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Abstract

Good quality of medical images is a prerequisite for the success of subsequent image analysis 

pipelines. Quality assessment of medical images is therefore an essential activity and for large 

population studies such as the UK Biobank (UKBB), manual identification of artefacts such as 

those caused by unanticipated motion is tedious and time-consuming. Therefore, there is an urgent 

need for automatic image quality assessment techniques. In this paper, we propose a method to 

automatically detect the presence of motion-related artefacts in cardiac magnetic resonance 

(CMR) cine images. We compare two deep learning architectures to classify poor quality CMR 

images: 1) 3D spatio-temporal Convolutional Neural Networks (3D-CNN), 2) Long-term 

Recurrent Convolutional Network (LRCN). Though in real clinical setup motion artefacts are 

common, high-quality imaging of UKBB, which comprises cross-sectional population data of 

volunteers who do not necessarily have health problems creates a highly imbalanced classification 

problem. Due to the high number of good quality images compared to the relatively low number of 

images with motion artefacts, we propose a novel data augmentation scheme based on synthetic 

artefact creation in k-space. We also investigate a learning approach using a predetermined 

curriculum based on synthetic artefact severity. We evaluate our pipeline on a subset of the UK 

Biobank data set consisting of 3510 CMR images. The LRCN architecture outperformed the 3D-

CNN architecture and was able to detect 2D+time short axis images with motion artefacts in less 

than 1ms with high recall. We compare our approach to a range of state-of-the-art quality 

assessment methods. The novel data augmentation and curriculum learning approaches both 

improved classification performance achieving overall area under the ROC curve of 0.89.
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1 Introduction

With developments in image acquisition schemes and machine learning algorithms, medical 

image analysis techniques are taking on increasingly important roles in clinical decision 

making. An important and often overlooked step in automated image analysis pipelines is 

the assurance of image quality - high accuracy requires good quality medical images. Cine 

cardiac magnetic resonance (CMR) images are instrumental in assessment of cardiac health, 

deriving metrics of cardiac function (e.g. volumes and ejection fractions), and investigating 

myocardial wall motion abnormalities. The CMR is often acquired for patients, who already 

have existent cardiac diseases, more likely to have arrythmias, have difficulties with breath-

holding or remaining still during acquisition. Therefore, the images can contain a range of 

image artefacts (Ferreira et al., 2013), and assessing the quality of images acquired by MR 

scanners is a challenging problem. Misleading conclusions can be drawn when the original 

data are of poor quality. Traditionally, images are visually inspected by one or more experts, 

and those showing an insufficient level of quality are excluded from further analysis. 

However, visual assessment is time consuming and prone to variability due to inter-rater and 

intra-rater variability.

The UK Biobank is a large-scale study with all data accessible to researchers worldwide. 

The CMR images in UK Biobank will eventually consist of 100,000 subjects (Petersen et al., 

2015). To maximise the research value of this and other similar data sets, automatic quality 

assessment tools are essential. One specific challenge in CMR is motion-related artefacts 

such as mistriggering, arrhythmia and breathing artefacts. These can result in temporal 

and/or spatial blurring of the images, which makes subsequent processing difficult (Ferreira 

et al., 2013). These type of artefacts are more common in real clinical acquisitions, and there 

would be great value for motion artefact detection mechanisms being deployed in the MR 

scanner. For example, these types of artefact can lead to erroneous quantification of 

myocardial wall motion, which is an important indicator in cardiac functional assessment. 

Examples of a good quality image and an image with blurring motion artefacts are shown in 

Fig. 1a-b for a short-axis view cine CMR scan.

In this paper, we propose a deep learning based approach for fully automated motion artefact 

detection in cine CMR short axis images. A novel data augmentation strategy based on 

synthetic artefact creation in k-space and a curriculum learning scheme based on the 

synthetic artefacts with different levels of severity (Fig. 8) is also proposed. An analysis of 

multiple deep learning architectures and learning mechanisms is also presented. This paper 

builds upon our previously presented work (Oksuz et al., 2018), in which we proposed the 

use of synthetically generated mistriggering artefacts in training a Convolutional Neural 

Network (CNN). Here, we extend this idea to include both breathing and mistriggering 
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artefacts and also use different levels of corruption in order to produce a curriculum of 

realistic artefact images of varying severity (Fig. 1c) to improve training.

The remainder of this paper is organised as follows. In Section 2, we first present an 

overview of the relevant literature in image quality assessment and the data imbalance 

problem, which our novel extensions are based on. Then, we review the literature on 

curriculum learning, and present our novel contributions in this context. In Section 3, we 

provide details of the clinical data sets used. In Section 4 we describe the deep learning 

models that we have utilised for classification, including descriptions of the novel data 

augmentation and curriculum learning approaches. Results are presented in Section 5, while 

Section 6 discusses the findings of this paper in the context of the literature and proposes 

potential future work directions.

2 Related works

In this section, we provide an overview of the relevant literature on image quality 

assessment, data imbalance and curriculum learning with a focus on applications in medical 

image analysis.

2.1 Image quality assessment

An automatic image quality assessment (IQA) algorithm, given an input image, tries to 

predict its perceptual quality. The perceptual quality of an image is usually defined as the 

mean of the individual ratings of perceived quality assigned by human observers. Early 

works on IQA focused on using Natural Scene Statistics (NSS) to predict the naturalness of 

the images. For example, Mittal et al. (2013) proposed the Naturalness Image Quality 

Evaluator (NIQE) model, which constructed a collection of statistical features based on a 

space domain NSS model. Moorthy and Bovik (2011) proposed a two-stage framework for 

estimating quality based on NSS models, involving identification- and distortion-specific 

quality assessment. More recently, Convolutional Neural Networks (CNNs) have been 

utilised for image quality assessment Kang et al. (2014) and Talebi and Milanfar (2018) 

proposed a novel loss function definition and focused on the distribution of the ground truth 

quality scores.

IQA is an essential step for analysing large medical image data sets (see Chow and 

Paramesran, 2016 for a comprehensive review). Early efforts in medical imaging focused on 

quantifying the image quality of brain MR images. Woodard and Carley-Spencer (2006) 

defined a set of 239 no-reference (i.e. without the need for ground truth image) image-

quality metrics (IQMs). However, the IQMs were calculated on image pairs with simplistic 

distortions such as Gaussian noise or intensity nonuniformity, which are unlikely to 

adequately capture the nature of real world MR image artefacts. Mortamet et al. (2009) 

proposed two IQMs focused on detecting artefacts in the air region surrounding the head. 

They applied these IQMs in 749 scans from the Alzheimers Disease Neuroimaging Initiative 

(ADNI) database. However, many potential sources of uncontrolled variability exist between 

studies and sites, including MR protocols, scanning settings, participant instructions, 

inclusion criteria, etc. The thresholds they proposed on their IQMs are unlikely to generalise 

beyond the ADNI database.
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Trends in the computer vision literature have heavily influenced medical image quality 

assessment techniques. CNNs have been utilised for image quality assessment for 

compressed images in the computer vision literature with considerable success (Kang et al., 

2014). This success has motivated the medical image analysis community to utilise them on 

multiple image quality assessment challenges such as fetal ultrasound (Wu et al., 2017) and 

echocardiography (Abdi et al., 2017a). These two techniques use 2D images and assess 

quality using pre-trained neural networks. A more recent study (Abdi et al., 2017b) aimed to 

utilise temporal information using a Long Short Term Memory (LSTM) architecture to 

improve the accuracy of image quality assessment. Küstner et al. (2018a) utilised a patch-

based CNN architecture to detect motion artefacts in head and abdomen MR scans to 

achieve spatially-aware probability maps. In more recent work, Küstner et al. (2018b) 

proposed to utilise a variety of features and train a deep neural network for artefact 

detection. The authors made use of an active learning strategy to detect low quality images 

due to the lack of sufficient training data.

In the context of CMR, the literature has mostly focused on missing apical and basal slice 

detection (Zhang et al., 2016). Missing slices adversely affect the accurate calculation of the 

left ventricular volume and hence the derivation of cardiac metrics such as ejection fraction. 

Another study (Zhang et al., 2017) used Generative Adversarial Networks in a semi-

supervised setting to improve the performance of missing slice detection. Tarroni et al. 

(2018) proposed to use a decision forest approach for heart coverage estimation, inter-slice 

motion detection and image contrast estimation in the cardiac region. CMR image quality 

has also been linked with automatic quality control of image segmentation in Robinson et al. 

(2017). Lorch et al. (2017) investigated synthetic motion artefacts and used histogram, box, 

line and texture features to train a random forest algorithm to detect different artefact levels. 

However, their algorithm was tested only on artificially corrupted synthetic data and aimed 

only at detecting breathing artefacts.

2.2 Data imbalance

Data imbalance is a significant factor that influences the stability of machine learning 

algorithms (Chawla, 2010). The fundamental issue with the imbalanced learning problem is 

the ability of imbalanced data to significantly compromise the performance of most standard 

learning algorithms. This occurs because the skewed distribution of class instances can lead 

the classification algorithms to be biased towards the majority class in classification tasks. 

Therefore, the features relevant to the minority class are not learned adequately. As a result, 

standard classifiers (classifiers that do not consider data imbalance) tend to misclassify the 

minority samples into majority samples, which results in poor classification performance 

(Wang et al., 2016). How to deal with imbalanced data sets is a key issue in classification 

and it has been well explored over past decades. Until now, this issue has been solved mainly 

in two ways: sampling techniques and cost sensitive methods.

2.2.1 Sampling techniques—Sampling techniques aim to address the data imbalance 

problem by generating a balanced data set by sampling the full data set (Estabrooks et al., 

2004). Random over-sampling is one of the simplest sampling methods. It randomly 

duplicates a certain number of samples from the minority class and then augments them into 
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the original data set (Han et al., 2005). Conversely under-sampling randomly removes a 

certain number of instances from the majority class to achieve a balanced data set. In 

general, random over-sampling may lead to overfitting while random under-sampling may 

result in insufficient training data.

2.2.2 Cost sensitive learning—In addition to sampling techniques, another way to 

deal with the data imbalance problem is cost sensitive learning. In contrast to sampling 

methods, cost sensitive learning methods solve the data imbalance problem by assigning 

different costs to mis-classifying majority and minority samples (Khan et al., 2018). An 

objective function for cost sensitive learning can be constructed based on the aggregation of 

the overall cost on the whole training set. Although cost sensitive algorithms can 

significantly improve classification performance, they are only applicable when the specific 

costs of misclassification are known. Unfortunately, in many applications a cost with 

appropriate weights is hard to define (Maloof, 2003).

2.2.3 Data imbalance problem for neural networks—In the area of neural 

networks, many efforts have been made to address the data imbalance problem. Nearly all of 

the work falls into one of the main streams mentioned above. Zhou and Liu (2006) 

empirically studied the effect of sampling and threshold-moving in training cost sensitive 

neural networks. Both over-sampling and under-sampling techniques were used to modify 

the distribution of the training data set. To avoid the potential issues with these basic 

approaches, a more complex sampling method was proposed. The synthetic minority over-

sampling technique (SMOTE) has proven to be quite powerful and has achieved a great deal 

of success in various applications (Han et al., 2005). SMOTE creates artificial data based on 

the similarities between existing minority samples. Our approach in this paper is related to 

the SMOTE approach in that we propose to generate synthetic data for the minority class 

using prior knowledge of the process of cine MR image acquisition.

2.3 Curriculum learning

A curriculum determines a sequence of training samples, which essentially corresponds to a 

list of samples ranked in ascending order of learning difficulty. In a pioneering work Elman 

(1993) studied the effect of a learning structure on a synthetic grammar task. His work was 

inspired by language learning in children and demonstrated that a neural network was able to 

learn the grammar when training data was presented from simple to complex order and 

failed to do so when the order was random.

The idea of learning easy things first has been an active research topic in computer vision 

(Lee and Grauman, 2011). Bengio et al. (2009) demonstrated that curriculum learning 

resulted in better generalisation and faster learning on synthetic vision and word 

representation learning tasks. Pentina et al. (2015) investigated the effect of curriculum 

learning in a multi-task learning setup and proposed a model to learn the order of multiple 

tasks. They illustrated the superiority of learning tasks sequentially instead of learning tasks 

jointly. Avramova (2015) applied curriculum learning to a natural image classification task 

by training a CNN from scratch. Weinshall et al. (2018) investigated the robustness of 

curriculum learning in common computer vision image classification tasks and highlighted 
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the superiority in convergence. Gui et al. (2017) proposed a curriculum learning strategy on 

facial expression classification, where they order the training samples according to their 

difficulty to classify them. The authors have illustrated improved accuracy at emotion 

classification using curriculum learning training.

Recently, the idea of curriculum learning has been utilised for medical imaging challenges. 

Jesson et al. (2017) proposed to use patches of different complexity to train a network for 

lung nodule detection. Their algorithm learnt how to distinguish nodules from the initial 

surroundings and added difficult patches gradually. Maicas et al. (2018) used a teacher-

student curriculum learning strategy for breast screening classification from DCE-MRI. 

They trained their model on simpler tasks before introducing the final problem of 

malignancy detection. Berger et al. (2018) proposed to use an adaptive sampling strategy to 

improve the segmentation performance on difficult regions in multi-organ CT segmentation.

2.4 Contributions

There are three major contributions of this work:

• To the authors’ knowledge, this is the first paper that provides a thorough 

analysis of machine learning methods for automatic cine CMR motion artefact 

detection on a large scale in-vivo database;

• A synthetic data augmentation strategy is proposed using k-space corruption to 

simulate motion artefact data (see Fig. 1c) of varying levels of severity;

• A curriculum learning strategy is employed using the synthetic data to efficiently 

train deep learning models with training samples of increasing difficulty.

This paper builds upon our previous work (Oksuz et al., 2018), in which we proposed the 

use of synthetically generated mistriggering artefacts in training a CNN. Here, we extend 

this idea to include both breathing and mistriggering artefacts and also use different levels of 

corruption to enable the curriculum learning strategy to be introduced.

3 Materials

We evaluate our approach using a subset of the UK Biobank data set. The UK Biobank 

CMR data were acquired using a common imaging protocol at one of a small number of 

study centres in the UK. The subset consists of short-axis cine CMR images of 3510 

subjects. This subset was chosen to be free of other types of image quality issues such as 

missing axial slices and was visually verified by an expert cardiologist. The short-axis 

images have an in-plane image resolution of 1.8 × 1.8 mm2 with a slice thickness of 8.0 mm 

and a slice gap of 2 mm. A short-axis image stack typically consists of approximately 10 

image slices and covers the full heart. The images’ matrix sizes vary from 120 to 280 pixels. 

Each cardiac cycle consists of 50 time frames and the full sequence of 50 balanced steady-

state free precession (bSSFP) magnitude images were used for analysis. Details of the image 

acquisition protocol can be found in Petersen et al. (2015).

The data for the 3510 subjects consist of 3360 good quality acquisitions and 150 

acquisitions with motion artefacts. The artefact acquisitions featured 57 mistriggering 
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artefacts, 46 breathing artefacts, 42 arrythmia artefacts and 5 mixed artefacts. Binary image 

quality labels were generated by visual inspection and validated by an expert cardiologist.

4 Methods

In this section we first describe the neural network architectures used for motion artefact 

detection. We describe the preprocessing steps, then we detail the two network architectures 

used for motion artefact detection. We detail the data augmentation strategies to balance the 

classes and the curriculum learning setup proposed for training the network. Finally, we 

explain the details of the loss function and the optimisation of the networks.

4.1 Preprocessing

To circumvent problems related to different image resolutions and to enable efficient 

memory usage we use a region-of-interest (ROI) mechanism to extract regions of consistent 

size (illustrated in Fig. 2). Similar to Korshunova et al. (2016), we exploit the fact that each 

slice sequence captures one heart beat and use Fourier analysis to produce an image that 

captures the maximal activity at the corresponding heart beat frequency. From these activity 

images, we estimate the location of the centre of the left ventricle by combining the Hough 

circle transform with a custom kernel-based majority voting approach across all short axis 

slices. First, for each Fourier image (resulting from a single slice), the highest scoring 

Hough circles for a range of radii were found, and from all of those, the top 10 highest 

scoring ones were retained. Finally, a likelihood surface (centre image in Fig. 2) was 

obtained by combining the centres and scores of the selected circles for all slices. Each 

circle centre was used as the centre for a Gaussian kernel, which was scaled with the circle 

score, and all of these kernels were added. The maximum across this surface was selected as 

the centre of the ROI and 80 × 80 regions were extracted for further processing. The 

preprocessing strategy was able to correctly identify the heart region for all cases and was 

validated using the myocardial masks.

4.2 Deep learning models

We use deep learning methods that are capable of detecting temporal dependencies in a cine 

sequence. In this section, we detail the two different types of video classification methods 

namely; 3D CNN and LRCN.

3D CNN: The proposed CNN consists of eight layers as visualised in Fig. 3. The 

architecture of our network follows a similar architecture to that proposed in Tran et al. 

(2015), which was originally developed for video classification using a spatio-temporal 3D 

CNN. In our case we use the third dimension as the time component for mid-ventricular 

sequences for classification. The input is an intensity normalised 80 × 80 cropped CMR 

image with 50 time frames as described in Section 4.1. The network has 6 convolutional 

layers and 4 pooling layers, 2 fully-connected layers and a softmax loss layer to predict 

motion artefact labels. After each convolutional layer a Rectifier Linear Unit (ReLU) 

activation is used. We then apply pooling on each feature map to reduce the filter responses 

to a lower dimension. We apply dropout with a probability of 0.5 at all convolutional layers 

and after the first fully connected layer to enforce regularisation. All of these convolutional 
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layers are applied with appropriate padding (both spatial and temporal) and stride 1, thus 

there is no change in terms of size from the input to the output of these convolutional layers.

LRCN: The proposed Long-term Recurrent Convolutional Network model follows a similar 

strategy to that proposed in Donahue et al. (2017), which combines a deep hierarchical 

visual feature extractor (such as a CNN) with a model that can learn to recognise and 

synthesise temporal dynamics for tasks involving sequential data. The method works by 

passing each visual input xt (an image in isolation, or a frame from a video) through a 

feature transformation ϕ (usually a CNN), to produce a fixed-length vector representation. In 

our algorithmic setup, we use a feature extractor network to produce the feature 

representation and pass it to a LSTM unit to make the final prediction. Fig. 4 illustrates the 

architecture of our network. Our feature extractor block consists of 6 convolutional layers 

and 3 pooling layers and vectorises the final output to be used in a recurrent fashion.

4.3 Balancing the classes

In order to address the heavy class imbalance in our data set we propose to generate 

synthetic artefacts using knowledge of the cine MR acquisition process. Cine CMR images 

are acquired using ECG triggering and typically the full k-space of one image is filled over 

multiple beats during a breath hold. During the acquisition mistakes with ECG-triggering 

can cause k-space lines to be filled with data from an incorrect cardiac phase. Similarly, 

breathing motion of the patient can cause k-space lines to be filled with data from a different 

anatomical location. We aim to simulate these mistriggering and breathing artefacts at 

varying levels of severity to be able to utilise a curriculum learning strategy during training.

4.3.1 Mistriggering artefacts—The UK Biobank data set that we use was acquired 

using Cartesian sampling and we follow a Cartesian k-space corruption strategy to generate 

synthetic but realistic motion artefacts. We first transform each 2D short axis sequence to the 

Fourier domain and change 1 in z Cartesian sampling lines to the corresponding lines from 

other cardiac phases in order to mimic cardiac motion artefacts. By using different values for 

z, we are able to generate cardiac motion artefacts with different severity. In Fig. 5 we show 

an example of the generation of a corrupted frame i from the original frame i using 

information from the k-space data of other temporal frames. We add a random frame offset j 
when replacing the lines.

Using this approach, the original good quality images from the training set are used to 

increase the total number of low quality images in the training set. This is a realistic 

approach as the motion artefacts that occur from mistriggering arise from similar 

misallocations of k-space lines.

4.3.2 Breathing artefacts—Following a similar idea to Lorch et al. (2017) we produce 

breathing artefacts by applying 2D translations to the image frames prior to generating their 

k-space representations. The translations follow a sinusoidal pattern. To simulate a subject 

that completed four breathing cycles within one acquisition with 256 phase-encoding steps, 

we sampled a sinusoidal curve with four cycles at 256 time points to produce the 

translations. Once the k-space representations of the frames were generated in this way they 

were combined in the normal way and reconstructed into images.
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In Fig. 6 we show an example of the generation of a corrupted frame i from the original 

frame i using information from the k-space data of other translated frames1 (Cruz et al., 

2016).

4.4 Curriculum learning

We propose to use baby-step2 curriculum learning during training of the networks to 

leverage the additional data resulting from the k-space corruption strategy. We start the 

network training with heavily corrupted images (easy examples) and gradually introduce less 

corrupted images (hard examples).

Formally, we have a training data set of images D = (I1, y1), . . . , (In, yn), where Ii ∈ Rd 

denotes the ith cardiac sequence of training samples, yi represents its label and n is the 

number of training samples. The estimated label yi is predicted by f(Ii, W), where W 

represents the model parameters of the decision function f. Let L(yi, f(Ii, W)) denote the loss 

function which calculates the cost between the ground truth label yi and the estimated label 

yi = f xi, W . The motion artefact detection is then optimised by:

W* = argmin
W

∑
i = 1

n
L yi, f Ii, W .

Here, W* denotes the optimal model parameters. We utilise the different levels of corruption 

achieved by the k-space corruption strategy (as visualised in Fig. 7) to sort the training 

samples according to their difficulty for classification. This leads to the proposed algorithm 

illustrated in Fig. 8. We first group image sequences into subsets based on the corruption 

level of the poor quality image (i.e., from high level of corruption to low level of corruption). 

We then train the model via iterative learning using increasingly corrupted images as 

described in Algorithm 1.The notation Di is defined in the input of the algorithm, i.e. i 

indicates the number of the training set in the curriculum, and there are b training sets in 

total. The clustering into subgroups according to artefact severity is only done for the 

synthetic images, and we introduce them only gradually in the training. The original artefact 

cases from the dataset are used at every stage of the curriculum learning, since we do not 

have any information regarding the severity of these artefacts.

Algorithm 1: Proposed curriculum learning strategy for motion artefact 
detection.

INPUT: Data set of synthetically generated image sequences D = Di
i = 1
b

 ordered by a 

pre-defined curriculum

OUTPUT: Optimized model parameters W*

1Note that the original images themselves sometimes contain small artefacts such as the Moire artefacts seen in Fig. 6. However, these 
are normally far from the region of interest and so do not affect our approach.
2The term baby-step refers to keeping the previously introduced training samples in the pool of training examples rather than 
replacing them with new ones.
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1:  Dtrain = Original Data set of Image Sequences

2:  for i={1,…,b} do

3:        Dtrain = Dtrain ∪ Di

4:        for epoch={1,…,k} do

5:             train (W, Dtrain)

6:        end for

7:        select best W*

8:  end for

4.5 Loss functions and optimisation

The training of a CNN can be viewed as a combination of two components: a loss function 

or training objective, and an optimisation algorithm that minimises this function. In this 

study, we use the stochastic gradient descent (SGD) optimiser to minimise the binary cross 

entropy. The cross entropy represents the dissimilarity of the approximated output 

distribution from the true distribution of labels after a softmax layer and is defined as:

L = −1
n ∑

i = 1

n
yi log yi + 1 − yi log 1 − yi .

The training converges when the network does not significantly improve its performance on 

the validation set for a predefined number of epochs (100). An improvement is considered 

sufficient if the relative increase in performance is at least 0.5%.

During training of LRCN and CNN, a batch-size of 50 2D+time sequences was used due to 

memory constraints. The momentum of the optimiser was set to 0.90 and the learning rate 

was 0.0001. The parameters of the convolutional and fully-connected layers were initialised 

from a zero mean, unit standard deviation Gaussian distribution. In each trial, training was 

continued until the network converged. Convergence was defined as a state in which no 

substantial progress was observed in the training loss. Parameters were optimised using a 

grid-search among all parameters. We used the Keras Framework with Tensorflow backend 

for implementation and training the network with the curriculum learning setup took around 

12 hours on a NVIDIA Quadro 6000P GPU. Classification of a single 2D+time image 

sequence took less than 1s.

5 Experiments and results

Three sets of experiments were performed. The first set of experiments (Section 5.2) aimed 

to compare the performance of the different algorithmic approaches for automatic motion 

artefact detection, while the second set of experiments (Section 5.3) aimed at comparing 

different design choices for balancing the classes. In Section 5.4 we validate the proposed 

curriculum learning training strategies. Finally, we visualize saliency maps in Section 5.5 
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and evaluate our algorithm on multi-class artefact detection task in Section 5.6. All 

experiments were carried out using the Python programming language, using standard 

Python libraries, Tensorflow, Keras and the scikit-learn Python toolkit (Pedregosa et al., 

2011). Before describing the experiments in detail, we first describe the evaluation measures 

used.

5.1 Evaluation metrics and methods of comparison

A 10-fold repeated stratified cross-validation was used to validate the performance of each 

algorithm. In each fold, the classification accuracy (i.e. the proportion of subjects correctly 

classified), as well as the recall (the proportion of artefact images correctly classified) and 

the precision (the proportion of correctly classified good quality images) were computed. 

Finally, we computed the average balanced accuracies and the area under the ROC curve 

(AUC). The accuracy, precision, recall, balanced accuracy and AUC metrics are defined as:

Accuracy = TP + TN
TP + FP + FN + TN ,

Precision = TP
TP + FP Recall = TP

TP + FP ,

Balanced Accurancy = Precision+Recall
2 ,

AUC = ∫−∞
∞

TPR(t)FPR(t)dt .

where TP represents true positives, FP is false positives, FN is false negatives and TN is true 

negatives. TPR defines the true positive rate and FPR defines the false positive rate for a 

given threshold t.

We compared our algorithm with a range of alternative classification techniques: K-nearest 

neighbours, Support Vector Machines (SVMs), Decision Trees, Random Forests, Adaboost 

and Naive Bayesian. The inputs to all algorithms were the cropped intensity-normalised data 

as described in Section 4.1 with the exception of the method proposed by Lorch et al. 

(2017). For this method, we used hand crafted features (e.g. box, line, texture and histogram) 

to train a decision forest algorithm similar to Lorch et al. (2017). We optimised the 

parameters of each comparative algorithm using a grid search. We also tested two techniques 

developed for image quality assessment in the computer vision literature: the NIQE metric 

(Mittal et al., 2013) is based on natural scene statistics and was trained using a separate set 

of 50,000 2D good quality CMR images to establish a baseline for good image quality; and 

the Variance of Laplacians is a moving filter that has been used to detect the blur level of an 

image. For both of these techniques we used a 10-fold SVM for classification of the final 

scores.
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5.2 Synthetic data

We first tested our algorithm using synthetically generated artefacts to evaluate its 

performance. We generated different levels of corruption from good quality images using the 

pipeline explained in Section 4.3 and evaluated the algorithms on a balanced data set 

consisting of 3360 good quality and 3360 artefact images with different severity. We used a 

10-fold cross validation to classify the good quality and artefact images. The results are 

reported in Tables 1 and 2 for breathing and mistriggering artefacts respectively. The high 

performance of the deep learning architectures is evident for both types of artefact. LRCN 

and 3D-CNN show the highest performance in terms of accuracy, recall and balanced 

accuracy. The general high performance by all methods can be explained by the low 

complexity of the problem (i.e. original vs. synthetically corrupted version of the same 

image) and the availability of the balanced data set.

5.3 Augmentation technique analysis

We evaluated deep learning algorithms on the real in-vivo cases using 150 artefact and 3360 

good quality images. We tested six different training configurations of two neural network 

strategies to evaluate their performance in more detail: (1) training using only acquired 

magnitude data without any data augmentation, (2) training using translational data 

augmentation with translations only, (3) training using Gaussian blurring corrupted data 

augmentation, (4) training using data augmentation with mistriggering k-space corrupted 

data only, (5) training using data augmentation with breathing k-space corrupted data only, 

(6) training using both mis-triggering and breathing type synthetic artefacts, (7) cost-

sensitive learning with a weighted cost function. The cost sensitive learning used a weighted 

binary cross entropy loss function with the weights determined by the ratio of samples in the 

classes (150: 3360). We also augmented data in this setup using translations for a fair 

comparison, but the data augmentation was not used to balance the classes in this scenario 

and the augmentation was applied in the same way for both classes. Moreover, we have used 

Gaussian blurring to corrupt the data at different levels to showcase the performance of an 

additional data corruption strategy. In each setup, the acquired data corrupted by motion 

artefacts were used together with the real motion artefact data.

The translational data augmentation used random shifts in both the horizontal and vertical 

directions in the range of [W/5, H/5], where W and H represent the width and height of the 

image respectively (i.e. W=H=80 pixels=144 mm in our case). Rotations were not used due 

to their influence on image quality caused by the necessary interpolation. Note that none of 

the augmented data were used for testing. They were only used for increasing the total 

number of training images.

We used a 10-fold stratified cross validation strategy to test all algorithms, in which each 

image appeared once in the test set over all folds. Due to the high class imbalance, all 

algorithms achieved over 0.9 accuracy and so we do not report this metric in Table 3. The 

interesting comparison for the methods lies in the recall numbers, which quantify the 

capability of the methods to identify images with artefacts. The results show that the LRCN-

based technique is capable of identifying the presence of motion artefacts with high recall 

compared to the other techniques.
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5.4 Influence of curriculum learning

We investigated the influence of curriculum learning on our algorithm. For these 

experiments we used the best performing model from Table 3, namely the LRCN model 

with a mixture of breathing and mistriggering synthetic artefacts. During generation of the 

synthetic training samples we used b = 10 different levels of k-space corruption and used 

these to generate the curriculum. We introduced the easy samples (highly corrupted images) 

at the beginning of the training and gradually included harder samples (less corrupted 

images).

In order to evaluate the success of this approach, we compared to two alternatives. First, we 

repeated the curriculum generation process in the opposite way and first used hard samples 

and gradually introduced easier samples (anti-curriculum). Second, we used a curriculum 

consisting of a random set of samples with no sorting at each run (control-curriculum). Fig. 

9 shows ROC curves and reports AUC values for these three approaches. We performed a 

Delong’s statistical significance test (DeLong et al., 1988) to evaluate the differences 

between the methods. The curriculum learning strategy significantly outperformed random 

sampling and anti-curriculum learning (p-value < 0.05).

We show the improvements in classification using curriculum learning using samples from 

the data set in Fig. 10. Some difficult classification cases were selected to showcase the 

performance of both methods. The figure shows the borderline cases from both classes, 

where there is only a slight difference between the good and poor quality images. The use of 

curriculum learning enables detection of borderline cases of motion artefacts (poor quality 

images) with great success compared to control-curriculum.

5.5 Saliency maps

Attention map (Simonyan et al., 2013), uses the gradients of any target concept (e.g. logits), 

flowing into the final convolutional layer to produce a coarse localization map highlighting 

the important regions in the image for predicting the concept. To visualize activation over 

final dense layer outputs, we need to switch the softmax activation out for linear since 

gradient of output node will depend on all the other node activations. Fig. 11 shows the 

attention maps of the last layer of the network on an example from the test set. Attention 

maps provide a way to visualize the most influential areas in the input data used for the 

classification. In poor quality images the activations are high in blurry regions as visualized 

in the Fig. 11.

5.6 Multi-class detection

We test our LRCN algorithm with curriculum learning on a multi-class classification task to 

evaluate the capability of our model on classifying between breathing vs. gating-related 

artefacts. We used breathing k-space corruption and mis-triggering k-space corruption 

respectively at each curricula to balance the classes similar to previous experiments. In Table 

4, we report the balanced accuracy results for two state of the art technique results to show 

the improved performance with our method. As expected with fewer number of cases in the 

dataset the classification task is more difficult. The results indicate the potential of our 
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method in class-specific artefacts, which can be instrumental in addressing the image quality 

issues.

6 Discussion and conclusion

We have presented an extensive study on automatic cardiac motion artefact detection using 

spatio-temporal deep learning techniques. The motion artefact detection problem exhibits a 

severe data imbalance between the classes in UKBB dataset. Our fundamental contribution 

in this paper is to address this data imbalance by using a k-space based corruption strategy to 

increase the robustness of the classification. With a variety of synthetic data generation 

techniques we propose to augment data for training the classifier using knowledge of the 

cine MR acquisition process. We have also investigated the robustness of two deep learning 

architectures developed for video classification for classifying motion-related artefacts. 

Benefiting from the controlled environment of synthetic data generation we utilised 

curriculum learning for training and showcased the efficiency of the technique in 

comparison with other data sampling strategies.

One key observation of our work is the superiority of deep learning methods to classify 

motion artefacts compared to other state-of-the-art machine learning algorithms. Moreover, 

we tested data augmentation strategies extensively and illustrated the superior performance 

of k-space corruption to generate synthetic data for augmentation. It is interesting to observe 

that using different corruption strategies improves the performance of the classification 

techniques. Finally, employing a curriculum learning strategy for training the image 

classification networks ensured better performance compared to anti-curriculum and random 

sampling strategies.

In the future, we would like to investigate novel loss functions for the detection of image 

quality. Moreover, investigation of basal and apical slice quality, which exhibits a slightly 

different anatomy and challenge, is an important future direction. In this work, we 

deliberately used existing network architectures and loss functions to enable us to focus our 

evaluation on the influence of our novel data augmentation and curriculum learning 

strategies. In future work we would like to investigate novel architectures tailored to the 

problem at hand. Moreover, a regression based approach on artefact detection could evaluate 

the impact of artefacts on downstream tasks (e.g. how badly would the artefacts affect 

segmentation accuracy or calculation of metrics such as ejection fraction).

The UK Biobank is a controlled study and the number of images with motion artefacts is 

limited. In real clinical acquisitions the likelihood of motion artefact occurrence is higher 

(although the classes would still be imbalanced), and there would be great value for motion 

artefact detection mechanisms being deployed ‘on-the-fly’ in the MR scanner. The 

indication for CMR is often prognostic stratification of already existent cardiac diseases and 

patients are more likely to have arrythmias, have difficulties with breath-holding or 

remaining still during acquisition. With the successful translation of such tools in clinical 

setups high diagnostic image quality could be ensured on the spot. Indeed, these 

mechanisms would not necessarily need to be CMR specific and could even be applied to 
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different medical image modalities and different organs. With this aim in mind, we would 

like to validate our algorithm on multi-vendor and multi-site artefact datasets in the future.

In conclusion, we believe that the work that we have presented represents an important 

contribution to the understanding of CMR image quality assessment. Our novel ideas of 

leveraging k-space corruption for data augmentation and training the classifier with a 

curriculum learning strategy have been shown to improve motion artefact detection accuracy. 

In the current environment of the increasing use of imaging in clinical practice, as well as 

the emergence of large population data cohorts which include imaging, our proposed 

automated quality control methods can ensure the accuracy of subsequent analysis pipelines.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Examples of a good quality cine CMR image (a), an image with blurring motion artefacts 

(b), and a k-space corrupted image (c). The k-space corruption process is able to simulate 

realistic motion-related artefacts. (Please see videos in supplementary material.).
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Fig. 2. 
Region of interest extraction using Fourier transform in the temporal domain.
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Fig. 3. 
The 3-dimensional CNN architecture for motion artefact detection. Blue lines represent 

convolution operations and red lines correspond to the pooling operations following 

convolutional layers at each layer. The final two layers are densely connected layers of 1024 

and 2 nodes respectively. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.)
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Fig. 4. 
The LRCN architecture for motion artefact detection. (a) The feature extractor block for 2D 

images. Blue lines represent convolution operation and red lines correspond to the pooling 

operations following convolutional layers at each layer. (b) The network architecture. 

Multiple 2D inputs of different cardiac phases are passed through the feature extractor and a 

recurrent block (LSTM) is used for the final classification. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 5. 
K-space corruption for mistriggering artefact generation in k-space. The Fourier transform 

of each image frame is applied to generate the k-space representation of each image. We 

replace k-space lines with lines from different temporal frames to generate corruptions.

Oksuz et al. Page 22

Med Image Anal. Author manuscript; available in PMC 2019 August 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 6. 
K-space corruption for breathing artefact generation in k-space. The Fourier transform is 

applied to generate the k-space of each image frame and we replace k-space lines with lines 

from frames with different 1D translations which follow a sinusoidal pattern to simulate 

repository motion.
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Fig. 7. 
Gradual corruption using mistriggering type synthetic artefact generation for curriculum 

learning. The myocardial borders and papillary muscles become more blurred with the 

severity of the artefacts and it is harder to distinguish those structures under severe artefact 

cases.
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Fig. 8. 
Curriculum learning using motion artefacts generated with various levels of severity. (a) The 

traditional way to train a model fails to consider the complexity of image quality detection 

where introducing noisy or difficult samples early in training may impair model 

performance. (b) The training data is divided into different difficulty levels based on a 

predetermined curriculum. The training procedure progresses from easy to hard image 

samples, which guides the model to achieve better performance. (The illustration of 

complexity is shown in Fig. 7).
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Fig. 9. 
ROC curves for the LRCN-based motion artefact detection approach using curriculum 

learning. Gradually introducing harder samples during training improves the performance of 

the algorithm compared to the random (control-curriculum) and harder-to-easier 

configurations (anti-curriculum).
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Fig. 10. 
Curriculum learning improves the classification of motion artefacts on borderline cases. (a) 

shows the results of control-curriculum with coloured circles for good and poor quality 

images. (b) illustrates the results of the curriculum learning strategy for the same samples. 

Most of the borderline cases are correctly identified with the curriculum learning strategy. 

The green circles indicate the correct classifications and red circles indicate the wrong 

classifications by the methods. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 11. 
Attention map for a poor quality image learned by the last layer of the network, where red 

indicates high attention and blue low attention. The network architecture captures the area of 

significance for correctly classifying the image. Results provided for LRCN network trained 

with curriculum learning. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.)
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Table 1

Synthetic mistriggering artefact data classification results for mean accuracy (A), precision (P), recall (R) and 

balanced accuracy (BA) results. A 10-fold cross validation was used and each image was labelled once over all 

folds and standard deviation over folds is reported (mean ± std). All results are multiplied by 1000 and the 

bold font highlights the best results.

Methods A P R BA

K-Nearest Neighbours 742 ± 25 742 ± 33 746 ± 40 744 ± 37

Linear SVM 748 ± 36 743 ± 89 749 ± 41 746 ± 73

Decision Tree 756 ± 42 757 ± 46 751 ± 33 754 ± 41

Random Forests 787 ± 45 782 ± 78 786 ± 62 784 ± 67

Adaboost 783 ± 37 781 ± 60 778 ± 73 779 ± 66

Naive Bayesian 809 ± 65 796 ± 48 804 ± 57 800 ± 52

Variance of Laplacian 802 ± 42 799 ± 62 803 ± 79 802 ± 41

NIQE 922 ± 56 919 ± 72 925 ± 82 923 ± 71

Lorch et al. (2017) 893 ± 62 892 ± 83 894 ± 49 893 ± 22

3D CNN 961 ± 79 957 ± 101 959 ± 87 958 ± 74

LRCN 963 ± 45 963 ± 33 965 ± 41 964 ± 38
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Table 2

Synthetic breathing artefact data classification results for mean accuracy (A), precision (P), recall (R) and 

balanced accuracy (BA) results. A 10-fold cross validation was used and each image was labelled once over all 

folds and standard deviation over folds is reported (mean ± std). All results are multiplied by 1000 and the 

bold font highlights the best results.

Methods A P R BA

K-Nearest Neighbours 718 ± 33 724 ± 37 721 ± 30 723 ± 36

Linear SVM 740 ± 41 737 ± 80 744 ± 48 741 ± 76

Decision Tree 707 ± 55 708 ± 42 713 ± 37 711 ± 48

Random Forests 764 ± 56 776 ± 64 781 ± 68 778 ± 61

Adaboost 768 ± 39 768 ± 54 772 ± 50 770 ± 57

Naive Bayesian 788 ± 70 790 ± 43 797 ± 68 793 ± 42

Variance of Laplacian 809 ± 43 820 ± 69 824 ± 55 822 ± 59

NIQE 897 ± 59 899 ± 71 904 ± 61 902 ± 50

Lorch et al. (2017) 896 ± 62 895 ± 47 897 ± 38 896 ± 77

3D CNN 953 ± 89 951 ± 91 961 ± 82 955 ± 70

LRCN 961 ± 41 962 ± 29 964 ± 51 963 ± 30
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Table 3

Mean balanced accuracy (BA), precision (P), recall (R) and area under the ROC curve (AUC) results of image 

classification for motion artefacts (in-vivo data set) trained on real and synthetic data sets. A 10-fold cross 

validation was used and each image was labelled once over all folds(mean ± std). t-aug,g-aug, m-aug, b-aug 

represent translational, gaussian blurring, mistriggering and breathing type augmentations respectively. b-m-

aug represents a random mix of mis-tiggering and breathing artefacts to balance the data set. cs stands for cost-

sensitive learning with weighted losses. All results are multiplied by 1000 and the bold font highlights the best 

results.

Methods BA P R AUC

3DCNN no-aug 590 ± 85 713 ± 69 467 ± 82 581 ± 124

3DCNN t-aug 679 ± 63 751 ± 54 607 ± 78 674 ± 87

3DCNN g-aug 690 ± 69 709 ± 101 670 ± 91 685 ± 90

3DCNN m-aug 717 ± 71 762 ± 78 673 ± 74 732 ± 71

3DCNN b-aug 695 ± 62 703 ± 40 687 ± 98 699 ± 67

3DCNN cs 515 ± 91 503 ± 57 520 ± 68 613 ± 50

3DCNN b-m-aug 721 ± 47 768 ± 61 673 ± 40 735 ± 67

LRCN no-aug 629 ± 97 724 ± 57 533 ± 65 603 ± 71

LRCN t-aug 664 ± 55 722 ± 69 607 ± 87 704 ± 73

LRCN g-aug 698 ± 61 715 ± 73 672 ± 80 708 ± 84

LRCN m-aug 731 ± 77 743 ± 77 720 ± 128 826 ± 80

LRCN b-aug 719 ± 53 731 ± 81 707 ± 81 759 ± 93

LRCN cs 511 ± 89 502 ± 72 520 ± 48 608 ± 71

LRCN b-m-aug 74 ± 50 751 ± 84 733 ± 66 828 ± 57

Med Image Anal. Author manuscript; available in PMC 2019 August 09.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Oksuz et al. Page 32

Table 4

Multi-class detection of motion artefact. The balanced accuracy results of 3-class classification (Good quality, 

breathing and triggering-based). A 10-fold cross validation was used and each image was labelled once over 

all folds and standard deviation over folds is reported. All results are multiplied by 1000 and the bold font 

highlights the best results.

Methods Breathing Mis-triggering and Arrythmia

Random Forests 658 ± 129 689 ± 136

Variance of Laplacian 672 ± 118 687 ± 127

LRCN 710 ± 122 731 ± 126

LRCN-Curriculum 741 ± 12 752 ± 114
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