709.06757

Han Zhao-Yu, Wang Jun, Fan Heng, Wang Lei, and Zhang Pan (2017), “Unsupervised generative
modeling using matrix product states,” arXiv preprint arXiv:1709.01662

He Kaiming, Zhang Xiangyu, Ren Shaoqing, and Sun Jian (2015), “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in Proceedings of the IEEE
international conference on computer vision, pp. 1026–1034.

He Kaiming, Zhang Xiangyu, Ren Shaoqing, and Sun Jian (2016), “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778.

Heimel Theo, Kasieczka Gregor, Plehn Tilman, and Thompson Jennifer M (2018), “Qcd or what?”
arXiv preprint arXiv:1808.08979

Higgins Irina, Matthey Loic, Pal Arka, Burgess Christopher, Glorot Xavier, Botvinick Matthew,
Mohamed Shakir, and Lerchner Alexander (2016), “beta-vae: Learning basic visual concepts
with a constrained variational framework,”

Hinton Geoffrey E (2002), “Training products of experts by minimizing contrastive divergence,”
Neural computation 14 (8), 1771–1800. [PubMed: 12180402]

Hinton Geoffrey E (2012), “A practical guide to training restricted boltzmann machines,” in Neural
networks: Tricks of the trade (Springer) pp. 599–619.

Hinton Geoffrey E, Simon Osindero, and Yee-Whye Teh (2006), “A fast learning algorithm for deep
belief nets,” Neural computation 18 (7), 1527–1554. [PubMed: 16764513]

Hinton Geoffrey E, and Salakhutdinov Ruslan R (2006), “Reducing the dimensionality of data with
neural networks,” science 313 (5786), 504–507. [PubMed: 16873662]

Ho Tin Kam (1998), “The random subspace method for constructing decision forests,” IEEE
transactions on pattern analysis and machine intelligence 20 (8), 832–844.

Hopfield John J (1982), “Neural networks and physical systems with emergent collective
computational abilities,” Proceedings of the national academy of sciences 79 (8), 2554–2558.

Huang Haiping (2017a), “Mean-field theory of input dimensionality reduction in unsupervised deep
neural networks,” arXiv preprint arXiv:1710.01467

Huang Haiping (2017b), “Statistical mechanics of unsupervised feature learning in a restricted
boltzmann machine with binary synapses,” Journal of Statistical Mechanics: Theory and
Experiment 2017 (5), 053302.

Huang Hengfeng, Xiao Bowen, Xiong Huixin, Wu Zeming, Mu Yadong, and Song Huichao (2018),
“Applications of deep learning to relativistic hydrodynamics,” arXiv preprint arXiv:1801.03334

Hubbard J (1959), “Calculation of partition functions,” Physical Review Letters 3 (2), 77.

Huggins William, Patil Piyush, Mitchell Bradley, Whaley K Birgitta, and Stoudenmire E Miles (2019),
“Towards quantum machine learning with tensor networks,” Quantum Science and Technology 4
(2), 024001.

Iakovlev IA, Sotnikov OM, and Mazurenko VV (2018), “Supervised learning magnetic skyrmion
phases,” arXiv:1803.06682

Innocenti Luca, Banchi Leonardo, Ferraro Alessandro, Bose Sougato, and Paternostro Mauro (2018),
“Supervised learning of time-independent hamiltonians for gate design,” arXiv:1803.07119

Ioffe Sergey, and Szegedy Christian (2015), “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” in International Conference on Machine Learning, pp. 448–
456.

Iso Satoshi, Shiba Shotaro, and Yokoo Sumito (2018), “Scale-invariant feature extraction of neural
network and renormalization group flow,” arXiv preprint arXiv:1801.07172

Jarzynski Christopher (1997), “Nonequilibrium equality for free energy differences,” Physical Review
Letters 78 (14), 2690.

Jaynes Edwin T (1957a), “Information theory and statistical mechanics,” Physical review 106 (4), 620.

Jaynes Edwin T (1957b), “Information theory and statistical mechanics. ii,” Physical review 108 (2),
171.

Mehta et al. Page 171

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jaynes Edwin T (1968), “Prior probabilities,” IEEE Transactions on systems science and cybernetics 4
(3), 227–241.

Jaynes Edwin T (1996), Probability theory: the logic of science (Washington University St. Louis,
MO).

Jaynes Edwin T (2003), Probability theory: the logic of science (Cambridge university press).

Jeffreys Harold (1946), “An invariant form for the prior probability in estimation problems,”
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,
453–461.

Jin Chi, Netrapalli Praneeth, and Jordan Michael I (2017), “Accelerated gradient descent escapes
saddle points faster than gradient descent,” arXiv preprint arXiv:1711.10456

Jordan Michael (2018), “Artificial intelligence: The revolution hasn’t happened yet. medium,”

Jordan Michael I, Zoubin Ghahramani, Jaakkola Tommi S, and Saul Lawrence K (1999), “An
introduction to variational methods for graphical models,” Machine learning 37 (2), 183–233.

Kalantre Sandesh S, Zwolak Justyna P, Stephen Ragole, Xingyao Wu, Zimmerman Neil M, Stewart
MD, and Taylor Jacob M (2017), “Machine learning techniques for state recognition and auto-
tuning in quantum dots,” arXiv preprint arXiv:1712.04914

Katz Yarden (2017), “Manufacturing an artificial intelligence revolution,” SSRN Preprint

Kerenidis Iordanis, and Prakash Anupam (2017), “Quantum gradient descent for linear systems and
least squares,” arXiv preprint arXiv:1704.04992

Keskar Nitish Shirish, Mudigere Dheevatsa, Nocedal Jorge, Smelyanskiy Mikhail, and Ping Tak Peter
Tang (2016), “On large-batch training for deep learning: Generalization gap and sharp minima,”
arXiv preprint arXiv:1609.04836

Kingma Diederik P, and Jimmy Ba (2014), “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980

Kingma Diederik P, and Max Welling (2013), “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114

Kingma DP, et al. (2017), “Variational inference & deep learning,” PhD thesis 978–94-6299–745-5

Kleijnen Jack PC, and Rubinstein Reuven Y (1996), “Optimization and sensitivity analysis of
computer simulation models by the score function method,” European Journal of Operational
Research 88 (3), 413–427.

Kleinberg Jon, Mullainathan Sendhil, and Raghavan Manish (2016), “Inherent trade-offs in the fair
determination of risk scores,” arXiv preprint arXiv:1609.05807

Koch-Janusz Maciej, and Ringel Zohar (2017), “Mutual information, neural networks and the
renormalization group,” arXiv preprint arXiv:1704.06279

Kohonen Teuvo (1998), “The self-organizing map,” Neuro-computing 21 (1–3), 1–6.

Kong Qingkai, Trugman Daniel T., Ross Zachary E., Bianco Michael J., Meade Brendan J., and Ger-
stoft Peter (2018), “Machine learning in seismology: Turning data into insights,” Seismological
Research Letters 10.1785/0220180259

Krastanov Stefan, and Jiang Liang (2017), “Deep neural network probabilistic decoder for stabilizer
codes,” arXiv preprint arXiv:1705.09334

Kriegel Hans-Peter, Peer Kröger, and Arthur Zimek (2009), “Clustering high-dimensional data: A
survey on subspace clustering, pattern-based clustering, and correlation clustering,” ACM
Transactions on Knowledge Discovery from Data (TKDD) 3 (1), 1.

Krizhevsky Alex, Sutskever Ilya, and Hinton Geoffrey E (2012), “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing systems, pp.
1097–1105.

Krzakala Florent, Manoel Andre, Tramel Eric W, and Lenka Zdeborová (2014), “Variational free
energies for compressed sensing,” in Information Theory (ISIT), 2014 IEEE International
Symposium on (IEEE) pp. 1499–1503.

Krzakala Florent, Marc Mézard, François Sausset, Sun YF, and Lenka Zdeborová(2012a), “Statistical-
physics-based reconstruction in compressed sensing,” Physical Review X 2 (2), 021005.

Krzakala Florent, Marc Mézard, Francois Sausset, Sun Yifan, and Lenka Zdeborová(2012b),
“Probabilistic reconstruc-tion in compressed sensing: algorithms, phase diagrams, and threshold

Mehta et al. Page 172

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

achieving matrices,” Journal of Statistical Mechanics: Theory and Experiment 2012 (08),
P08009.

Lake Brenden M, Ullman Tomer D, Tenenbaum Joshua B, and Gershman Samuel J (2017), “Building
machines that learn and think like people,” Behavioral and Brain Sciences 40.

Lamata Lucas (2017), “Basic protocols in quantum reinforcement learning with superconducting
circuits,” Scientific Reports 7.

Larsen Bjornar, and Aone Chinatsu (1999), “Fast and effective text mining using linear-time document
clustering,” in Proceedings of the fifth ACM SIGKDD international conference on Knowledge
discovery and data mining (ACM) pp. 16–22.

Le Quoc V (2013), “Building high-level features using large scale unsupervised learning,” in
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on
(IEEE) pp. 8595–8598.

LeCun Yann, Bengio Yoshua, et al. (1995), “Convolutional networks for images, speech, and time
series,” The hand-book of brain theory and neural networks 3361 (10), 1995.

LeCun Yann, Bottou Léon, Bengio Yoshua, and Haffner Patrick (1998a), “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE 86 (11), 2278–2324.

LeCun Yann, Bottou Léon, Orr Genevieve B, and Müller Klaus-Robert (1998b), “Efficient backprop,”
in Neural networks: Tricks of the trade (Springer) pp. 9–50.

Lee Jason D, Ioannis Panageas, Georgios Piliouras, Max Sim-chowitz, Jordan Michael I, and Benjamin
Recht (2017), “First-order methods almost always avoid saddle points,” arXiv preprint arXiv:
1710.07406

Lehmann Erich L, and George Casella (2006), Theory of point estimation (Springer Science &
Business Media).

Lehmann Erich L, and Romano Joseph P (2006), Testing statistical hypotheses (Springer Science &
Business Media).

Levine Yoav, David Yakira, Nadav Cohen, and Amnon Shashua (2017), “Deep learning and quantum
entanglement: Fundamental connections with implications to network design.” arXiv preprint
arXiv:1704.01552

Li Bo, and Saad David (2017), “Exploring the function space of deep-learning machines,” arXiv
preprint arXiv:1708.01422

Li Chian-De, Tan Deng-Ruei, and Jiang Fu-Jiun (2017), “Applications of neural networks to the
studies of phase transitions of two-dimensional potts models,” arXiv preprint arXiv:1703.02369

Li Richard Y, Rosa Di Felice, Remo Rohs, and Lidar Daniel A (2018), “Quantum annealing versus
classical machine learning applied to a simplified computational biology problem,” npj Quantum
Information 4 (1), 14. [PubMed: 29652405]

Li Shuo-Hui, and Wang Lei (2018), “Neural network renormalization group,” arXiv preprint arXiv:
1802.02840

Lim Tjen-Sien, Loh Wei-Yin, and Shih Yu-Shan (2000), “A comparison of prediction accuracy,
complexity, and training time of thirty-three old and new classification algorithms,” Machine
learning 40 (3), 203–228.

Lin Henry W, Max Tegmark, and David Rolnick (2017), “Why does deep and cheap learning work so
well?” Journal of Statistical Physics 168 (6), 1223–1247.

Linderman GC, Rachh M, Hoskins JG, Steiner-berger S, and Kluger Y (2017), “Efficient Algorithms
for t-distributed Stochastic Neighborhood Embedding,” ArXiv e-prints arXiv:1712.09005
[cs.LG]

Liu Zhaocheng, Rodrigues Sean P, and Wenshan Cai (2017), “Simulating the ising model with a deep
convolutional generative adversarial network,” arXiv preprint arXiv:1710.04987

Loh Wei-Yin (2011), “Classification and regression trees,” Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 1 (1), 14–23.

Louppe Gilles (2014), “Understanding random forests: From theory to practice,” arXiv preprint arXiv:
1407.7502

Mehta et al. Page 173

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu Sirui, Huang Shilin, Li Keren, Li Jun, Chen Jianxin, Lu Dawei, Ji Zhengfeng, Shen Yi, Zhou
Duanlu, and Zeng Bei (2017), “A separability-entanglement classifier via machine learning,”
arXiv preprint arXiv:1705.01523

Maaten Laurens van der, and Geoffrey Hinton2008), “Visualizing data using t-sne,” Journal of
machine learning research 9 (Nov), 2579–2605.

MacKay David JC (2003), Information theory, inference and learning algorithms (Cambridge
university press).

Marsland III Robert, Wenping Cui, and Pankaj Mehta (2019), “The Minimum Environmental
Perturbation Principle: A New Perspective on Niche Theory,” arXiv preprint arXiv:1901.09673

Maskara Nishad, Kubica Aleksander, and Tomas Jochym-O’Connor (2018), “Advantages of versatile
neural-network decoding for topological codes,” arXiv preprint arXiv:1802.08680

Masson JB, Bailly Bechet M, and Massimo Vergassola (2009), “Chasing information to search in
random environments,” Journal of Physics A: Mathematical and Theoretical 42 (43), 434009.

Mattingly Henry H, Transtrum Mark K, Abbott Michael C, and Machta Benjamin B (2018),
“Maximizing the information learned from finite data selects a simple model,” Proceedings of the
National Academy of Sciences 115 (8), 1760–1765.

McDermott Drew, Waldrop M Mitchell, Chandrasekaran B, McDermott John, and Schank Roger
(1985), “The dark ages of ai: a panel discussion at aaai-84,” AI Magazine 6 (3), 122.

McInnes Leland, Healy John, and Melville James (2018), “UMAP: Uniform Manifold Approximation
and Projection for Dimension Reduction,” arXiv e-prints, arXiv:1802.03426arXiv:1802.03426
[stat.ML]

Mehta Pankaj (2015), “Big data’s radical potential, https://www.jacobinmag.com/2015/03/big-data-
drones-privacy-workers,” Jacobin.

Mehta Pankaj, and Schwab David J (2014), “An exact mapping between the variational
renormalization group and deep learning,” arXiv preprint arXiv:1410.3831

Mehta Pankaj, Schwab David J, and Sengupta Anirvan M(2011), “Statistical mechanics of
transcription-factor binding site discovery using hidden markov models,” Journal of statistical
physics 142 (6), 1187–1205. [PubMed: 22851788]

Melnikov Alexey A, Hendrik Poulsen Nautrup, Mario Krenn, Vedran Dunjko, Markus Tiersch, Anton
Zeilinger, and Briegel Hans J (2017), “Active learning machine learns to create new quantum
experiments,” arXiv preprint arXiv:1706.00868

Metz Cade (2017), “Move over, coders-physicists will soon rule silicon valley,” Https://deepmind.com/
blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/.

Mezard Marc, and Montanari Andrea (2009), Information, physics, and computation (Oxford
University Press).

Mhaskar Hrushikesh, Liao Qianli, and Poggio Tomaso (2016), “Learning functions: when is deep
better than shallow,” arXiv preprint arXiv:1603.00988

Mitarai Kosuke, Negoro Makoto, Kitagawa Masahiro, and Fujii Keisuke (2018), “Quantum circuit
learning,” arXiv preprint arXiv:1803.00745

Mnih Volodymyr, Kavukcuoglu Koray, Silver David, Rusu Andrei A, Joel Veness, Bellemare Marc G,
Alex Graves, Riedmiller Martin, Fidjeland Andreas K, Georg Ostrovski, et al. (2015), “Human-
level control through deep reinforcement learning,” Nature 518 (7540), 529. [PubMed:
25719670]

Morningstar Alan, and Melko Roger G (2017), “Deep learning the ising model near criticality,” arXiv
preprint arXiv:1708.04622

Muehlhauser Luke (2016), “What should we learn from past ai forecasts?” Open Philanthropy Website

Müllner Daniel (2011), “Modern hierarchical, agglomerative clustering algorithms,” arXiv preprint
arXiv:1109.2378

Murphy Kevin (2012), Machine Learning: A Probabilistic Perspective (MIT press).

Nagai Yuki, Shen Huitao, Qi Yang, Liu Junwei, and Fu Liang (2017), “Self-learning monte carlo
method: Continuous-time algorithm,” arXiv preprint arXiv:1705.06724

Neal Radford M (2001), “Annealed importance sampling,” Statistics and computing 11 (2), 125–139.

Mehta et al. Page 174

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.jacobinmag.com/2015/03/big-data-drones-privacy-workers
https://www.jacobinmag.com/2015/03/big-data-drones-privacy-workers
http://Https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
http://Https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/

Neal Radford M, and Hinton Geoffrey E (1998), “A view of the em algorithm that justifies
incremental, sparse, and other variants,” in Learning in graphical models (Springer) pp. 355–368.

Neal Radford M, et al. (2011), “Mcmc using hamiltonian dynamics,” Handbook of Markov Chain
Monte Carlo 2 (11).

Nesterov Yurii (1983), “A method of solving a convex programming problem with convergence rate o
(1/k2),” in Soviet Mathematics Doklady, Vol. 27, pp. 372–376.

Neukart Florian, David Von Dollen, Christian Seidel, and Compostella Gabriele (2017), “Quantum-
enhanced rein-forcement learning for finite-episode games with discrete state spaces,” arXiv
preprint arXiv:1708.09354

Nguyen H Chau, Riccardo Zecchina, and Johannes Berg (2017), “Inverse statistical problems: from the
inverse ising problem to data science,” Advances in Physics 66 (3), 197–261.

Nielsen Michael A (2015), Neural networks and deep learning (Determination Press).

van Nieuwenburg Evert, Bairey Eyal, and Refael Gil (2017a), “Learning phase transitions from
dynamics,” arXiv preprint arXiv:1712.00450

van Nieuwenburg Evert PL, Liu Ye-Hua, and Sebastian D Huber (2017b), “Learning phase transitions
by confusion,” Nature Physics 13 (5), 435.

Niu Murphy Yuezhen, Boixo Sergio, Smelyanskiy Vadim, and Neven Hartmut (2018), “Universal
quantum control through deep reinforcement learning,” arXiv preprint arXiv:1803.01857

Nomura Yusuke, Darmawan Andrew, Yamaji Youhei, and Imada Masatoshi (2017), “Restricted-
boltzmann-machine learning for solving strongly correlated quantum systems,” arXiv preprint
arXiv:1709.06475

Ohtsuki Tomi, and Ohtsuki Tomoki (2017), “Deep learning the quantum phase transitions in random
electron systems: Applications to three dimensions,” Journal of the Physical Society of Japan 86
(4), 044708.

O’Neil Cathy (2017), Weapons of math destruction: How big data increases inequality and threatens
democracy (Broadway Books).

Papanikolaou Stefanos, Tzimas Michail, Song Hengxu, An-drew CE Reid, and Langer Stephen A
(2017), “Learning crystal plasticity using digital image correlation: Examples from discrete
dislocation dynamics,” arXiv preprint arXiv:1709.08225

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P,
Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, and
Duchesnay E (2011), “Scikit-learn: Machine learning in Python,” Journal of Machine Learning
Research 12, 2825–2830.

Perdomo-Ortiz Alejandro, Benedetti Marcello, John Realpe-Gómez, and Rupak Biswas (2017),
“Opportunities and challenges for quantum-assisted machine learning in near-term quantum
computers,” arXiv preprint arXiv:1708.09757

Polyak Boris T (1964), “Some methods of speeding up the convergence of iteration methods,” USSR
Computational Mathematics and Mathematical Physics 4 (5), 1–17.

Qian Ning (1999), “On the momentum term in gradient descent learning algorithms,” Neural networks
12 (1), 145–151. [PubMed: 12662723]

Rabiner Lawrence R (1989), “A tutorial on hidden markov models and selected applications in speech
recognition,” Proceedings of the IEEE 77 (2), 257–286.

Radford Alec, Metz Luke, and Chintala Soumith (2015), “Unsupervised representation learning with
deep convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434

Ramezanali Mohammad, Mitra Partha P, and Sengupta Anirvan M (2015), “Critical behavior and
universality classes for an algorithmic phase transition in sparse reconstruction,” arXiv preprint
arXiv:1509.08995

Ramezanpour A (2017), “Optimization by a quantum rein-forcement algorithm,” Phys. Rev. A 96,
052307.

Rao Wen-Jia, Li Zhenyu, Zhu Qiong, Luo Mingxing, and Wan Xin (2017), “Identifying product order
with restricted boltzmann machines,” arXiv preprint arXiv:1709.02597

Mehta et al. Page 175

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ravanbakhsh Siamak, Lanusse Francois, Mandel-baum Rachel, Schneider Jeff G, and Barnabas
Poczos (2017), “Enabling dark energy science with deep generative models of galaxy images.” in
AAAI, pp. 1488–1494.

Rebentrost Patrick, Bromley Thomas R., Weed-brook Christian, and Lloyd Seth (2017), “A quantum
hopfield neural network,” arXiv:1710.03599

Rebentrost Patrick, Schuld Maria, Petruccione Francesco, and Lloyd Seth (2016), “Quantum gradient
descent and newton’s method for constrained polynomial optimization,” arXiv preprint arXiv:
1612.01789

Reddy Gautam, Celani Antonio, Sejnowski Terrence J, and Massimo Vergassola (2016a), “Learning to
soar in turbulent environments,” Proceedings of the National Academy of Sciences 113 (33),
E4877–E4884.

Reddy Gautam, Celani Antonio, and Vergassola Massimo (2016b), “Infomax strategies for an optimal
balance between exploration and exploitation,” Journal of Statistical Physics 163 (6), 1454–1476.

Rem Benno S, Niklas Käming, Matthias Tarnowski, Asteria Luca, Fläschner Nick, Christoph Becker,
Klaus Seng-stock, and Christof Weitenberg (2018), “Identifying quantum phase transitions using
artificial neural networks on experimental data,” arXiv preprint arXiv:1809.05519

Rezende Danilo Jimenez, Mohamed Shakir, and Wierstra Daan (2014), “Stochastic backpropagation
and approximate inference in deep generative models,” arXiv preprint arXiv:1401.4082

Rocchetto Andrea, Aaronson Scott, Severini Simone, Carvacho Gon-zalo, Poderini Davide, Agresti
Iris, Ben-tivegna Marco, and Sciarrino Fabio (2017), “Experimental learning of quantum states,”
arXiv preprint arXiv:1712.00127

Rocchetto Andrea, Grant Edward, Strelchuk Sergii, Carleo Giuseppe, and Severini Simone (2018),
“Learning hard quantum distributions with variational autoen-coders,” npj Quantum Information
4 (1), 28.

Rockafellar Ralph Tyrell (2015), Convex analysis (Princeton university press).

Rodriguez Alex, and Laio Alessandro (2014), “Clustering by fast search and find of density peaks,”
Science 344 (6191), 1492–1496. [PubMed: 24970081]

Rokach Lior, and Maimon Oded (2005), “Clustering methods,” in Data mining and knowledge
discovery handbook (Springer) pp. 321–352.

Roweis Sam T, and Lawrence K Saul (2000), “Nonlinear dimensionality reduction by locally linear
embedding,” science 290 (5500), 2323–2326. [PubMed: 11125150]

Rudelius Tom (2018), “Learning to inflate,” arXiv preprint arXiv:1810.05159

Ruder Sebastian (2016), “An overview of gradient descent optimization algorithms,” arXiv preprint
arXiv:1609.04747

Rumelhart David E, and David Zipser (1985), “Feature discovery by competitive learning,” Cognitive
science 9 (1), 75–112.

Ruscher Céline, and Rottler Jörg (2018), “Correlations in the shear flow of athermal amorphous solids:
A principal component analysis,” arXiv preprint arXiv:1809.06487

Saito Hiroki, and Kato Masaya (2017), “Machine learning technique to find quantum many-body
ground states of bosons on a lattice,” arXiv preprint arXiv:1709.05468

Salazar Domingos SP (2017), “Nonequilibrium thermodynamics of restricted boltzmann machines,”
arXiv preprint arXiv:1704.08724

Sander Jörg, Ester Martin, Kriegel Hans-Peter, and Xu Xiaowei (1998), “Density-based clustering in
spatial databases: The algorithm gdbscan and its applications,” Data mining and knowledge
discovery 2 (2), 169–194.

Saxe Andrew M, McClelland James L, and Surya Ganguli (2013), “Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks,” arXiv preprint arXiv:1312.6120

Schapire Robert E, and Yoav Freund (2012), Boosting: Foundations and algorithms (MIT press).

Schindler Frank, Regnault Nicolas, and Neupert Titus (2017), “Probing many-body localization with
neural networks,” Phys. Rev. B 95, 245134.

Schmidhuber Jürgen (2015), “Deep learning in neural networks: An overview,” Neural networks 61,
85–117. [PubMed: 25462637]

Mehta et al. Page 176

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Schneidman Elad, Berry Michael J II, Ronen Segev, and William Bialek (2006), “Weak pairwise
correlations imply strongly correlated network states in a neural population,” Nature 440 (7087),
1007. [PubMed: 16625187]

Schoenholz Samuel S (2017), “Combining machine learning and physics to understand glassy
systems,” arXiv preprint arXiv:1709.08015

Schuld Maria, Fingerhuth Mark, and Petruc-cione Francesco (2017), “Implementing a distance-based
classifier with a quantum interference circuit,” arXiv preprint arXiv:1703.10793

Schuld Maria, and Killoran Nathan (2018), “Quantum machine learning in feature hilbert spaces,”
arXiv:1803.07128

Schuld Maria, and Petruccione Francesco (2017), “Quantum ensembles of quantum classifiers,” arXiv
preprint arXiv:1704.02146

Schuld Maria, Sinayskiy Ilya, and Petruccione Francesco (2015), “An introduction to quantum
machine learning,” Contemporary Physics 56 (2), 172–185.

Schwab David J, Ilya Nemenman, and Pankaj Mehta (2014), Physical review letters 113 (6), 068102.
[PubMed: 25148352]

Sethna James (2006), Statistical mechanics: entropy, order parameters, and complexity, Vol. 14
(Oxford University Press).

Shanahan Phiala E, Daniel Trewartha, and William Detmold (2018), “Machine learning action
parameters in lattice quantum chromodynamics,” arXiv preprint arXiv:1801.05784

Shannon Claude E (1949), “Communication theory of secrecy systems,” Bell Labs Technical Journal
28 (4), 656–715.

Shen Huitao, Liu Junwei, and Fu Liang (2018), “Self-learning monte carlo with deep neural
networks,” arXiv preprint arXiv:1801.01127

Shinjo Kazuya, Sota Shigetoshi, Yunoki Seiji, and Tohyama Takami (2019), “Characterization of
photoex-cited states in the half-filled one-dimensional extended hub-bard model assisted by
machine learning,” arXiv preprint arXiv:1901.07900

Shlens Jonathon (2014), “A tutorial on principal component analysis,” arXiv preprint arXiv:1404.1100

Shwartz-Ziv Ravid, and Tishby Naftali (2017), “Opening the black box of deep neural networks via
information,” arXiv preprint arXiv:1703.00810

Sidky Hythem, and Whitmer Jonathan K (2017), “Learning free energy landscapes using artificial
neural networks,” arXiv preprint arXiv:1712.02840

Simonite Tom (2018), “Should data scientist adhere to a hip-pocratic oath?” Wired

Singh Kesar (1981), “On the asymptotic accuracy of efron’s bootstrap,” The Annals of Statistics,
1187–1195.

Slonim Noam, Atwal Gurinder S, Gasper Tkacik, and Bialek William (2005), “Estimating mutual
information and multi–information in large networks,” arXiv preprint cs/0502017

Sønderby Casper Kaae, Raiko Tapani, Lars Maaløe, Søren Kaae Sønderby, and Winther Ole (2016),
“Ladder variational autoencoders,” in Advances in neural information processing systems, pp.
3738–3746.

Springenberg Jost Tobias, Dosovitskiy Alexey, Brox Thomas, and Riedmiller Martin (2014), “Striving
for simplicity: The all convolutional net,” arXiv preprint arXiv:1412.6806

Sriarunothai Theeraphot, Sabine Wölk, Gouri Shankar Giri, Fries Nicolai, Dunjko Vedran, Briegel
Hans J, and Christof Wunderlich (2017), “Speeding-up the decision making of a learning agent
using an ion trap quantum processor,” arXiv preprint arXiv:1709.01366

Srivastava Nitish, Geoffrey E Hinton, Alex Krizhevsky, Sutskever Ilya, and Salakhutdinov Ruslan
(2014), “Dropout: a simple way to prevent neural networks from overfitting.” Journal of machine
learning research 15 (1), 1929–1958.

Stoudenmire E Miles (2018), “Learning relevant features of data with multi-scale tensor networks,”
arXiv preprint arXiv:1801.00315

Stoudenmire E Miles, and Schwab David J (2016), “Super-vised learning with tensor networks,” in
Advances in Neural Information Processing Systems, pp. 4799–4807.

Stoudenmire EM, and White Steven R (2012), “Studying two-dimensional systems with the density
matrix renormalization group,” Annu. Rev. Condens. Matter Phys 3 (1), 111–128.

Mehta et al. Page 177

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Stratonovich RL (1957), “On a method of calculating quantum distribution functions,” in Soviet
Physics Doklady, Vol. 2, p. 416.

Strouse DJ, and Schwab David J (2017), “The deterministic information bottleneck,” Neural
computation 29 (6), 1611–1630. [PubMed: 28410050]

Suchsland Philippe, and Wessel Stefan (2018), “Parameter diagnostics of phases and phase transition
learning by neural networks,” arXiv preprint arXiv:1802.09876

Sutskever Ilya, Martens James, Dahl George, and Hinton Geoffrey (2013), “On the importance of
initialization and momentum in deep learning,” in International conference on machine learning,
pp. 1139–1147.

Sutton Richard S, and Andrew G Barto (1998), Reinforcement learning: An introduction, Vol. 1 (MIT
press Cam-bridge).

Swaddle Michael, Noakes Lyle, Salter Liam, Small-bone Harry, and Wang Jingbo (2017), “Generating
3 qubit quantum circuits with neural networks,” arXiv preprint arXiv:1703.10743

Székely GJ (2003), “E-statistics: The energy of statistical samples,” Bowling Green State University,
Department of Mathematics and Statistics Technical Report 3 (05), 1–18.

Tanaka Akinori, and Tomiya Akio (2017a), “Detection of phase transition via convolutional neural
networks,” Journal of the Physical Society of Japan 86 (6), 063001.

Tanaka Akinori, and Tomiya Akio (2017b), “Towards reduction of autocorrelation in hmc by machine
learning,” arXiv preprint arXiv:1712.03893

Tenenbaum Joshua B, Vin De Silva, and Langford John C (2000), “A global geometric framework for
nonlinear dimensionality reduction,” science 290 (5500), 2319–2323. [PubMed: 11125149]

Tibshirani Ryan J, et al. (2013), “The lasso problem and uniqueness,” Electronic Journal of Statistics
7, 1456–1490.

Tieleman Tijmen, and Hinton Geoffrey (2009), “Using fast weights to improve persistent contrastive
divergence,” in Proceedings of the 26th Annual International Conference on Machine Learning
(ACM) pp. 1033–1040.

Tieleman Tijmen, and Hinton Geoffrey (2012), “Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude,” COURSERA: Neural networks for machine learning 4 (2), 26–
31.

Tishby Naftali, Pereira Fernando C, and William Bialek (2000), “The information bottleneck method,”
arXiv preprint physics/0004057

Tomczak P, and Puszkarski H (2018), “Ferromagnetic resonance in thin films studied via cross-
validation of numerical solutions of the smit-beljers equation: Application to (ga,mn)as,” Phys.
Rev. B 98, 144415.

Torgerson Warren S (1958), “Theory and methods of scaling”

Torlai Giacomo, Mazzola Guglielmo, Carrasquilla Juan, Troyer Matthias, Melko Roger, and Carleo
Giuseppe (2017), “Many-body quantum state tomography with neural networks,” arXiv preprint
arXiv:1703.05334

Torlai Giacomo, Mazzola Guglielmo, Carrasquilla Juan, Troyer Matthias, Melko Roger, and Carleo
Giuseppe (2018), “Neural-network quantum state tomography,” Nature Physics 14 (5), 447.

Tramel Eric W, Marylou Gabrié, Andre Manoel, Francesco Caltagirone, and Florent Krzakala (2017),
“A deterministic and generalized framework for unsupervised learning with restricted boltzmann
machines,” arXiv preprint arXiv:1702.03260

Tubiana Jérôme, and Monasson Rémi (2017), “Emergence of compositional representations in
restricted boltzmann machines,” Physical Review Letters 118 (13), 138301. [PubMed: 28409983]

Van Der Maaten Laurens (2014), “Accelerating t-sne using tree-based algorithms,” The Journal of
Machine Learning Research 15 (1), 3221–3245.

Venderley Jordan, Khemani Vedika, and Kim Eun-Ah (2017), “Machine learning out-of-equilibrium
phases of matter,” arXiv preprint arXiv:1711.00020

Vergassola Massimo, Villermaux Emmanuel, and Shraiman Boris I (2007), Nature 445 (7126), 406.
[PubMed: 17251974]

Vidal Guifre (2007), “Entanglement renormalization,” Physical review letters 99 (22), 220405.
[PubMed: 18233268]

Mehta et al. Page 178

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wainwright Martin J, Jordan Michael I, et al. (2008), “Graphical models, exponential families, and
variational inference,” Foundations and Trends® in Machine Learning 1 (1–2), 1–305.

Wang Ce, and Zhai Hui (2017), “Unsupervised learning studies of frustrated classical spin models i:
Principle component analysis,” arXiv preprint arXiv:1706.07977

Wang Ce, and Zhai Hui (2018), “Machine learning of frustrated classical spin models. ii. kernel
principal component analysis,” arXiv preprint arXiv:1803.01205

Wang Lei (2017), “Can boltzmann machines discover cluster updates?” arXiv preprint arXiv:
1702.08586

Wang Yi-Nan, and Zhang Zhibai (2018), “Learning non-higgsable gauge groups in 4d f-theory,” arXiv
preprint arXiv:1804.07296

Wasserman Larry (2013), All of statistics: a concise course in statistical inference (Springer Science &
Business Media).

Wattenberg Martin, Fernanda Viégas, and Ian Johnson (2016), “How to use t-sne effectively,” Distill 1
(10), e2.

Wei Qianshi, Melko Roger G, and Chen Jeff ZY (2017), “Identifying polymer states by machine
learning,” Physical Review E 95 (3), 032504. [PubMed: 28415199]

Weigt Martin, White Robert A, Hendrik Szurmant, Hoch James A, and Hwa Terence (2009),
“Identification of direct residue contacts in protein–protein interaction by message passing,”
Proceedings of the National Academy of Sciences 106 (1), 67–72.

Weinstein Steven (2017), “Learning the einstein-podolskyrosen correlations on a restricted boltzmann
machine,” arXiv preprint arXiv:1707.03114

Wetzel Sebastian Johann (2017), “Unsupervised learning of phase transitions: from principle
component analysis to variational autoencoders,” arXiv preprint arXiv:1703.02435

Wetzel Sebastian Johann, and Scherzer Manuel (2017), “Machine learning of explicit order
parameters: From the ising model to SU (2) lattice gauge theory,” arXiv preprint arXiv:
1705.05582

White Steven R (1992), “Density matrix formulation for quantum renormalization groups,” Physical
review letters 69 (19), 2863. [PubMed: 10046608]

White Tom (2016), “Sampling generative networks: Notes on a few effective techniques,” arXiv
preprint arXiv:1609.04468

Williams DRGHR, and Geoffrey Hinton (1986), “Learning representations by back-propagating
errors,” Nature 323 (6088), 533–538.

Wilson Ashia C, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht (2017), “The
marginal value of adaptive gradient methods in machine learning,” arXiv preprint arXiv:
1705.08292

Wilson Kenneth G, and John Kogut (1974), “The renormalization group and the epsilon expansion,”
Physics Reports 12 (2), 75–199.

Witte RS, and Witte JS (2013), Statistics (Wiley).

Wu Yadong, Zhang Pengfei, Shen Huitao, and Zhai Hui (2018), “Visualizing neural network
developing perturbation theory,” arXiv preprint arXiv:1802.03930

Xie Junyuan, Girshick Ross, and Farhadi Ali (2016), “Unsupervised deep embedding for clustering
analysis,” in International conference on machine learning, pp. 478–487.

Yang Tynia, Liu Jinze, Leonard McMillan, and Wei Wang (2006), “A fast approximation to
multidimensional scaling,” in IEEE workshop on Computation Intensive Methods for Computer
Vision

Yang Xu-Chen, Yung Man-Hong, and Wang Xin (2017), “Neural network designed pulse sequences
for robust control of single-triplet qubits,” arXiv preprint arXiv:1708.00238

Yedidia Jonathan (2001), “An idiosyncratic journey beyond mean field theory,” Advanced mean field
methods: Theory and practice, 21–36.

Yedidia Jonathan S, Freeman William T, and Yair Weiss (2003), “Understanding belief propagation
and its generalizations,” Morgan Kaufmann Publishers Inc San Francisco, CA, USA.

Yoshioka Nobuyuki, Akagi Yutaka, and Katsura Hosho (2017), “Learning disordered topological
phases by statistical recovery of symmetry,” arXiv preprint arXiv:1709.05790

Mehta et al. Page 179

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

You Yi-Zhuang, Yang Zhao, and Qi Xiao-Liang (2017), “Machine learning spatial geometry from
entanglement features,” arXiv preprint arXiv:1709.01223

Yu Chao-Hua, Gao Fei, and Wen Qiao-Yan (2017), “Quantum algorithms for ridge regression,” arXiv
preprint arXiv:1707.09524

Zdeborová Lenka, and Krzakala Florent (2016), “Statistical physics of inference: Thresholds and
algorithms,” Advances in Physics 65 (5), 453–552.

Zeiler Matthew D (2012), “Adadelta: an adaptive learning rate method,” arXiv preprint arXiv:
1212.5701

Zhang Chengxian, and Wang Xin (2018), “Spin-qubit noise spectroscopy from randomized
benchmarking by supervised learning,” arXiv preprint arXiv:1810.07914

Zhang Chiyuan, Bengio Samy, Hardt Moritz, Recht Benjamin, and Vinyals Oriol (2016),
“Understanding deep learning requires rethinking generalization,” arXiv preprint arXiv:
1611.03530

Zhang Pengfei, Shen Huitao, and Zhai Hui (2017a), “Machine learning topological invariants with
neural networks,” arXiv preprint arXiv:1708.09401

Zhang Xiao-Ming, Cui Zi-Wei, Wang Xin, and Yung Man-Hong (2018), “Automatic spin-chain
learning to explore the quantum speed limit,” arXiv preprint arXiv:1802.09248

Zhang Yi, Melko Roger G, and Kim Eun-Ah (2017b), “Machine learning Z2 quantum spin liquids with
quasi-particle statistics,” arXiv preprint arXiv:1705.01947

Zimek Arthur, Schubert Erich, and Kriegel Hans-Peter (2012), “A survey on unsupervised outlier
detection in high-dimensional numerical data,” Statistical Analysis and Data Mining: The ASA
Data Science Journal 5 (5), 363–387.

Zou Hui, and Hastie Trevor (2005), “Regularization and variable selection via the elastic net,” Journal
of the Royal Statistical Society: Series B (Statistical Methodology) 67 (2), 301–320.

Mehta et al. Page 180

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 1. Fitting versus predicting for noiseless data.
Ntrain = 10 points in the range x ϵ [0, 1] were generated from a linear model (top) or tenth-

order polynomial (bottom). This data was fit using three model classes: linear models (red),

all polynomials of order 3 (yellow), all polynomials of order 10 (green) and used to make

prediction on Ntest = 20 new data points with xtest ϵ [0, 1.2] (shown on right). Notice that in

the absence of noise (σ = 0), given enough data points that fitting and predicting are

identical.

Mehta et al. Page 181

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 2. Fitting versus predicting for noisy data.
Ntrain = 100 noisy data points (σ = 1) in the range x ϵ [0, 1] were generated from a linear

model (top) or tenth-order polynomial (bottom). This data was fit using three model classes:

linear models (red), all polynomials of order 3 (yellow), all polynomials of order 10 (green)

and used to make prediction on Ntest = 20 new data points with xtest ϵ [0, 1.2](shown on

right). Notice that even when the data was generated using a tenth order polynomial, the

linear and third order polynomials give better out-of-sample predictions, especially beyond

the x range over which the model was trained.

Mehta et al. Page 182

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 3. Fitting versus predicting for noisy data.
Ntrain = 104 noisy data points (σ = 1) in the range x ϵ [0, 1] were generated from a tenth-

order polynomial. This data was fit using three model classes: linear models (red), all

polynomials of order 3 (yellow), all polynomials of order 10 (green) and used to make

prediction on Ntest = 100 new data points with xtest ϵ [0, 1.2](shown on right). The tenth

order polynomial gives good predictions but the model’s predictive power quickly degrades

beyond the training data range.

Mehta et al. Page 183

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 4. Schematic of typical in-sample and out-of-sample error as a function of training set size.
The typical in-sample or training error, Ein, out-of-sample or generalization error, Eout, bias,

variance, and difference of errors as a function of the number of training data points. The

schematic assumes that the number of data points is large (in particular, the schematic does

not show the initial drop in Ein for small amounts of data), and that our model cannot exactly

fit the true function f (x).

Mehta et al. Page 184

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 5. Bias-Variance tradeoff and model complexity.
This schematic shows the typical out-of-sample error Eout as function of the model

complexity for a training dataset of fixed size. Notice how the bias always decreases with

model complexity, but the variance, i.e. fluctuation in performance due to finite size

sampling effects, increases with model complexity. Thus, optimal performance is achieved at

intermediate levels of model complexity.

Mehta et al. Page 185

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 6. Bias-Variance tradeoff.
Another useful depiction of the bias-variance tradeoff is to think about how Eout varies as we

consider different training data sets of a fixed size. A more complex model (green) will

exhibit larger fluctuations (variance) due to finite size sampling effects than the simpler

model (black). However, the average over all the trained models (bias) is closer to the true

model for the more complex model.

Mehta et al. Page 186

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 7. Gradient descent exhibits three qualitatively different regimes as a function of the
learning rate.
Result of gradient descent on surface z = x2 + y2 ‒ 1 for learning rate of η = 0.1, 0.5, 1.01.

Notice that the trajectory converges to the global minima in multiple steps for small learning

rates (η = 0.1). Increasing the learning rate further (η = 0.5) causes the trajectory to oscillate

around the global minima before converging. For even larger learning rates (η = 1.01) the

trajectory diverges from the minima. See corresponding notebook for details.

Mehta et al. Page 187

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 8. Effect of learning rate on convergence.
For a one dimensional quadratic potential, one can show that there exists four different

qualitative behaviors for gradient descent (GD) as a function of the learning rate η

depending on the relationship between η and ηopt = ∂θ
2E θ

−1
. (a) For η < ηopt, GD

converges to the minimum. (b) For η = ηopt, GD converges in a single step. (c) For ηopt < η
< 2ηopt, GD oscillates around the minima and eventually converges. (d) For η > 2ηopt, GD

moves away from the minima. This figure is adapted from (LeCun et al., 1998b).

Mehta et al. Page 188

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 9. Comparison of GD and its generalization for Beale’s function.
Trajectories from gradient descent (GD; black line), gradient descent with momentum

(GDM; magenta line), NAG (cyan-dashed line), RMSprop (blue dash-dot line), and ADAM

(red line) for Nsteps = 104. The learning rate for GD, GDM, NAG is η = 10−6 and η = 10−3

for ADAM and RMSprop. β = 0.9 for RMSprop, β1 = 0.9 and β2 = 0.99 for ADAM, and g =

10−8 for both methods. Please see corresponding notebook for details.

Mehta et al. Page 189

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 10.
Geometric interpretation of least squares regression. The regression function g defines a

hyperplane in ℝp (green solid line, here we have p = 2) while the residual of data point x(i)

(hollow circles) is its projection onto this hyperplane (barended dashed line).

Mehta et al. Page 190

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 11.
The projection matrix PX projects the response vector y onto the column space spanned by

the columns of X, span({ X:,1, …, X:,p}) (purple area), thus forming a fitted vector y. The

residuals in Eq. (37) are illustrated by the red vector y − y.

Mehta et al. Page 191

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 12.
[Adapted from (Friedman et al., 2001)] Comparing LASSO and Ridge regression. The black

45 degree line is the unconstrained estimate for reference. The estimators are shown by red

dashed lines. For LASSO, this corresponds to the soft-thresholding function Eq. (54) while

for Ridge regression the solution is given by Eq. (46)

Mehta et al. Page 192

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 13.
[Adapted from (Friedman et al., 2001)] Illustration of LASSO (left) and Ridge regression

(right). The blue concentric ovals are the contours of the regression function while the red

shaded regions represent the constraint functions: (left) |w1| + |w2| ≤ t and (right)w1
2 + w2

2 ≤ t.

Intuitively, since the constraint function of LASSO has more protrusions, the ovals tend to

intersect the constraint at the vertex, as shown on the left. Since the vertices correspond to

parameter vectors w with only one non-vanishing component, LASSO tends to give sparse

solution.

Mehta et al. Page 193

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 14.
Performance of LASSO and ridge regression on the diabetes dataset measured by the R2

coefficient of determination. The best possible performance is R2 = 1. See Notebook 3.

Mehta et al. Page 194

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 15.
Regularization parameter λ affects the weights (features) we learned in both Ridge

regression (left) and LASSO regression (right) on the Diabetes dataset. Curves with different

colors correspond to different wi’s (features). Notice LASSO, unlike Ridge, sets feature

weights to zero leading to sparsity. See Notebook 3.

Mehta et al. Page 195

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 16.
Performance of OLS, Ridge and LASSO regression on the Ising model as measured by the

R2 coefficient of determination. Optimal performance is R2 = 1.See Notebook 4.

Mehta et al. Page 196

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 17.
Learned interaction matrix Jij for the Ising model ansatz in Eq. (56) for ordinary least

squares (OLS) regression (left), Ridge regression (middle) and LASSO (right) at different

regularization strengths λ. OLS is λ-independent but is shown for comparison

throughout.See Notebook 4.

Mehta et al. Page 197

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 18.
Pictorial representation of four data categories labeled by the integers 0 through 3 (above),

or by one-hot vectors with binary inputs (below).

Mehta et al. Page 198

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 19.
Classifying data in the simplest case of only two categories, labeled “noise” and “signal” (or

“cats” and “dogs”), is the subject of Logistic Regression.

Mehta et al. Page 199

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 20.
Examples of typical states of the 2D Ising model for three different temperatures in the

ordered phase (T/J = 0.75, left), the critical region (T/J = 2.25, middle) and the disordered

phase (T/J = 4.0, right). The linear system dimension is L = 40 sites.

Mehta et al. Page 200

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 21.
Accuracy as a function of the regularization parameter λ in classifying the phases of the 2D

Ising model on the training (blue), test (red), and critical (green) data. The solid and dashed

lines compare the ‘liblinear’ and ‘SGD’ solvers, respectively.

Mehta et al. Page 201

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 22.
The probability of an event being a classified as a signal event for true signal events (left,

blue) and background events (right, red).

Mehta et al. Page 202

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 23.
ROC curves for a variety of regularization parameters with L2 regularization using

TensorFlow (top) or Sci-Kit Learn (bottom).

Mehta et al. Page 203

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 24.
Comparison of leading vs. sub-leading lepton pT for signal (blue) and background events

(red). Recall that these variables have been scaled to have a mean of one.

Mehta et al. Page 204

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 25.
A comparison of discrimination power from using logistic regression with only simple

kinematic variables (green), logistic regression using both simple and higher-order kinematic

variables (purple), and a cut-based approach that varies the requirements on the leading

lepton pT.

Mehta et al. Page 205

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 26.
Visualization of the weights wj after training a SoftMax Regression model on the MNIST

dataset (see Notebook 7). We emphasize that SoftMax Regression does not have explicit 2D
spatial knowledge; the model learns from data points flattened out in a one-dimensional

array.

Mehta et al. Page 206

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 27.
Why combining models? On the left we show that by combining simple linear hypotheses

(grey lines) one can achieve better and more flexible classifications (dark line), which is in

stark contrast to the case in which one only uses a single perceptron hypothesis as shown on

the right.

Mehta et al. Page 207

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 28.
Shown here is the procedure of empirical bootstrapping. The goal is to assess the accuracy

of a statistical quantity of interest, which in the main text is illustrated as the sample median

Mn 𝒟 . We start from a given dataset 𝒟 and bootstrap B size n datasets 𝒟 ⋆ 1 , ⋅ ⋅ ⋅ , 𝒟 ⋆ B

called the bootstrap samples. Then we compute the statistical quantity of interest on these

bootstrap samples to get the median Mn
⋆ k , for k = 1, …, B. These are then used to evaluate

the accuracy of Mn 𝒟 (see also box on Bootstrapping in main text). It can be shown that in

the n → ∞ limit the distribution of Mn
⋆ k would be a Gaussian centered around Mn 𝒟

with variance σ2 defined by Eq. (102) scales as 1/n.

Mehta et al. Page 208

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 29. Bagging applied to the perceptron learning algorithm (PLA).
Training data size n = 500, number of bootstrap datasets B = 25, each contains 50 points.

Colors corresponds to different classes while the marker indicates how these points are

labelled: cross for true label and circle for that obtained by bagging. Each gray dashed line

indicates the prediction made, based on every bootstrap set while the dark dashed black line

is the average of these.

Mehta et al. Page 209

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 30.
Example of a decision tree. For an input observation x, its label y is predicted by traversing

it from the root all the way down the leaves, following branches it satisfies.

Mehta et al. Page 210

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 31.
Classifying Iris dataset with aggregation models for scikit learn tutorial. This dataset seeks

to classify iris flowers into three types (labeled in red, blue, or yellow) based on a

measurement of four features: septal length septal width, petal length, and petal width. To

visualize the decision surface, we trained classifiers using only two of the four potential

features (e..g septal length, septal width). Each row corresponds to a different subset of two

features and the columns to a Decision Tree with 10-fold CV (first column), Random Forest

with 30 trees and 10-fold CV (second column) and AdaBoost with 30 base hypotheses (third

column). Decision surface learned is highlighted by color shades. See the corresponding

tutorial for more details (Pedregosa et al., 2011)

Mehta et al. Page 211

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 32.
Using Random Forests (RFs) to classify Ising Phases. (Top) Accuracy of RFs for classifying

the phase of samples from the Ising mode for the training set (blue), test set (red), and

critical region (green) using coarse trees with a few leaves (triangles) and fine decision trees

with many leaves (filled circles). RFs were trained on samples from ordered and disordered

phases but were not trained on samples from the critical region. (Bottom) The time it takes

to train RFs scales linearly with the number of estimators in the ensemble. For the upper

panel, note that the train case (blue) overlaps with the test case (red). Here ‘fine’ and

‘coarse’ refer to trees with 2 and 10,000 leaves, respectively. For implementation details, see

Jupyter notebooks 9

Mehta et al. Page 212

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 33.
Feature Importance Scores in SUSY dataset from applying XGBoost to 100, 000 samples.

See Notebook 10 for more details.

Mehta et al. Page 213

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 34. Basic architecture of neural networks.
(A) The basic components of a neural network are stylized neurons consisting of a linear

transformation that weights the importance of various inputs, followed by a non-linear

activation function. (b) Neurons are arranged into layers with the output of one layer serving

as the input to the next layer.

Mehta et al. Page 214

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 35. Possible non-linear activation functions for neurons.
In modern DNNs, it has become common to use non-linear functions that do not saturate for

large inputs (bottom row) rather than saturating functions (top row).

Mehta et al. Page 215

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 36.
An example of an input datapoint from the MNIST data set. Each datapoint is a 28 × 28-

pixel image of a handwritten digit, with its corresponding label belonging to one of the 10

digits. Each pixel contains a greyscale value represented by an integer between 0 and 255.

Mehta et al. Page 216

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 37.
Model accuracy of the DNN defined in the main text to study the MNIST problem as a

function of the training epochs.

Mehta et al. Page 217

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 38.
Model loss of the DNN defined in the main text to study the MNIST problem as a function

of the training epochs.

Mehta et al. Page 218

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 39. Dropout
During the training procedure neurons are randomly “dropped out” of the neural network

with some probability p giving rise to a thinned network. This prevents overfitting by

reducing correlations among neurons and reducing the variance in a method similar in spirit

to ensemble methods.

Mehta et al. Page 219

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 40.
Grid search results for the test set accuracy of the DNN for the SUSY problem as a function

of the learning rate and the size of the dataset. The data used includes all high-and low-level

features.

Mehta et al. Page 220

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 41.
Grid search results for the test set accuracy (top) and the critical set accuracy (bottom) of the

DNN for the Ising classification problem as a function of the learning rate and the number of

hidden neurons.

Mehta et al. Page 221

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 42. Architecture of a Convolutional Neural Network (CNN).
The neurons in a CNN are arranged in three dimensions: height (H), width (W), and depth

(D). For the input layer, the depth corresponds to the number of channels (in this case 3 for

RGB images). Neurons in the convolutional layers calculate the convolution of the image

with a local spatial filter (e.g. 3 × 3 pixel grid, times 3 channels for first layer) at a given

location in the spatial (W, H)-plane. The depth D of the convolutional layer corresponds to

the number of filters used in the convolutional layer. Neurons at the same depth correspond

to the same filter. Neurons in the convolutional layer mix inputs at different depths but

preserve the spatial location. Pooling layers perform a spatial coarse graining (pooling step)

at each depth to give a smaller height and width while preserving the depth. The

convolutional and pooling layers are followed by a fully connected layer and classifier (not

shown).

Mehta et al. Page 222

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 43. Two examples to illustrate a one-dimensional convolutional layer with ReLU
nonlinearity.
Convolutional layer for a spatial filter of size F for a one-dimensional input of width W with

stride S and padding P followed by a ReLU non-linearity.

Mehta et al. Page 223

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 44. Illustration of Max Pooling.
Illustration of max-pooling over a 2 × 2 region. Notice that pooling is done at each depth

(vertical axis) separately. The number of outputs is halved along each dimension due to this

coarse-graining.

Mehta et al. Page 224

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 45. Single-layer convolutional network for classifying phases in the Ising mode.
Accuracy on test set and critical samples for a convolutional neural network with single

layer of varying depth with filters of size 2, max-pool layer with receptive field of size 2,

followed by soft-max classifier. Notice that the test accuracy is 100% even for a CNN of

depth one with a single set of weights. Accuracy on the near-critical dataset is significantly

below that for the test set.

Mehta et al. Page 225

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 46. Organizing a workflow for Deep Learning.
Schematic illustrating a deep learning workflow inspired by navigating the bias-variance

tradeoff (Figure based on An-drew Ng’s talk at the 2016 Deep Learning School available at

https://www.youtube.com/watch?v=F1ka6a13S9I.) In this diagram, we have assumed that

there in no mismatch between the distributions the training and test sets are drawn from.

Mehta et al. Page 226

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.youtube.com/watch?v=F1ka6a13S9I

FIG. 47. Large neural networks can exploit the vast amount of data now available.
Schematic of how neural network performance depends on amount of available data (Figure

based on Andrew Ng’s talk at the 2016 Deep Learning School available at https://

www.youtube.com/watch?v=F1ka6a13S9I.)

Mehta et al. Page 227

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.youtube.com/watch?v=F1ka6a13S9I
https://www.youtube.com/watch?v=F1ka6a13S9I

FIG. 48.
The “Swiss roll”. Data distributed in a threedimensional space (a) that can effectively be

described on a two-dimensional surface (b). A common goal of dimensional reduction

techniques is to preserve ordination in the data: points that are close-by in the original space

are also near-by in the mapped (latent) space. This is true of the mapping (a) to (b) as can be

seen by inspecting the color gradient.

Mehta et al. Page 228

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 49.
Illustration of the crowding problem. (Left) A two-dimensional dataset X consisting of 3

equidistant points. (Right) Mapping X to a one-dimensional space while trying to preserve

relative distances leads to a collapse of the mapped data points.

Mehta et al. Page 229

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 50.
PCA seeks to find the set of orthogonal directions with largest variance. This can be seen as

“fitting” an ellipse to the data with the major axis corresponding to the first principal

component (direction of largest variance). PCA assumes that directions with large variance

correspond to the true signal in the data while directions with low variance correspond to

noise.

Mehta et al. Page 230

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 51.
(a) The first 2 principal component of the Ising dataset with temperature indicated by the

coloring. PCA was performed on a joined dataset of 1000 samples taken at each

temperatures T = 0.25, 0.5, …, 4.0. Almost all the variance is explained in the first

component which corresponds to the magnetization order parameter (linear combination of

the features with weights all roughly equal). The paramagnetic phase corresponds to the

middle cluster and the left and right clusters correspond to the symmetry-related

ferromagnetic phases (b) Log of the spectrum of the covariance matrix versus rank ordering.

Only one dimension has high-variance.

Mehta et al. Page 231

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 52.
Illustration of the t-SNE embedding. xi points correspond to the original high-dimensional

points while the yi points are the corresponding low-dimensional map points produced by t-

SNE. Here we consider two points, x1, x2, that are respectively “close” and “far” from x0.

The high-dimensional Gaussian (short-tail) distribution p(x) of x0’s neighbors is shown in

blue. The low-dimensional Cauchy (fat-tail) distribution q(y) of x0’s neighbors is shown in

red. The map point yi, are obtained by minimizing the difference |q(y) p(xi)| (similar to

minimizing the KL divergence). We see that point x1 is mapped to short distances |y1 ‒ y0|.

In contrast, far-away points such as x2 are mapped to relatively large distances |y2 − y0|.

Mehta et al. Page 232

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 53.
Different visualizations of a Gaussian mixture formed of K = 30 mixtures in a D = 40

dimensional space. The Gaussians have the same covariance but have means drawn

uniformly at random in the space [‒10, 10]40. (a) Plot of the first two coordinates. The

labels of the different Gaussian is indicated by the different colors. Note that in a realistic

setting, label information is of course not available, thus making it very hard to distinguish

the different clusters. (b) Random projection of the data onto a 2 dimensional space. (c)

projection onto the first 2 principal components. Only a small fraction of the variance is

explained by those components (the ratio is indicated along the axis). (d) t-SNE embedding

(per-plexity = 60, # iteration = 1000) in a 2 dimensional latent space. t-SNE captures

correctly the local structure of the data.

Mehta et al. Page 233

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 54.
Visualization of the MNIST handwritten digits training dataset (here N = 60000). (a) First

two principal components. (b) t-SNE applied with a perplexity of 30, a Barnes-Hut angle of

0.5 and 1000 gradient descent iterations. In order to reduce the noise and speed-up

computation, PCA was first applied to the dataset to project it down to 40 dimensions. We

used an open-source implementation to produce the results (Linderman et al., 2017), see

https://github.com/KlugerLab/FIt-SNE.

Mehta et al. Page 234

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/KlugerLab/FIt-SNE

FIG. 55.
K-means with K = 3 applied to an artificial two-dimensional dataset. The cluster means at

each iteration are indicated by cyan star markers. t indicates the iteration number 𝒞 and the

value of the objective function. (a) The algorithm is initialized by randomly partitioning the

space into 3 sectors to generate an initial assignment. (b)-(c) For well separated clusters, the

algorithm converges rapidly to the true clusters. (d) The objective function as a function of

the iteration. 𝒞 converges after t = 18 iterations for this choice of random seed (for center

initialization).

Mehta et al. Page 235

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 56.
Hierarchical clustering example with single linkage. (a) The data points are successively

grouped as denoted by the colored dotted lines. (b) Dendrogram representation of the

hierarchical decomposition. Each node of the tree represents a cluster. One has to specify a

scale cut-off for the distance measure d(X, Y) (corresponding to a horizontal cut in the

dendrogram) in order to obtain a set of clusters.

Mehta et al. Page 236

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 57.
(a) Illustration of DBSCAN algorithm with minPts= 4. Two ε-neighborhood are represented

as dashed circles of radius ε. Red points are the core points and blue points are density-

reachable point that are not core points. Outliers are gray colored. (b) Application of DB-

(minPts=40) to a noisy dataset with two non-convex clusters. Density profile is shown for

clarity. Outliers are indicated by black crosses.

Mehta et al. Page 237

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 58.
(a) Application of gaussian mixture modelling to the Ising dataset. The normalized

histogram corresponds to the first principal component distribution of the dataset (or

equivalently the magnetization in this case). The 1D data is fitted with a K = 3-component

gaussian mixture. The likehood of the fitted gaussian mixture is represented in red and is

obtained via the expectation-maximization algorithm (a) The gaussian mixture model can be

used to compute posterior probability (responsibilities), i.e. the probability of being in one of

the phases. Note that the point where γ(1) = γ(2) = γ(3) can be interpreted as the critical

point. Indeed the crossing occurs at T ≈ 2.26.

Mehta et al. Page 238

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 59.
Convergence of EM algorithm. Starting from θ(t), E-step (blue) establishes −Fq (θ(t)) which

is always a lower bound of −Fp: = logp x |θ Px
 (green). M-step (red) is then applied to

update the parameter, yielding θ(t+1). The updated parameter θ(t+1) is then used to construct

‒Fq (θ(t+1)) in the subsequent E-step. M-step is performed again to update the parameter,

etc.

Mehta et al. Page 239

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 60.
Examples of handwritten digits (“reconstructions”) generated using various energy-based

models using the powerful Paysage package for unsupervised learning. Examples from top

to bottom are: the original MNIST database, an RBM with Gaussian units which is

equivalent to a Hopfield Model, a Restricted Boltzmann Machine (RBM), a RBM with an L1

penalty for regularization, and a Deep Boltzmann Machine (DBM) with 3 layers. All models

have 200 hidden units. See Sec. XVI and corresponding notebook for details

Mehta et al. Page 240

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 61.
A Restricted Boltzmann Machine (RBM) consists of visible units vi and hidden units hµ that

interact with each other through interactions of the form Wiµvihµ. Importantly, there are no

interactions between visible units themselves or hidden units themselves.

Mehta et al. Page 241

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 62.
(Top) To draw fantasy particles (samples from the model) we can perform alternating

(block) Gibbs sampling between the visible and hidden layers starting with a sample from

the data using the marginal distributions p(h|v) and p(v|h). The “time” t corresponds to the

time in the Markov chain for the Monte Carlo and measures the number of passes between

the visible and hidden states. (Middle) In Contrastive Divergence (CD), we approximately

sample the model by terminating the Gibbs sampling after n steps (CD-n) starting from the

data. (C) In Persistent Contrastive Divergence (PCD), instead of restarting the Gibbs sampler

from the data, we initialize the sampler with the fantasy particles calculated from the model

at the last SGD step.

Mehta et al. Page 242

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 63.
Deep Boltzmann Machine contain multiple hidden layers. To train deep networks, first we

perform layerwise training where each two layers are treated as a RBM. This can be

followed by fine-tuning using gradient descent and persistent contrastive divergence (PCD).

Mehta et al. Page 243

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 64.
Fantasy particles (samples) generated using the indicated model trained on the MNIST

dataset. Samples were generated by running (alternating) layerwise Gibbs sampling for 100

steps. This allows the final sample to be very far away from the starting point in our feature

space. Notice that the generated samples look much less like hand-written reconstructions

than in Fig. 60 which uses a single max-probability iteration of the Gibbs sampler, indicating

that training is much less effective when exploring regions of probability space faraway from

the training data. In the Sec. XVII, we will argue that this is likely a generic feature of

Likelihood-based training.

Mehta et al. Page 244

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 65.
Images from MNIST were randomly corrupted by adding noise. These noisy images were

used as inputs to the visible layer of the generative model. The denoised images are obtained

by a single “deterministic” (max probability) iteration v → h → v′.

Mehta et al. Page 245

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 66.
MC samples, their reconstructions and fantasy particles generated by a Deep Boltzmann

Machine in the ordered phase of the the 2D Ising data set at T/J = 1.75. We used two

hidden layers of 1000 and 100 layers, respectively.

Mehta et al. Page 246

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 67.
MC samples, their reconstructions and fantasy particles generated by a Deep Boltzmann

Machine in the critical regime of the the 2D Ising data set at T/J = 2.25. We used two

hidden layers of 1000 and 100 layers, respectively.

Mehta et al. Page 247

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 68.
MC samples, their reconstructions and fantasy particles generated by a Deep Boltzmann

Machine in the disordered phase of the the 2D Ising data set at T/J = 2.75. We used two

hidden layers of 1000 and 100 layers, respectively.

Mehta et al. Page 248

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 69.
KL-divergences between the data distribution pdata and the model pθ. Data is drawn from a

bimodal Gaus-sian distribution with unit variances peaked at ±∆ with ∆ = 2.0 and the model

pθ(x) is a Gaussian with mean zero and same variance as pθ(x). (Top) pdata and pθ for ∆ = 2.

(Bottom) DKL(pdata||pθ) (Data-Model) and DKL(pθ||pdata) (Model-Data) as a function of ∆.

Notice that DKL(pdata||pθ) is insensitive to placing weight in the model distribution in

regions where pdata ≈ 0 whereas DKL(pθ||pdata) punishes this harshly.

Mehta et al. Page 249

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 70.
KL-divergences between the data distribution pdata and the model pθ. Data is drawn from a

Gaussian mixture of the form pdata = 0.25𝒩 −Δ + 0.25 ∗ 𝒩 Δ + 0.5𝒩 0 where 𝒩 a is a

normal distribution with unit variance centered at x = a. pθ(x) is a Gaussian with σ2 = 2.

(Top) pdata and pθ for ∆ = 5. (Middle) pdata and pθ for ∆ = 1. (Bottom) DKL(pdata||pθ) [Data-

Model] and DKL(pθ||pdata) [Model-Data] as a function of ∆. Notice that DKL(pθ||pdata) is

insensitive to placing weight in the model distribution in regions where pθ ≈ 0 whereas

DKL(pdata||pθ) punishes this harshly.

Mehta et al. Page 250

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 71.
A GAN consists of two differentiable functions (usually represented as deep neural

networks): a generator function G(z; θG) that takes as an input a z sampled from some prior

on the latent space and outputs a point x. The generator function (neural network) has

parameters θG. The discriminator function D(x; θD) discriminates between x from the data

and samples from the model: x = G(z; θG). The two networks are trained by “playing a

game” where the discriminator is trained to distinguish between synthetic and real examples

while the generator is trained to try to fool the discriminator. Importantly, the cost function

for the discriminator depends on the generator parameters and vice versa.

Mehta et al. Page 251

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 72.
VAEs learn a joint distribution pθ(x, z) between latent variables z with prior distribution p(z)

and data x. The conditional distribution pθ(x|z) can be thought of as a stochastic “decoder”

that maps latent variables to new examples. The stochastic “encoder” qϕ(z|x) approximates

the true but intractable pθ(z|x) – much like mean-field theories in statistical physics

approximate true distributions with analytically tractable approximations. Figure based on

Kingma’s Ph.D. dissertation Chapter 2. (Kingma et al., 2017).

Mehta et al. Page 252

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 73.
Schematic explaining the computational flow of VAEs. Figure based on Kingma’s Ph.D.

dissertation Chapter 2. (Kingma et al., 2017).

Mehta et al. Page 253

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 74.
Computational graph for a VAE with Gaussian hidden units (i.e. p(z) are standard normal

variables 𝒩 0, 1 and Gaussian variational encoder whose posterior takes the form

qϕ z|x = 𝒩 μ x , σ2 x .

Mehta et al. Page 254

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 75.
Embedding of MNIST dataset into a two-dimensional latent space using a VAE with two

latent dimensions (see Notebook 19 and main text for details.) Data points are colored by

their identity [0–9].

Mehta et al. Page 255

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 76.
(Top) Fantasy particle generated by uniform sampling of the latent space z. (Bottom)

Fantasy particles generated by uniform sampling of probability p(z) mapped to latent space

using the inverse Cumulative Distribution Function (CDF) of the Gaussian.

Mehta et al. Page 256

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 77.
(Top) Embedding of the Ising dataset into a two-dimensional latent space using a VAE with

two latent dimensions (see Notebook 20 and main text for details.) Data points are colored

by temperature sample was drawn at. (Bottom) Correlation between the latent dimensions

and the magnetization for each sample. Notice the first principle component corresponds to

the magnetization.

Mehta et al. Page 257

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIG. 78.
Fantasy particles for the Ising model generated by uniform sampling of probability p(z)

mapped to latent space using the inverse Cumulative Distribution Function (CDF) of the

Gaussian.

Mehta et al. Page 258

Phys Rep. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mehta et al. Page 259

TABLE I

Analogy between quantities in statistical physics and variational EM.

statistical physics Variational EM

spins/d.o.f.: s hidden/latent variables z

couplings /quenched disorder: J data observations: x

Boltzmann factor e−βE(s,J) Complete probability: p(x, z|θ)

partition function: Z(J) marginal likelihood p(x|θ)

energy: βE(s, J) negative log-complete data likelihood: − log p(x, z|θ, m)

free energy: βFp(J|β) negative log-marginal likelihood: − log p(x|m)

variational distribution: q(s) variational distribution: q(z|x)

Variational free-energy: Fq (J, θ) variational free-energy: Fq (θ)

Phys Rep. Author manuscript; available in PMC 2019 August 09.

	Abstract
	INTRODUCTION
	What is Machine Learning?
	Why study Machine Learning?
	Scope and structure of the review

	WHY IS MACHINE LEARNING DIFFICULT?
	Setting up a problem in ML and data science
	Polynomial Regression

	BASICS OF STATISTICAL LEARNING THEORY
	Three simple schematics that summarize the basic intuitions from Statistical Learning Theory
	Bias-Variance Decomposition

	GRADIENT DESCENT AND ITS GENERALIZATIONS
	Gradient Descent and Newton’s method
	Limitations of the simplest gradient descent algorithm
	Stochastic Gradient Descent (SGD) with mini-batches
	Adding Momentum
	Methods that use the second moment of the gradient
	Comparison of various methods
	Gradient descent in practice: practical tips

	OVERVIEW OF BAYESIAN INFERENCE
	Bayes Rule
	Bayesian Decisions
	Hyperparameters

	LINEAR REGRESSION
	Least-square regression
	Ridge-Regression
	LASSO and Sparse Regression
	Using Linear Regression to Learn the Ising Hamiltonian
	Convexity of regularizer
	Bayesian formulation of linear regression
	Recap and a general perspective on regularizers

	LOGISTIC REGRESSION
	A. The cross-entropy as a cost function for logistic regression
	Minimizing the cross entropy
	Examples of binary classification
	Identifying the phases of the 2D Ising model
	SUSY
	Softmax Regression
	An Example of SoftMax Classification: MNIST Digit Classification

	COMBINING MODELS
	Revisiting the Bias-Variance Tradeoff for Ensembles
	Bias-Variance Decomposition for Ensembles
	Summarizing the Theory and Intuitions behind Ensembles

	Bagging
	Brief Introduction to Bootstrapping
	Boosting
	Random Forests
	Gradient Boosted Trees and XGBoost
	Applications to the Ising model and Supersymmetry Datasets
	AN INTRODUCTION TO FEED-FORWARD DEEP NEURAL NETWORKS (DNNS)
	Neural Network Basics
	The basic building block: neurons
	Layering neurons to build deep networks: network architecture.
	Training deep networks
	High-level specification of a neural network using Keras
	The backpropagation algorithm
	The Backpropagation Algorithm
	Computing gradients in deep networks: what can go wrong with backprop?
	Regularizing neural networks and other practical considerations
	Implicit regularization using SGD: initialization, hyper-parameter tuning, and Early Stopping
	Dropout
	Batch Normalization
	Deep neural networks in practice: examples
	Deep learning packages
	Approaching the learning problem
	SUSY dataset
	Phases of the 2D Ising model
	CONVOLUTIONAL NEURAL NETWORKS (CNNS)
	The structure of convolutional neural networks
	Example: CNNs for the 2D Ising model
	Pre-trained CNNs and transfer learning
	HIGH-LEVEL CONCEPTS IN DEEP NEURAL NETWORKS
	A. Organizing deep learning workflows using the bias-variance tradeoff
	Estimate optimal error rate (Bayes rate).—
	Minimize underfttting (bias) on training data set.—
	Make sure you are not overfttting.—

	Why neural networks are so successful: three high-level perspectives on neural networks
	Neural networks as representation learning
	Neural networks can exploit large amounts of data
	Neural networks scale up well computationally
	Limitations of supervised learning with deep networks
	DIMENSIONAL REDUCTION AND DATA VISUALIZATION
	Some of the challenges of high-dimensional data
	High-dimensional data lives near the edge of sample space.
	Real-world data vs. uniform distribution.
	Intrinsic dimensionality and the crowding problem.
	Principal component analysis (PCA)
	Multidimensional scaling
	t-SNE
	CLUSTERING
	Practical clustering methods
	K-means
	K-means algorithm.

	Hierarchical clustering: Agglomerative methods
	Agglomerative clustering algorithm

	Density-based (DB) clustering
	DBSCAN algorithm.

	Clustering and Latent Variables via the Gaussian Mixture Models
	Clustering in high dimensions

	VARIATIONAL METHODS AND MEAN-FIELD THEORY (MFT)
	Variational mean-field theory for the Ising model
	Expectation Maximization (EM)
	Expectation step:
	Maximization step:

	ENERGY BASED MODELS: MAXIMUM ENTROPY (MAXENT) PRINCIPLE, GENERATIVE MODELS, AND BOLTZMANN LEARNING
	An overview of energy-based generative models
	Maximum entropy models: the simplest energy-based generative models
	MaxEnt models in statistical mechanics
	From statistical mechanics to machine learning
	Generalized Ising Models from MaxEnt
	Cost functions for training energy-based models
	Maximum likelihood
	Regularization
	Computing gradients
	Summary of the training procedure

	DEEP GENERATIVE MODELS: HIDDEN VARIABLES AND RESTRICTED BOLTZMANN MACHINES (RBMS)
	Why hidden (latent) variables?
	Restricted Boltzmann Machines (RBMs)
	Training RBMs
	Gibbs sampling and contrastive divergence (CD)
	Practical Considerations
	Initialization.—
	Regularization.—
	Learning Rates.—
	Updates for CD and PCD.—

	Deep Boltzmann Machine
	Example: Using Paysage for MNIST

	Example: Using Paysage for the Ising Model
	Generative models in physics
	VARIATIONAL AUTOENCODERS (VAES) AND GENERATIVE ADVERSARIAL NETWORKS (GANS)
	The limitations of maximizing Likelihood
	Generative models and adversarial learning
	Variational Autoencoders (VAEs)
	VAEs as variational models
	Training via the reparametrization trick
	Connection to the information bottleneck
	VAE with Gaussian latent variables and Gaussian encoder
	Implementing the Gaussian VAE
	VAEs for the MNIST dataset
	VAEs for the 2D Ising model

	OUTLOOK
	Research at the intersection of physics and ML
	Applying ML to solve physics problems.
	Machine Learning on quantum computers.
	Monte-Carlo Methods.
	Statistical physics style theory of Deep Learning.
	Biological physics and ML.
	Using ideas from physics to develop new ML algorithms.

	Topics not covered in review
	Temporal/Sequential Data.
	Reinforcement Learning.
	Support Vector Machines (SVMs) and Kernel Methods.

	Rebranding Machine Learning as “Artificial Intelligence”
	Social Implications of Machine Learning

	Overview of the Datasets used in the Review
	References
	FIG. 1
	FIG. 2
	FIG. 3
	FIG. 4
	FIG. 5
	FIG. 6
	FIG. 7
	FIG. 8
	FIG. 9
	FIG. 10
	FIG. 11
	FIG. 12
	FIG. 13
	FIG. 14
	FIG. 15
	FIG. 16
	FIG. 17
	FIG. 18
	FIG. 19
	FIG. 20
	FIG. 21
	FIG. 22
	FIG. 23
	FIG. 24
	FIG. 25
	FIG. 26
	FIG. 27
	FIG. 28
	FIG. 29
	FIG. 30
	FIG. 31
	FIG. 32
	FIG. 33
	FIG. 34
	FIG. 35
	FIG. 36
	FIG. 37
	FIG. 38
	FIG. 39
	FIG. 40
	FIG. 41
	FIG. 42
	FIG. 43
	FIG. 44
	FIG. 45
	FIG. 46
	FIG. 47
	FIG. 48
	FIG. 49
	FIG. 50
	FIG. 51
	FIG. 52
	FIG. 53
	FIG. 54
	FIG. 55
	FIG. 56
	FIG. 57
	FIG. 58
	FIG. 59
	FIG. 60
	FIG. 61
	FIG. 62
	FIG. 63
	FIG. 64
	FIG. 65
	FIG. 66
	FIG. 67
	FIG. 68
	FIG. 69
	FIG. 70
	FIG. 71
	FIG. 72
	FIG. 73
	FIG. 74
	FIG. 75
	FIG. 76
	FIG. 77
	FIG. 78
	TABLE I

