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Abstract

Mitophagy is the selective degradation of mitochondria by autophagy. Methods to study 

mitophagy in neurons is of increasing importance as neurodegenerative diseases such as 

Parkinson’s and Alzheimer’s display disrupted mitophagy as part of their pathogenesis. Since the 

last decade, researchers have determined how selective mitophagy pathways such as PINK1/Parkin 

and Mul1 function at the cellular level. Thus, advances in techniques to study these pathways 

specifically in neurons and glia have arisen. This review will introduce mitophagy pathways 

studied in neurons and evaluate current techniques available to investigate mitophagy.
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Introduction

Mitochondria are pivotal in providing energy by generating ATP through cellular respiration 

and because of this mitochondrion are often referred to as the powerhouse of the cell. The 

mitochondria are important for many other cellular functions such as but not excluded to 

apoptosis, calcium regulation, reactive oxygen species (ROS) handing, and iron metabolism 

(Eisner et al., 2018; Spinelli and Haigis, 2018). Neurons solely rely on oxidative metabolism 

for energy production, unable to meet their bioenergetic demands through glycolysis (Hall et 
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al., 2012; Zheng et al., 2016). Neurodegenerative diseases can arise when neurons have a 

decline in oxidative phosphorylation (OXPHOS) and mitochondrial function (Pickrell et al., 

2011; Pinto et al., 2012). Therefore, mitophagy, or the selective autophagic degradation of 

mitochondria, is needed to properly control mitochondrial homeostasis and quality for 

properly functioning neurons.

Macroautophagy or autophagy is defined as a type of quality control mechanism for proteins 

and organelles by targeting cytosolic components to the lysosome for degradation 

(Mizushima, 2018). Mitophagy selectively degrades and eliminates the whole or parts of 

damaged mitochondria, while general autophagy unselectively removes mitochondria (Youle 

and Narendra, 2011). In addition, mitophagy works in conjunction with mitochondrial 

biogenesis to maintain cellular homeostasis (Palikaras et al., 2015). Neuron-specific 

conditional ATG5 (autophagy-related protein 5) and ATG7 (autophagy-related protein 7) 

knockout (KO) mice displayed an absence of autophagy causing progressive 

neurodegeneration (Hara et al., 2006; Komatsu et al., 2006). ATG5 and ATG7 KO neurons 

accumulated abnormal mitochondria indicating neurons rely heavily on autophagic 

pathways for mitochondrial quality control (Hara et al., 2006; Komatsu et al., 2006).

Parkin/PINK1

Mutations in PINK1 (PTEN –induced putative kinase protein 1) (a mitochondrial targeted 

serine/threonine kinase) and Parkin (an E3 ubiquitin ligase) are known to cause autosomal 

recessive forms of Parkinson’s disease (PD) (Kitada et al., 1998; Matsumine et al., 1997; 

Valente et al., 2001; Valente et al., 2002). Epistasis experiments in Drosophila demonstrated 

that both of these proteins reside in the same pathway (Clark et al., 2006; Poole et al., 2008; 

Yang et al., 2006). Parkin normally is in an inactive conformation in the cytosol (Riley et al., 

2013; Trempe et al., 2013; Wauer and Komander, 2013). PINK1 is constitutively imported 

and degraded inside polarized, functional mitochondria (Silvestri et al., 2005; Yamano and 

Youle, 2013).

In 2008, Youle and colleagues discovered Parkin specifically translocated to damaged 

mitochondria facilitating mitophagy (Narendra et al., 2008) (Figure 1), and over the last 

decade his group and others elucidated mechanistically the Parkin-mediated mitophagy 

pathway (Pickrell and Youle, 2015). Mitochondrial damage that disrupts mitochondrial 

membrane potential or misfolded mitochondrial protein stress inhibits PINK1 import, 

allowing for its accumulation on the outer mitochondrial membrane (OMM) (Burman et al., 

2017; Jin et al., 2010; Jin and Youle, 2013; Narendra et al., 2010; Vives-Bauza et al., 2010). 

PINK1 associates with the translocase of the outer membrane (TOM) to form a complex on 

the OMM (Lazarou et al., 2012). PINK1 recruits and activates Parkin from the cytosol to the 

outer mitochondrial membrane by two simultaneous processes: (1) the phosphorylation of 

Ser65 located in the ubiquitin-like domain of Parkin (Kondapalli et al., 2012; Shiba-

Fukushima et al., 2012) and (2) through phosphorylating ubiquitin (UB) and ubiquitin 

chains at Ser65 on resident OMM proteins (Kane et al., 2014; Kazlauskaite et al., 2014; 

Koyano et al., 2014; Ordureau et al., 2015). Activated Parkin in a feedforward manner 

ubiquitinates resident OMM proteins (Chan et al., 2011; Sarraf et al., 2013; Tanaka et al., 

2010; Ziviani et al., 2010). The ubiquitin signal stimulates the UPS (ubiquitin-proteasome 
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system) to degrade OMM proteins (Chan et al., 2011; Tanaka et al., 2010) and also acts as a 

scaffold for ubiquitin binding autophagy adaptor proteins to tether mitochondria to the 

developing autophagophore (Heo et al., 2015; Lazarou et al., 2015; Richter et al., 2016; 

Wong and Holzbaur, 2014).

The spatial localization of where Parkin-mediated mitophagy occurs within the neuron has 

been debated. Parkin-mediated mitophagy was originally shown to mostly localize to the cell 

soma (Cai et al., 2012). Other data demonstrated mitophagy occurs locally in distal axons 

rather than translocating to the soma (Ashrafi et al., 2014). However, antibody detection of 

phosphorylated Ser65 UB found an accumulation of signal in the soma of aged healthy and 

PD human postmortem dopaminergic (DA) neurons (Fiesel et al., 2015). Regardless, Parkin-

mediated mitophagy appears important for the pathogenesis of PD in humans and is active in 

neurons.

Mul1

Mul1 (mitochondrial ubiquitin ligase 1) works in concert with the Parkin/PINK1 mitophagy 

pathway. The protein was original discovered to reside on the outer mitochondrial membrane 

as a SUMO and ubiquitin targeted E3 ligase (Braschi et al., 2009; Li et al., 2008; Neuspiel et 

al., 2008). In mouse embryonic fibroblasts (MEFs) forced to utilize OXPHOS in culture, 

Mul1 was shown to work in parallel with Parkin triggering mitophagy (Rojansky et al., 

2016). Epistasis experiments confirmed that Mul1 acts in parallel to the PINK1/Parkin 

pathway (Figure 1), and knockdown of Mul1 in Parkin KO cortical neurons caused 

mitochondrial defects and neuronal death (Yun et al., 2014).

Transgenic Mouse Models of Mitophagy

Transgenic mouse models have been generated to help investigators evaluate mitophagy in a 

cell-type, tissue-specific manner in vivo (Figure 2, Table 1). Each mouse model relies on the 

expression or overexpression of a different fluorescent reporter protein to detect the 

autophagosome or autophagolysosome. Researchers also use these reviewed constructs or 

derivatives to virally overexpress or transfect neurons or glia in vitro and in vivo.

GFP-LC3 Mouse

The first transgenic mouse generated to probe autophagy was the GFP-LC3 reporter line 

under the CAG promoter by Mizushima’s group (Mizushima and Kuma, 2008; Mizushima 

et al., 2004). Microtubule-associated protein light chain 3 (LC3) is the mammalian homolog 

of yeast Atg8, which is conjugated to phosphatidylethanolamine and targeted to autophagic 

membranes (autophagophore and autophagosome)(Kabeya et al., 2003). When LC3 is 

tagged with GFP, its punctate or ring-shaped morphology indicates active autophagosomes 

(Kabeya et al., 2003; Mizushima et al., 2003). Transgenic GFP-LC3 mice will not 

specifically label whether the autophagic cargo are mitochondria, but with immunostaining 

to detect mitochondrial proteins, this reporter line can be used to determine if mitophagy is 

present or perturbed in neurons. There are other forms of mitophagy that require a receptor 

with an LC3-interacting region (LIR) motif not explicitly stressed in this review. The GFP-

LC3 transgenic mouse would be able to detect mitophagy in cases where these receptors 
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such as FUNDC1 (Liu et al., 2012), BNIP3/Nix (Sandoval et al., 2008; Schweers et al., 

2007), and BCL2L13 (Murakawa et al., 2015) may act. However, the role these receptors 

play in relation to neuronal mitophagy is still under investigation.

There are potential drawbacks using these mice when interested in mitophagy. As alluded to 

above, the GFP-LC3 mouse was first developed to look at autophagy, so it is not specific for 

mitophagy detection. Even with immunostaining to detect mitochondrial proteins, this does 

not rule out general autophagy’s role in organelle clearance. Increased GFP-LC3 punctae 

must also be carefully interpreted. Increases in the number of GFP-LC3 punctae per cell 

could indicate an upregulation of autophagy/mitophagy; however, it could also indicate a 

disruption with autophagosome degradation or decreased fusion to the lysosome 

(Mizushima et al., 2010).

Mito-Keima Mouse

The mito-Keima mouse model is a knock-in pH-dependent fluorescence reporter mouse 

where the reporter protein is targeted to mitochondria to evaluate whether the organelle 

resides in the cytosol or the lysosome (Sun et al., 2015). The fluorescent Keima protein is 

naturally derived from coral with a pH dependent excitation spectrum where it excites at a 

short wavelength at 440nm in a neutral pH and a long wavelength at 568nm in an acidic 

environment and is resistant to lysosomal proteases (Katayama et al., 2011). The mito-

Keima protein is under the ROSA26 promoter with ubiquitous expression (Sun et al., 2015). 

When evaluating these mice, basal mitophagy levels were increased in the dentate gyrus, 

lateral ventricles, and Purkinje cell layers of the cerebellum compared to levels visualized in 

the cortex, striatum and substantia nigra (Sun et al., 2015). This same reporter protein has 

also been used to generate transgenic mito-Keima Drosophila to detect Parkin-mediated 

mitophagy dopaminergic neurons (Cornelissen et al., 2018).

There are potential drawbacks that need consideration when evaluating mitophagy in 

neurons with mito-Keima mice. Tissues need to be freshly isolated and imaged as aldehyde 

fixation and cryogenic storage of tissues either alters the pH of the lysosome or causes 

decreased signal for detection (Sun et al., 2017). The ubiquitous nature of the transgene 

knocked into the ROSA26 locus also causes a heterogenous cell-type populated, densely 

packaged tissue like brain to be difficult to evaluate in terms of identifying the cell of 

interest or determining which processes originate from which individual cell. Transgenic 

cardiac specific mito-Keima mice have recently been reported and were used to determine 

mitophagy during ischemia and high fat diet (Saito et al., 2019; Tong et al., 2019). Based on 

position-effect variegation during transgene integration (Feng et al., 2000), sparse 

oligodendrocyte labeling with membrane bound GFP has been used previously to parse out 

individual oligodendrocytes (Chong et al., 2012). Instead of knocking in the mito-Keima 

reporter protein, a transgene approach may be more applicable to CNS cell labeling.

Mito-QC Mouse

The knock-in mito-QC mouse model was developed as an alternative reporter animal to 

monitor mitochondrial turnover in vivo (McWilliams et al., 2016). A binary-based 
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fluorescence reporter uses a tandem mCherry (red)-GFP (green) fusion protein selectively 

targeted to the OMM (Allen et al., 2013). In the cytosol, both mCherry and GFP remain 

stable, but the GFP fluorescence quenches in low pH conditions inside the lysosome (Allen 

et al., 2013). When evaluating the CNS with the mito-QC mouse, basal mitochondrial 

turnover levels were high in Purkinje cells, DA neurons and microglia (McWilliams et al., 

2016; McWilliams et al., 2018)

There are potential benefits and drawbacks that need consideration when evaluating 

mitophagy in neurons with mito-QC mice. Live and fixed tissue can be used to measure and 

quantify mitophagy because this model is unaffected by aldehyde fixation (McWilliams and 

Ganley, 2019). This allows for the antibody identification of specific cell types. This model 

provides greater experimental flexibility to researchers with the tools that they have available 

for imaging. However, this transgene is also knocked into the ROSA26 locus with similar 

technical difficulties when studying the CNS as discussed above. Thick tissue optical 

clearing and imaging can overcome some of these difficulties (see Porter and Morton in this 

special issue of J. Neuroscience Methods). Another drawback is the potential for the tandem 

mCherry-GFP to become degraded during mitophagy by the UPS. This could cause 

mitophagy events to be missed. Improvements to reporter mice when studying mitophagy in 

neurons would enable researchers to better examine mitochondrial quality control in vivo.

Mass Spectrometry

Advances in proteomics have allowed researchers to detect with more sensitivity the identity 

of proteins, discover post-translational modifications to peptides, and quantitate proteins and 

post-translationally modified peptides. Mass spectrometry has been performed to quantify 

mitophagy and assess general mitochondrial turnover by comparing autophagy and 

mitophagy knockout fly lines (Vincow et al., 2013). Due to the ubiquitin status of the OMM 

being a key driver in mitophagy initiation, ubiquitination and post-translational modification 

of mitochondrial proteins can accurately detect and measure quantitively mitophagy using 

mass spectrometry (Sarraf et al., 2013).

Absolute quantification (AQUA) mass spectrometry uses isotope labeled peptides as a 

standard to monitor ubiquitin kinetics, relay information about chain formation, and detect 

post-translational phosphorylation events on ubiquitin (Gerber et al., 2003; Harper et al., 

2018; Kirkpatrick et al., 2005). AQUA proteomics applied to detect mitophagy can evaluate 

the ubiquitination status after Parkin activation (Ordureau et al., 2014; Rose et al., 2016) or 

although not evaluated yet, Mul1. With this type of proteomic approach, ubiquitin’s 

phosphorylation status can also be identified to detect PINK1 activity by the detection of 

phosphorylated ubiquitin (Ser65 UB)(Ordureau et al., 2014). This method has been shown to 

work successfully in the central nervous system of mice to detect phospho-ubiquitin 

(mitophagy) in a mouse model of mitochondrial dysfunction recapitulating some features of 

PD (Pickrell et al., 2015), and ubiquitin phosphorylation kinetics have also been worked out 

for IPSC (induced pluripotent stem cell) derived neurons (Ordureau et al., 2018).

Mass spectrometry approaches provide a quantitative and sensitive method for mitophagy 

detection prior to autophagosome formation, but drawbacks could hinder the interpretation 
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of the data. Whole cortical tissue fractions that are made of heterogenous CNS cell 

populations make it difficult to determine what neuronal/cell types are being examined. 

Immuno-based cell sorting with magnetic microbeads could purify cell types without 

removing cellular processes as in FACS (fluorescent activated cell sorting) (Holt and Olsen, 

2016). It is also possible that PINK1 independent mitophagy pathways in neurons exist 

making Ser65 UB a poor marker to define all neuronal mitophagic pathways. This has been 

hinted at previously by groups that examined PINK1 KO flies and mice where mitophagy 

was prevalent but seemed less dependent on PINK1 basally (Lee et al., 2018; McWilliams et 

al., 2018). Evaluation of basal levels of mitochondrial ubiquitination in the presence and 

absence of mitophagy correlated with mitophagy fluorescent reporters would enhance our 

understanding of the complete process.

Correlative Light and Electron Microscopy (CLEM)

CLEM combines the power of fluorescent microscopy to localize proteins/structures/events 

of interest with the resolution of electron microscopy (de Boer et al., 2015), which recently 

this technique has been used to study mitophagy. Using a combinatory approach using cryo-

fluorescent, room temperature-fluorescent, and electron microscopy (triCLEM), GFP-Parkin 

recruitment on depolarized mitochondria, identified by absence of MitoTracker Deep Red, 

can be visualized in mammalian cell culture to observe autophagosome formation around 

damaged mitochondria (Ader and Kukulski, 2017). In Drosophila skeletal muscle, CLEM 

utilizing mito-Keima detected mitophagic events as well (Cornelissen et al., 2018). This 

technique hasn’t been utilized to examine neuronal mitophagy; however, CLEM detection of 

autophagic events for aggregates have been studied in BV2 microglia-derived cell lines 

(Bussi et al., 2018). Primary neurons from the above-mentioned transgenic models or ISPC 

derived neurons would be suitable for this type of analysis.

Mitophagy in Other Neurodegenerative Diseases

Age-related neurodegenerative diseases besides PD such as Alzheimer’s disease (AD), 

Huntington’s disease (HD), and Amyotrophic Lateral Sclerosis (ALS) have recently begun 

to be investigated to determine if mitophagy contributes to the pathogenesis of these 

diseases. All of the most common age-related neurodegenerative diseases are associated 

with mitochondrial dysfunction (Pinto et al., 2012), so perturbations in mitochondrial quality 

control could be an underlying reason for these observations.

Alzheimer’s disease is the most prevalent age-related neurodegenerative disease 

characterized by irreversible dementia (Scheltens et al., 2016). Mitochondrial deficits appear 

early in the disease and contribute to synaptic failure, which is linked to cognitive deficits 

and memory loss (Du et al., 2010; Maurer et al., 2000; Yao et al., 2009). The defining 

pathology of AD is the increase in amyloid beta (Aβ) aggregates and deposited 

hyperphosphorylated tau (p-tau) throughout the brain (Masters et al., 2015). AD patients, 

IPSC derived neurons, and animal models have shown signs of mitophagy impairment (Fang 

et al., 2019). PINK1 overexpression in AD mouse models reduced Aβ accumulation 

ameliorating mitochondrial and synaptic dysfunction (Du et al., 2017).
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Recent data has also pointed to potential mitophagy defects in ALS, an age-related motor 

deteriorating neurodegenerative diseases that attacks both upper and lower motor neurons. 

Mutations in optineurin (a mitophagy adaptor protein) and Tank binding kinase 1 (TBK1) (a 

kinase that phosphorylates mitophagy adaptors) contribute to ALS (Cirulli et al., 2015; 

Freischmidt et al., 2015; Maruyama et al., 2010). ALS optineurin mutations were found to 

inhibit Parkin-mediated mitophagy in cell culture (Lazarou et al., 2015; Wong and Holzbaur, 

2014). In an ALS transgenic mouse model expressing the familial SOD1G93A mutation, 

evidence of active mitophagy occurred but surprisingly found that chronic Parkin activation 

was detrimental (Palomo et al., 2018).

Huntington’s disease (HD) is a genetic polyglutamine neurodegenerative disease with 

excessive CAG repeats in the gene huntingtin causing motor deterioration and death due to 

the loss of medium spiny neurons of the striatum. Huntingtin, with increased polyglutamine 

repeats responsible for HD, interacts with a AAA+ ATPase protein, p97, on mitochondria 

possibly causing mitophagy defects (Guo et al., 2016; Hosp et al., 2015). Overexpression of 

PINK1 in an HD Drosophila model decreased neurodegenerative and dysfunctional 

mitochondrial phenotypes to increase survival (Khalil et al., 2015).

Future Directions for Mitophagy in Neurons

Alternative mitophagy pathways play physiological roles in other cell types for processes 

such as differentiation and development. Mitophagy eliminates mitochondria in developing 

reticulocytes to mature red blood cells as well as aid in brown and white adipocyte 

differentiation (Baerga et al., 2009; Schweers et al., 2007; Zhang et al., 2009). Mitophagy is 

required for proper differentiation and cell fate but do not necessary remove only damaged 

mitochondria. It is unclear what mitophagy pathways are important for basal mitophagy or if 

mitochondrial damage is the only trigger for mitophagy in neurons. Evidence also suggests 

that damaged mitochondria may bypass these types of selective mitophagy pathways in 

certain cell types (Ahlqvist et al., 2015; Li-Harms et al., 2015). Neuronal mitophagy is 

clearly present; however, it is still unclear to what extent mitophagy and autophagy converge 

for physiological homeostasis. The development of new techniques to study mitochondrial 

quality control in disease and in physiological conditions will help researchers understand 

how mitochondrial function and dysfunction affects neuronal cell biology.
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Aβ amyloid beta

AD Alzheimer’s disease

ALS amyotrophic lateral sclerosis

ATG autophagy-related protein
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ATP adenosine triphosphate

AQUA absolute quantification

CLEM correlative light electron microscopy

CNS central nervous system

DA dopaminergic

FACS fluorescent activated cell sorting

GFP green fluorescent protein

HD Huntington’s disease

IPSC induced pluripotent stem cell

KO knockout

LC3 microtubule-associated protein light chain 3

LIR LC3-interacting region

MEFs mouse embryonic fibroblasts

mtDNA mitochondria DNA

Mul1 mitochondrial ubiquitin ligase 1

OMM outer mitochondrial membrane

OXPHOS oxidative phosphorylation

PINK1 PTEN–induced putative kinase protein 1

p-tau phosphorylated tau

QC quality control

ROS reactive oxygen species

TOM translocase outer membrane

UB ubiquitin

UPS ubiquitin-proteasome system
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Highlights

• PINK1/Parkin and Mul1 are two main mitophagy pathways in neurons.

• Advances in transgenic mouse models can be used to visualize mitophagy in 

neurons.

• Mass spec and CLEM detect early stages of mitophagy in neurons.

• Defects in mitophagy contribute to the pathogenesis of neurodegenerative 

diseases.
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Figure 1: PINK1/Parkin and Mul1 are parallel selective mitophagy pathways in neurons.
Cartoon depiction of neuronal mitophagy. Mul1 and Parkin work in conjunction to tag the 

OMM proteins with ubiquitin for lysosomal degradation. PINK1 phosphorylates ubiquitin 

and Parkin to activate Parkin and allow for autophagy adaptor binding (not depicted) to 

facilitate autophagosome formation around the targeted mitochondrion.
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Figure 2: Transgenic reporter mouse models to evaluate mitophagy in vivo.
Cartoon illustrating the transgenic mouse models used to detect mitophagy in neurons. GFP 

– LC3 transgenic mice utilize GFP to visualize the autophagosome. Mito-Keima mice 

express a pH sensitive fluorescent protein residing within the mitochondrial matrix. 

Differences in the excitation of this fluorescent protein reflects whether mitochondria are in 

the cytosol or lysosome. The mito-QC reporter mouse targets a tandem mCherry-GFP 

fluorescent protein to the outer mitochondrial membrane. GFP is extinguished in acidic 

conditions inside the lysosome to infer whether the mitochondria are in the cytosol or 

lysosome.
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Table 1:
Summary of mouse models used to examine mitophagy in neurons.

Select examples of the mouse models used in the literature with corresponding references and brief description 

of their usage.

Mouse model Usage (Neuron specific) Reference

GFP-LC3 (Autophagy/Mitophagy) Generated model Mizushima et al. MBC 2004

Lurcher model Wang et al. J Neuro 2006

DRG primary neurons Maday et al. JCB 2012

Primary neurons Maday et al. J Neuro 2016

Mito-Keima Generated model Sun et al. Mol Cell 2015

Protocol for usage Sun et al. Nat Protc 2017

ALS model Palomo et al. EMBO Mol Med 2018

GBA mutant model Li et al. Autophagy 2019

Mito-QC Generated model McWilliams et al. JCB 2016

PINK1 KO model McWilliams et al. Cell Met 2018

Parkin S65A model McWilliams et al. Open Bio 2018

Rential ganglion cells in vivo McWilliams et al. Autophagy 2019
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