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Accurate and transferable multitask prediction of
chemical properties with an atoms-in-molecules
neural network
Roman Zubatyuk1,2,3, Justin S. Smith2,4, Jerzy Leszczynski3, Olexandr Isayev1*

Atomic andmolecular properties could be evaluated from the fundamental Schrodinger’s equation and therefore
represent different modalities of the same quantum phenomena. Here, we present AIMNet, a modular and chem-
ically inspired deep neural network potential. We used AIMNet with multitarget training to learn multiple mod-
alities of the state of the atom in a molecular system. The resulting model shows on several benchmark datasets
state-of-the-art accuracy, comparable to the results of orders of magnitude more expensive DFT methods. It can
simultaneously predict several atomic and molecular properties without an increase in the computational cost.
With AIMNet, we show a new dimension of transferability: the ability to learn new targets using multimodal
information from previous training. The model can learn implicit solvation energy (SMD method) using only a
fraction of the original training data and an archive median absolute deviation error of 1.1 kcal/mol compared
to experimental solvation free energies in the MNSol database.
INTRODUCTION
The high computation cost of quantum chemical (QM) methods has
become a critical bottleneck, which limits a researcher’s abilities to
study larger realistic atomistic systems, as well as long-time scales re-
levant to an experiment. Hence, robust approximate but accurate
methods are required for continued scientific progress. Machine
learning (ML) has been successfully applied to approximate potential
energy surfaces of molecules (1–4), obtain atomic forces (5), and even
predict reaction synthesis (6). ML techniques have become popular for
the use in predicting QM molecular properties. ML models seek to
learn a “black box” function that maps a molecular structure to the
property of interest. Until recently, many ML-based potentials relied
on a philosophy of parametrization to one chemical system at a time
(7). These methods can achieve high accuracy with relatively small
amounts ofQMdata but are not transferable to new chemical systems.
Using this approach for any new system requires a new set of QM
calculations and extra parametrization time for each new study. Re-
cent breakthroughs in the development of ML models in chemistry
have produced general purpose models that accurately predict
potential energies and other molecular properties for a broad class
of chemical systems (2, 3, 8–10). General purpose models promise
to make ML a viable alternative to empirical potentials and classical
force fields. Force fields are known to have many weaknesses, for ex-
ample, poor description of the underlying physics and lack of trans-
ferability, and are hard to improve in accuracy systematically.

Various techniques for improving the accuracy and transferability
of ML potentials have been used. Active learning methods (11, 12),
which provide a consistent and automated improvement in accuracy
and transferability, have contributed greatly to the success of general
purposemodels. An active learning algorithm achieves this by deciding
what new QM calculations should be performed and then adding the
new data to the training dataset. The act of letting the ML algorithm
drive sampling is shown to greatly improve the transferability of an
ML potential. Further, transfer learning methods allow the training
of accurate ML potentials by combining multiple QM approxima-
tions (13). Several recent reviews summarized the rapid progress in
this field (14, 15).

The success of modern ML may be largely attributed to a highly
flexible functional form for fitting to high-dimensional data. ML is
known to extract complex patterns and correlations from these data.
These data can contain counterintuitive statistical correlations that are
difficult for humans to comprehend. With a few notable exceptions
(16, 17), these models do not capture the underlying physics of elec-
trons and atoms. These statistical fits are often fragile, and the behav-
ior of anMLpotential far from the training data could be nonphysical.
The essential challenge for ML is to capture the correct physical be-
havior. Therefore, the immediate frontiers in ML lie in physics-aware
artificial intelligence (PAI) and explainable artificial intelligence (XAI)
(18). Future PAI methods will learn a model with relevant physics-
inspired constraints included. The inclusion of physics-inspired con-
straints promises to deliver better performance by forcing the model
to obey physical laws and cope better with sparse and/or noisy data.
XAI will step even further, complementing models with logical rea-
soning and explanations of their actions, to ensure that researchers
are getting the right answer for the right reasons (18).

Natural phenomena often inspire the structure of ML models and
techniques (19). For example, the humanbrain is constantly interacting
with various types of information related to the physical world; each
piece of information is called a modality. In many systems, multiple
data modalities can be used to describe the same process. One such
physical system is the human brain, which provides more reliable
information processing based on multimodal information (20). Many
ML-related fields of research have successfully applied multimodalML
model training (21). In chemistry, molecules, which are often repre-
sented by structural descriptors, can also be described with accompany-
ing properties (dipole moments and partial atomic charges) and even
electron densities. The multimodal learning that treats multimodal
information as inputs has been an actively developing field in recent
years (22). Multimodal and multitask learning aims at improving the
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generalization performance of a learning task by jointly learning mul-
tiple related tasks together and could increase the predictivity of a
model (23). This boost is caused by the use of additional information
that captures the implicit mapping between the learnable endpoints.

Here, we present the AIMNet (atoms-in-molecules), a chemically
inspired, modular deep neural network (DNN) molecular potential.
We use multimodal and multitask learning to obtain an information-
rich representation of an atom in amolecule.We show the state-of-the-
art accuracy of the model to simultaneously predict energies, atomic
charges, and volumes. We also show how the multimodal information
about the atom state could be used to efficiently learn new properties,
such as solvation free energies, with much less training data.
RESULTS
The AIMNet architecture
The name and concept of the AIMNet model is inspired by Bader’s
theory of atoms in molecules (AIM) (24). The quantum theory of
AIM is a model in which a molecule could be partitioned into inter-
acting atoms via an observable electron density distribution function.
When atoms combine into a molecule, their electron density changes
due to interaction with other atoms. In density functional theory
(DFT), the final solution for the electron density and energy for the
molecule is usually obtained with an iterative self-consistent field
(SCF) procedure. Within the AIM model, each step of the SCF-like
procedure could be viewed as the change of electron density
distribution within atomic basins to reflect changes in the basins of
neighboring atoms. In the AIMNet model, instead of electron density,
atoms are characterized by learnable feature vectors and complex inter-
atomic interactions are approximated with the DNN.

The high-level architecture of the AIMNet model is shown in Fig. 1.
Themodel uses atomic coordinates (R) and numbers (Z) as inputs and
transforms them into atom-centered environment vectors (AEVs)
that are used as features for embedding, interaction, update, and
AIM neural network blocks. The model predicts a set of molecular
Zubatyuk et al., Sci. Adv. 2019;5 : eaav6490 9 August 2019
and/or atomic properties (p). The overall algorithm can be summarized
as follows

1) Encode relative positions R of all neighboring atoms as AEVs.
2) Select initial atomic feature vectors (AFVs) corresponding to

atomic numbers.
3) For each atom, embed its AEV into the space of AFVs of neigh-

boring atoms, combining geometrical and atomic feature information.
4) Calculate interaction of the atom with the environment to get

AIM representation of the atom.
5) Calculate atom properties from the AIM representation.
6) Calculate environment-dependent update to the AFVs and

repeat steps 3 to 5 until converged.
At step 6, theAFV for every atom in themolecule is updated, which

changes the embedding at the next iteration. This is effectively describ-
ing the interactions between atoms by passing messages (25, 26)
through the neural network. Convergence is a learned feature of the
model, when the state of each atom (AFV) is consistent with the state
of its neighbors and subsequent updates are approaching zero. There-
fore, we call this procedure “SCF-like.” The implementation details of
individual AIMNet blocks are given below.
Embedding block
Geometrical arrangement for ith atom of amolecule are encoded as a
set of ANI-type (3, 7) radial gðrÞij and angular gðaÞijk AEVs with indexes j
corresponding to every neighboring atom and jk to every unique pair
of neighbors

gðrÞij ¼ exp �hðrÞ rij � rðrÞs

� �� �
fCðrijÞ ð1Þ

gðaÞijk ¼
21�z 1þ cosqijk � qðaÞ⊺s

� �� �
exp �hðaÞ

rij þ rik
2

� rðaÞs

� �2
 !

fCðrijÞfCðrikÞ

ð2Þ
Fig. 1. Architecture of the AIMNet model. The model uses atomic numbers Z and coordinates R as input features. The coordinates are transformed with ANI-type
symmetry functions into AEVs. Atom types are represented with learnable atomic feature vectors (AFV), which are used as embedding vectors for AEVs. The interaction
of an atom with its environment produces the AIM representation of the atom used to predict a set of target atom properties {pk}. The environment-dependent update
to AFV within N iterations is used to make the embedding vectors for each atom consistent with its environment. Input data are colored in blue, predicted endpoints
are in orange, and neural network blocks are in green.
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fCðrijÞ ¼ 0:5cos pmin
rij
RC

; 1

� �� �
þ 0:5 ð3Þ

Here, r and q are the distances and angles between atoms and
fc is the cosine cutoff function, which smoothly zeroes AEVs for
neighbors located outside of cutoff radius RC, chosen at 4.6 Å for
radial AEVs and at 3.1 Å for angular AEVs. All hyperparameters
for AEVs, such as radial and angular probe vectors rs and qs, respec-
tively and probe widths h and z match the ANI-1x model (12) (see
also the Supplementary Materials for details).

The gðrÞij and gðaÞijk AEVs contain only geometrical information but
not atom types. To differentiate neighbors by atom type, we embed
these vectors into the space of learnable AFVs defined for every
chemical element Z as ℝ, az ∈ ℝd, with dimensionality d being an-
other hyperparameter of the model (here used d = 16). We selected
the outer product of gðrÞij and aj as an embedding operation for radial
AEVs. The result is a matrix GðrÞ

ij ∈ ℝm × d, where m is the dimen-
sionality of gðrÞij (the size of probe vectors rs in Eq. 1) and d is the size
of AFVs. By their design, symmetry functions (Eqs. 1 to 3) are many
body functions, i.e., they could be summed for all the neighbors of an
atom, providing an integral description of the atomic environment
(3). The same applies to outer products GðrÞ

ij , given a sufficiently large
embedding vector aj. We obtain radial features of atomic environ-
ment of the ith atom as a fixed-length vector after flattening the
corresponding matrix

GðrÞ
i ¼ ∑

j
gðrÞij ⋅a

⊺
j ð4Þ

Embedding of the angular symmetry functions gðaÞijk requires atom-
pair feature vectors a∗jk defined for every combination of chemical
elements. If introduced as learnable parameters of the model, then
the size of this embedding layer would grow as O(N2)with the number
of chemical elements. Instead, in the AIMNet model, we learn an inter-
action betweenAFVs,which give appropriate atom-pair atomic features
a∗jk. We construct concatenation of elementary symmetric polynomials,
e.g., element-wisemultiplication and addition of twoAFVs and use it as
an input layer for multilayer neural network or perceptron function
(MLP) FMLP1

a∗jk ¼ FMLP1ð½aj∘ak; aj þ ak�Þ ð5Þ

Analogous to the radial part, the combined angular AEV is de-
fined as

GðaÞ
i ¼ ∑

jk
gðaÞijk ⋅a

∗⊺
jk ð6Þ

The embedding stage is finalized by application of another neu-
ral network to the concatenation of embedded radial and angular
symmetry functions

f i ¼ FMLP2 GðrÞ
i ; GðaÞ

i

h i� �
ð7Þ

The FMLP2
function extracts information about the environment

of the atom; therefore, vector f is referred to as the atomic environ-
ment field.
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In this work, the AIMNet model was trained to learn six diverse
atomic or molecular properties. In addition to molecular energies,
we used modules for atomic electric moments of the atoms up to
l = 3, i.e., atomic charge, dipole, quadrupole, and octupole, as well
as atomic volumes. Figure 2 provides correlation plots for four pre-
dicted quantities. Atomic dipoles and quadrupoles are probably not
very useful per se and could be considered as “auxiliary.”Hence, the
accuracy of their fits is summarized in the Supplementary Materials.

The accuracy of fit is assessedon theDrugBank subset of theCOMP6-
SFCl benchmark. This benchmark contains properties of 23,203 none-
quilibrium conformations of 1253 drug-like molecules. The median
molecule size is 43 atoms, more than three times larger than mole-
cules in the training dataset. Thus, this benchmark shows transfer-
ability and extensibility of the AIMNet model. The root mean square
error (RMSE) of the energy predictions is 4.0 kcal/mol within the
range of about 1500 kcal/mol. For comparison, an ensemble of ANI
models trained and evaluated on the same datasets has an RMS energy
error of 5.8 kcal/mol and a force error of 7.1 kcal mol–1Å–1. Predicted
components of atomic forces have RMS deviation (RMSD) = 4.7 kcal
mol–1Å–1, highlighting the AIMNet model utility to reproduce the cur-
vature of molecular potential energy surfaces accurately and thus its ap-
plicability for geometry optimization and molecular dynamics. Atomic
charges could be learned up to a “chemical accuracy” of 0.01e. Overall,
this level of accuracy for both AIMNet and ANI-1x is on par with the
best single-molecule potentials constructed with the original Behler-
Parrinello (BP) descriptor (27).

Iterative SCF-like update
The AIMNet model was trained with outputs from every SCF-like
pass contributing equally to the cost function (see the Supplementary
Materials for details). This way, the model learns to give the best pos-
sible answer for each pass, given the input AFVs. The AFVs are im-
proved with every iteration, leading to lower errors. The model with
t = 1 is conceptually similar to the ANI-1x network since no updates
are made to the atomic features in both models [in BP-type networks,
the representation of atomic features is hidden within the neural
network (NN) layers], and the receptive field of the AIMNet model is
roughly equal to the size of the AEV descriptor in ANI-1x. Figure 3
shows the aggregated performance of prediction for energies (E), re-
lative conformer energies (DE), and forces (F) improves with increas-
ing number of passes t. As expected, the accuracy of AIMNet with
t = 1 is very similar or better compared to the ANI-1x network. The
second iteration (t = 2) provides the biggest boost in performance
for all quantities. After t = 3, results do not change much; there-
fore, we used t= 3 to train all models in the paper. Overall, the biggest
gains in accuracy were up to 0.75 kcal/mol for relative energies and
1.5 kcal mol–1Å–1 for forces. This corresponds to about 15 to 20%
error reduction.

Notably, there is a major difference between an SCF-like update and
a real SCF procedure used along with DFT methods. Convergence of
the SCF procedure is determined by the variational principle, e.g., the
solution is electron density distribution that minimizes the total energy.
The AIMNet model is not variational; lower energy does not imply
more correct prediction. Therefore, there is no guarantee for conver-
gence of SCF-like updates. Although, on average, AIMNet converges
very fast, within two or three iterations, this behavior is controlled by
the L2 regularization we used during training for every learned
parameter. The model learns to make better prediction using the
smallest possible update to the AEVs. After training with t = 3, the
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output of the model not only does not improve with larger number of
iterations but also does not explode because of the accumulation of er-
rors.We tested themodel with up to six updates and found that, at t= 7,
the AIMNet still performs better than with t = 1 (Fig. 3B).

Figure 3B shows that atomic charges and volumes are much more
sensitive toward the iterations than energies and forces. To illustrate
Zubatyuk et al., Sci. Adv. 2019;5 : eaav6490 9 August 2019
the importance of long-range interactions on charge redistribution, let
us consider a simple but realistic series of substituted thioaldehydes
(Fig. 4). Here, a substituent R is located as far as 5 Å away from the
sulfur atom. This distance is longer than the cutoff radius of 4.6 Å we
used in AEV construction. However, because of a conjugated chain
and the high polarizability of sulfur, the partial atomic charge on sulfur
BA

Fig. 3. AIMNet predictions with different number of iterative passes t evaluated on the DrugBank subset of the COMP6-SFCl benchmark. (A) Comparison of
AIMNet performance at different t values with ANI-1x model trained on exactly the same dataset for relative conformer energies (DE), total energies (E), and atomic
forces (F). (B) AIMNet accuracy in prediction of total energies (E), relative conformer energies (DE), atomic forces (F), charges (q), and volumes (V) at different t values.
Relative RMSE is calculated as ratio of RMSE at given t divided by RMSE at t = 3 (the values used to train model).
Fig. 2. Performance of the AIMNet model on the DrugBank subset of the COMP6-SFCl benchmark. Plots show correlation between ground-truth DFT (x axes) and
predicted with AIMNet (y axes) values for total molecular energies, components of force vectors on atoms (∂E/∂R), atomic charges, and volumes. For each plot, units for
both axes and for RMSD and mean absolute deviation values are the same. Logarithm of point density is shown with color.
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could change by asmuch as 0.15e by varyingRwith different electron-
donating or electron-withdrawing groups. The AIMNet model with t =
1 (as well as all neural network potentials (NNPs) with local geometric
descriptors) will incorrectly predict that the sulfur partial charge in all
molecules is equal. The correct trend could be recovered with either an
increase of the radius for local environment (usually at a substantial
computational cost and potentially an impact on model extensibility)
or with iterative updates to the AFVs. AIMNet with t = 2 reproduces
DFT charges on the sulfur atom notably better than with t = 1, except
for the most polar ones. At t = 3, the charge redistribution in the
AIMNet model completes and quantitatively reproduces DFT
charges for all molecules considered.

The nature of the AFV representation
To gain insights into the learned latent information inside the AFVs,
we performed a parametric t-distributed stochastic neighbor embed-
ding (pt-SNE) (28) of this 16-dimensional (16D) space into a 2D
space. The pt-SNE is an unsupervised dimensionality reduction
technique. pt-SNE learns a parametric mapping between the high-
dimensional data space and the low-dimensional latent space using
a DNN in such a way that the local structure of the data in the high-
dimensional space is preserved as much as possible in the low-
dimensional space. Figure 5 shows the 2D pt-SNE for 3742 DrugBank
molecules or about 327 k atoms in total.

In the AIMNet model, the AFVs are used to discriminate atoms by
their chemical types. The trivial discrimination could be achieved with
orthogonal vectors (which would effectively be a one-hot encoding).
The pt-SNE of AFVs in Fig. 6A shows that the location of clusters
corresponding to different chemical elements resembles their positions
in the periodic table. The pt-SNE component on the horizontal axis
roughly corresponds to a period and vertical component to a group
Zubatyuk et al., Sci. Adv. 2019;5 : eaav6490 9 August 2019
in the periodic table. Embeddings for hydrogen atoms are closer to
halogens than to any other element. It is interesting to note the wide
spread of the points corresponding to sulfur andhydrogen atoms. In the
case of sulfur, this is the only element in the set that may have distinctly
different valence states (6 and 2) in common organic molecules.

The most structure and diversity in the pt-SNE plot is observed for
carbon atoms. In Fig. 5A, we show a zoomed in region of the carbon
atoms, with coloring by the hybridization and structure of local chem-
ical environments. Twomain distinct clusters corresponding to sp2 (or
aromatic) and sp3 C atoms appear. Inside every cluster, atoms are
grouped by the local bonding environment. There is also a clear trend
in the increase of substituent polarity from the top to the bottom of the
plot. Similarly, the spread for the H atoms is determined mainly by the
parent sp2 and sp3 carbon atoms or heteroatom environments (Fig. 5C).

Conformations and dihedral profiles benchmark
One of themost promising applications of theNNPs for computation-
al drug discovery is conformer generation and ranking. Therefore, we
evaluated the performance of the AIMNet model against two distinct
external datasets. Both are tailored to benchmark the performance of
molecular potentials to describe conformer energies, which have high-
quality CCSD(T)/CBS reference data.

The small-molecule torsion benchmark of Sellers et al. (29) mea-
sures the applicability of an atomistic potential in drug discovery. This
benchmark includes 62 torsion profiles frommolecules containing the
elementsC,H,N,O, S, and F computedwith various force fields, semi-
empirical QM, DFT, and ab initio QM methods. These methods are
compared to CCSD(T)/CBS reference calculations. Figure 6A pro-
vides the performance of the methods presented in Sellers et al. (29)
together with AIMNet single-point calculations on MP2/6-311+G**
optimized geometries. According to this benchmark, the AIMNet
potential is much more accurate compared to semiempirical methods
and OPLS-type force fields, which is specifically tailored to describe
conformation energies of drug-like molecules. The performance of
the AIMNet model could be directly compared to MP2/6-311+G**
and DFT methods.

Another benchmark set, MPCONF196 (30), measures the per-
formance of various potentials to rank both the low- and high-energy
conformers of acyclic and cyclic peptides and several macrocycles, in-
cluding 13 compounds in total. The reference data were obtained as
single-point calculations at the CCSD(T)/CBS level (Tight-DLPNO
approximation for the largest molecules in the dataset) on MP2/cc-
pVTZ geometries. Figure 6C shows a comparison of AIMNet to a sub-
set of methods benchmarked in the original paper of Řezáč et al. (30).
The DFT methods fall into two categories, depending on whether
dispersion corrections were included or not, with highly empirical
4.6 Å

Fig. 4. DFT wB97x/def2-TZVPP atomic charges on the sulfur atom of
substituted thioaldehyde and AIMNet prediction with a different number
of iterative passes t.
H–N

H–O

A B C

Pe
rio

d

Group

H–C(sp3)
H–C(sp2)

Fig. 5. pt-SNE of AFVs (t = 3) for a set of drug-like molecules. (B) Feature vectors for different chemical elements. Values of feature vectors at t = 1 (before SCF-like
update) marked with cross symbol. (A and C) Feature vectors for several of the most common types of the carbon and hydrogen atom environments.
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M06-2x being somewhere in between. The AIMNet model has been
trained to reproduce the wB97x functional without explicit dispersion
correction. Therefore, its performance is clearly worse compared to
the dispersion-corrected counterpart. However, much of the error
could be reduced by adding an empirical D3 dispersion correction
to AIMNet energies. The benchmark data show that the AIMNet
model is on par with traditional DFT functionals without dispersion
correction, and it clearly outperforms semiempirical methods, even
methods that have built-in dispersion correction.

Learning new properties
The multimodal knowledge residing inside the AIM layer could be
exploited to efficiently learn new atomic properties without retraining
the whole model. This could be done by using a precomputed AIM
layer as atom descriptors and learning a neural network model with
a relatively small number of parameters that fits the AIM layer to the
new property.

We show the ability to learn atomic energies with an implicit sol-
vent approximation. For this exercise, a subset of 480 k structures was
taken from the training data andmolecular energies were calculated at
Zubatyuk et al., Sci. Adv. 2019;5 : eaav6490 9 August 2019
the SMD(Water)-wB97x/def2-TZVPP level of theory. The AIM layer
was computed using a pretrainedAIMNetmodel andwas then used as
a descriptor for training a simple DNN model to learn the Solvation
Moldel D (SMD) energy. The shape and activation function of the
DNN was selected to be the same as in the base AIMNet model. The
total number of trained parameters was about 32 k. If this newly
trained DNN model is placed as an additional task p in the AIMNet
model (see Fig. 1), then it would predict energies with implicit sol-
vent correction in addition to six other properties.

The performance of the AIMNet model trained this way was as-
sessed against experimental solvation free energies of neutral mole-
cules in the MNSol database (31). The geometries of 414 molecules
were optimized using the gas phase and SMD version of AIMNet.
The Hessian matrix was calculated by means of analytical second de-
rivatives of the energies with respect to coordinates using the PyTorch
autograd module. Thermal correction to the Gibbs free energy was
computed in Harmonic and rigid rotor approximations for the ideal
gas at 298 K. The results are shown in Fig. 6D. The AIMNet model
clearly outperforms SMD applied with semiempirical and tight
binding DFT (DFTB) methods that have RMSD and mean absolute
Torsion strain energy in drug-like fragments

Solvation energy of small organic 
molecules: MNSol 

Smaller peptides and medium-sized 
macrocycles: MPCONF196

A B

C D

Fig. 6. Performance of the AIMNet model on several benchmark sets compared to MM, semiempirical, DFT, and ab initio QM methods. (A and B) Torsion
benchmark of Sellers et al. (29) for gas phase and solvent models. The dots correspond to mean absolute error (MAE) for each of the 62 torsion profiles for each method.
(C) The dots correspond to absolute error for relative conformer energy for each of the 196 conformers in the dataset. (A to C) The boxes represent the upper and lower
quartiles, while the whiskers represent 1.5 times the interquartile range or the minimum/maximum values. The methods are ordered in descending median errors from
top to bottom. Boxes colored by the class of the computational method (ML, MM, SQM, DFT, and ab initio). The basis sets used to obtain reference energies are 6-311+G**,
for (A) and (B), and def2-TZVPD, for (C), where applicable but not specified. (D) Correlation plot of experimental solvation energies for 238 neutral molecules from the
MNSol database (31) and AIMNet predictions, calculated as the difference between the prediction of DFT and DFT(SMD) energies.
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error on solvation energies of 2.8 to 2.9 kcal/mol on this benchmark
set, even after reoptimization of the atomic radii (32).

Last, we also compared the performance of the AIMNet model
with other solvent-corrected QM and molecular mechanics (MM)
methods for predicting torsional profiles of small drug-like molecules
on the aforementioned benchmark data of Sellers et al. (29). This
benchmark is important for predicting molecular conformations of
solvated molecules (Fig. 6B). It shows the performance of the solvent-
corrected AIMNet model on torsion profiles compared to QM and
MM methods. The results show that OPLS(GBSA), PCM-B3LYP, and
AIMNet have very similar accuracy when predicting the conforma-
tions of solvated molecules. Note that the solvent-corrected energy
evaluationwithAIMNet has no additional computational cost. It takes
90 s to compute both the gas phase and SMD single-point energies of
36 angles for each of the 62 torsions (40 ms per energy evaluation)
using an ensemble of 5 AIMNet models on a single Nvidia M5000
graphics processing unit (GPU).
DISCUSSION
The AIMNet framework presented here is transformingMLmethods
from simple potential energy predictors to fully functional simula-
tion methods. Most ML property predictors introduced to date re-
quire an individual ML model or some set of QM calculations for
every quantity and system of interest. In most practical applications,
multiple physical quantities are required for a complete analysis of
the problem at hand. For example, molecular dynamics requires
conservative energy predictions to provide the correct forces for nu-
clear propagation, while the distribution of other properties over the
simulation might be of interest for computing results comparable to
experiment (e.g., dipolemoments for infrared spectra). In contrast to
straightforward training of separate models for each individual prop-
erty, AIMNet trains to these quantities simultaneously with multi-
modal and multitask training techniques. The AIMNet potential
achieves these predictions with a negligible increase in computational
cost over a single energy evaluation.

The AIMNet model makes it possible to discover a joint latent
representation, via the AIM layer, which captures relationships
across various modalities. Different modalities typically carry differ-
ent kinds of information. Since there is much structure in this
complex data, it is difficult to discover the highly nonlinear relation-
ships that exist between features across different modalities. This
might explain why the traditional ML research in the chemical and
materials sciences has focused on the design of optimal descriptors
or representation learning, rather than maximizing learning by tak-
ing advantage of the information inherent in different modalities of
information-rich datasets.

Inside the AIMNet model, the AIM layer is trained to automati-
cally produce an information-rich representation for every atom but
is also constrained by different modalities to implicitly encode more
physical information. The primary benefit of such an information-
rich representation is the ability to learn secondary (additional) tasks
without retraining the overall model. This is very useful for proper-
ties that are hard to compute or with scarce experimental data. For
example, we have shown that, after training the AIMNet model to
the energy, partial atomic charges, and atomic volumes, the new ad-
ditional task to predict SMD solvation energy only based on the AIM
layer vector could achieve predictions of the Gibbs free energy of
solvation with the accuracy of 1.8 kcal/mol using just 6% of ANI-1x
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data. This accuracy is comparable to the differences of DFT methods
with different solvation models.

Three key ingredients allow AIMNet to achieve the high level of ac-
curacy that it accomplishes. First, it overcomes the sparsity of training
data with multitask and multimodal learning. To make this learning
transferrable, the second ingredient is to find a joint information-rich
representation of an atom in a molecule that allows learning to multi-
ple modalities. Last, for the best performance and accounting of long-
range interactions, AIMNet uses an iterative SCF-like procedure. The
number of iterative passes t could serve as a single, easy-to-use pa-
rameter that determines the length scale of interactions inside the chem-
ical system since more iterations increase the effective information
transfer distance.

As with any supervised ML method, the critical property of the
trainedmodel is an ability to generalize to new samples not seen with-
in the training dataset. In the case of NNPs, this is usually discussed in
terms of transferability and extensibility—the ability to generalize to
vast chemical compound space while retaining applicability to larger
molecules than those in the training set. TheAIMNetmodel introduces
multimodality as a new dimension for generalization of NNPs—
applicability to a wide range of molecular and atomic properties and
ease of learning new properties.
MATERIALS AND METHODS
Dataset preparation
The training dataset was constructed on the basis of ANI-1x data (12).
The data were recalculated at the wB97x/def2-TZVPP level and in-
clude molecular energies and atomic forces, as well as minimal basis
iterative stockholder [MBIS (33), a variant of Hirshfeld partitioning]
atomic electric moments (atomic charges and norms of atomic di-
poles, quadrupoles, and octupoles) and atomic volumes. The active
learning method described in detail by Smith et al. (12) was used to
extend the dataset with molecules containing F, S, and Cl elements, in
addition to H, C, N, and O in the original dataset. The active learning
procedure to select the data was conducted using ANI-1x NNP. The
extension contains 3.3 M conformers of molecules containing one of
F, S, or Cl atoms. Table S1 provides the main characteristics of the
original dataset, extension, and resulting extended dataset.

To test the performance of AIMNet, we used the recently developed
COMP6 benchmark (12). COMP6 is a comprehensive benchmark suite
composed of five benchmarks that cover broad regions of organic and
biochemical space (formolecules containingC,N,O, andH atoms) and
a sixth built from the existing S66x8 (34) noncovalent interaction
benchmark. We have extended the COMP6 benchmark to include
molecules with S, F, and Cl elements and refer to it as COMP6-SFCl.
For this, we have selected newmolecules for DrugBank and GDB sub-
sets, following the same rules and procedures, reported for original
COMP6. Table S2 summarizes the most important characteristics of
the extension and resulting COMP6-SFCl dataset.

All DFT calculations were performed using ORCA 4.0 (35) soft-
ware package using RIJCOSX (36) approximate handling of exchange
integrals. After collecting all calculated energies and forces, we noticed
that about 0.01% of the data points have unusually large forces, which
could mean some sort of numerical errors or wrong solution of SCF
equations. The data points with any component of atomic force vec-
tors more than 4 Eh/bohr were discarded. MBIS atomic properties
were calculated using the HORTON (37) library. A linear model was
used to calculate average per-atom energies in the training dataset,
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which is essentially an average self-energy term for each element. This
linear fitting over the entire dataset was performed with respect to the
number of each atomic element in a given molecule as the input. The
AIMNet model is trained to the QM calculated energy minus the self-
energies of the atoms inmolecule. The energy obtained from this pro-
cess is roughly analogous to the process of computing an atomization
energy but without any per-atom bias, e.g., normalized atomization
energy. The linear fitting parameters are listed in the table S3. Before
training, all target properties were scaled to have unit variance.

For training, the dataset was randomly split into five folds of equal
size. Four folds were merged together to form a training dataset. The
fifth fold was used as the validation dataset. This way, five unique
cross-validation (CV) splits were formed. An ensemble of five AIMNet
models were trained, one for each CV split. All the predictions reported
for both AIMNet and ANI models are the averaged prediction of the
ensemble of models.

Implementation of the AIMNet model
The AIMNet model was implemented with PyTorch (38). All com-
ponents of the AIMNet model, including AEV construction, use ex-
clusively tensor operations, which makes the model end-to-end
differentiable. Two variants of the model were implemented. The
first uses a list of neighboring atoms and includes only those pairs
in construction of AEVs. This implementation scales as O(N) with
molecule size. The second variant of the model evaluates every pos-
sible pair of atoms to construct gðrÞij and gðaÞijk scales as O(N3). The
contribution from atom pairs more distant than cutoff radius is zero
and does not change, resulting inGðrÞ

ij andGðaÞ
i . Learned parameters of

the AIMNet model could be used with both implementations. The
AIMNet model used original ANI atom-centered symmetry func-
tions, as described and implemented in (36).

Training the AIMNet model
Network sizes (depth and number of parameters) were determined
through hyperparameter searches conducted as multiple separate
experiments and listed in table S4. Nonlinear exponential linear units
(39) an activation function with a = 1.0 was used in all AIMNetmodel
layers. Model training was done on four GPUs in parallel. Each batch
of the training data contained an average of 380 molecules. The gra-
dients from four batches were averaged, making an effective batch size
of 1520 molecules, with molecules of different sizes. Amstrad (40) op-
timizationmethodwas used to update the weights during training. An
initial learning rate of 10−3 was dynamically annealed with the “reduce
on plateau” schedule: The learning rate was multiplied by 0.9 once the
model failed to improve its validation set predictions within six epochs.

The cost function for multitarget multipacks training was defined
as weighted mean squared error loss

Ltot ¼ 1
N
∑
T

t
∑
p
∑
N

i
wtwpðytpi � ŷtpiÞ2 ð1:1Þ

where indices t, p, and i correspond to pass number, target property,
and sample, respectively; wt and we are the weights for the iterative
pass and target property, respectively; y and ŷ are target and pre-
dicted properties, respectively; and N is the number of samples. In
the case of per-molecule target properties (energies), the y values in
the cost function were divided by the number of atoms in molecule,
so errors are per atom for all target properties. We used equal weights
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for every pass, e.g., wt = 1/T, where T is the total number of passes.
Values forwpwere selected in such a way that all target properties give
approximately equal contribution to the combined cost function. In
relative terms, the weights for molecular energies, charges, and vol-
umes correspond to 1 kcal/mol, 0.0063e, and 0.65 Å3, respectively.
We also found that training results are not very sensitive to the choice
of the weights wp.

To accelerate training, the models were initially trained with t = 1.
Then, the weights of the last layer of update network were initialized
with zeros to produce zero atomic feature update and the model was
trained with t = 3 passes. We also used cold restarts (resetting the
learning rate and moving averages information for the optimizer) to
archive better training results. For t = 1, the networks were trained for
500 epochs on average, followed by 500 epochs with t = 3 for a total of
about 270 hours on a workstation with dual Nvidia GTX 1080 GPUs.
Typical learning curves are shown in fig. S1.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/8/eaav6490/DC1
Fig. S1. Typical learning curves for training the AIMNet model.
Table S1. Descriptive statistics for ANI-1x dataset, the extension with molecules containing S, F,
or Cl atoms, and resulted combined extended dataset ANI-1x-SFCl.
Table S2. Descriptive statistics for COMP6 dataset, extension containing molecules with S, F, or
Cl atoms, and resulted combined extended dataset COMP6-SFCl.
Table S3. Self-energies for atoms used to compute normalized atomization energies.
Table S4. Neural network architectures for each AIMNet blocks.
Table S5. Performance of ANI-1x and AIMNet on COMP6-SFCl dataset.
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