Skip to main content
. Author manuscript; available in PMC: 2019 Aug 9.
Published in final edited form as: Med Image Anal. 2019 Apr 22;55:136–147. doi: 10.1016/j.media.2019.04.009

Table 3.

Mean balanced accuracy (BA), precision (P), recall (R) and area under the ROC curve (AUC) results of image classification for motion artefacts (in-vivo data set) trained on real and synthetic data sets. A 10-fold cross validation was used and each image was labelled once over all folds(mean ± std). t-aug,g-aug, m-aug, b-aug represent translational, gaussian blurring, mistriggering and breathing type augmentations respectively. b-m-aug represents a random mix of mis-tiggering and breathing artefacts to balance the data set. cs stands for cost-sensitive learning with weighted losses. All results are multiplied by 1000 and the bold font highlights the best results.

Methods BA P R AUC
3DCNN no-aug 590 ± 85 713 ± 69 467 ± 82 581 ± 124
3DCNN t-aug 679 ± 63 751 ± 54 607 ± 78 674 ± 87
3DCNN g-aug 690 ± 69 709 ± 101 670 ± 91 685 ± 90
3DCNN m-aug 717 ± 71 762 ± 78 673 ± 74 732 ± 71
3DCNN b-aug 695 ± 62 703 ± 40 687 ± 98 699 ± 67
3DCNN cs 515 ± 91 503 ± 57 520 ± 68 613 ± 50
3DCNN b-m-aug 721 ± 47 768 ± 61 673 ± 40 735 ± 67
LRCN no-aug 629 ± 97 724 ± 57 533 ± 65 603 ± 71
LRCN t-aug 664 ± 55 722 ± 69 607 ± 87 704 ± 73
LRCN g-aug 698 ± 61 715 ± 73 672 ± 80 708 ± 84
LRCN m-aug 731 ± 77 743 ± 77 720 ± 128 826 ± 80
LRCN b-aug 719 ± 53 731 ± 81 707 ± 81 759 ± 93
LRCN cs 511 ± 89 502 ± 72 520 ± 48 608 ± 71
LRCN b-m-aug 74 ± 50 751 ± 84 733 ± 66 828 ± 57