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Abstract

Positron Emission Tomography (PET) is an important neuroimaging tool to quantify the 

distribution of specific molecules in the brain. The quantification is based on a series of 

individually designed data preprocessing steps (pipeline) and an optimal preprocessing strategy is 

per definition associated with less noise and improved statistical power, potentially allowing for 

more valid neurobiological interpretations. In spite of this, it is currently unclear how to design the 

best preprocessing pipeline and to what extent the choice of each preprocessing step in the 

pipeline minimizes subject-specific errors.

To evaluate the impact of various preprocessing strategies, we systematically examined 384 

different pipeline strategies in data from 30 healthy participants scanned twice with the serotonin 

transporter (5-HTT) radioligand [11C]DASB. Five commonly used preprocessing steps with two to 

four options were investigated: (1) motion correction (MC) (2) co-registration (3) delineation of 

volumes of interest (VOI’s) (4) partial volume correction (PVC), and (5) kinetic modeling. To 

quantitatively compare and evaluate the impact of various preprocessing strategies, we used the 

performance metrics: test-retest bias, within- and between-subject variability, the intraclass-

correlation coefficient, and global signal-to-noise ratio. We also performed a power analysis to 

estimate the required sample size to detect either a 5% or 10% difference in 5-HTT binding as a 

function of preprocessing pipeline.
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The results showed a complex downstream dependency between the various preprocessing steps 

on the performance metrics. The choice of MC had the most profound effect on 5-HTT binding, 

prior to the effects caused by PVC and kinetic modeling, and the effects differed across VOI’s. 

Notably, we observed a negative bias in 5-HTT binding across test and retest in 98% of pipelines, 

ranging from 0–6% depending on the pipeline. Optimization of the performance metrics revealed a 

trade-off in within- and between-subject variability at the group-level with opposite effects (i.e. 

minimization of within-subject variability increased between-subject variability and vice versa). 

The sample size required to detect a given effect size was also compromised by the preprocessing 

strategy, resulting in up to 80% increases in sample size needed to detect a 5% difference in 5-

HTT binding.

This is the first study to systematically investigate and demonstrate the effect of choosing different 

preprocessing strategies on the outcome of dynamic PET studies. We provide a framework to show 

how optimal and maximally powered neuroimaging results can be obtained by choosing 

appropriate preprocessing strategies and we provide recommendations depending on the study 

design.

In addition, the results contribute to a better understanding of methodological uncertainty and 

variability in preprocessing decisions for future group- and/or longitudinal PET studies.
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INTRODUCTION

Positron Emission Tomography (PET) is a state-of-the-art neuroimaging tool for 

quantification of the in vivo spatial distribution of specific molecules in the brain. It has long 

been recognized that precise quantification using a series of individually designed 

preprocessing steps (“pipeline”) is a critical part of a PET analysis framework, and as part of 

the validation of new PET radioligands, these are often preprocessed with different kinetic 

models and at different scan lengths. The outcomes are often examined in a test-retest 

setting (Parsey et al. 2000, Ginovart et al. 2001) under the implicit assumption that test and 

retest should generate similar outcomes. However, despite the importance and usefulness of 

validating kinetic models and scan length, the impact of several other important choices such 

as preprocessing strategies for delineating volumes of interest (VOI), whether to apply 

motion correction (MC), how to accurately perform co-registration, and whether to use 

partial volume correction (PVC), remain unresolved (Figure 1).

As a result, centres or even individual scientists often design their own unique preprocessing 

strategy (Nørgaard et al. 2019), with each choice potentially compromising one another to 

affect performance (e.g. NRM Grand Challenge 2018, www.petgrandchallenge.com).

However, in the absence of a “ground truth”, it remains a major challenge in PET to 

optimize preprocessing strategies, and it may take alternative performance metrics to 

quantitatively evaluate and compare various preprocessing strategies (Strother et al. 2002, 

Nørgaard et al. Page 2

Neuroimage. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.petgrandchallenge.com/


Churchill et al. 2015). The uptake of radioligand in the brain varies across both regions and 

subjects, but also between scan sessions (Frankle et al. 2005). Therefore, there exists no 

unifying pattern of radioligand uptake that can be predicted and generalized to the 

population. Simulations can overcome these latter limitations of real data by providing the 

“ground truth”, having knowledge about the true underlying data generating process (Ichise 

et al. 2003). However, while simulations can be instructive, it is obviously very difficult to 

simulate the complex spatio-temporal noise patterns arising from a PET scanner. 

Simulations therefore provide only limited information on preprocessing effects.

In this study, we extend the work of previous validation studies of the radioligand 

[11C]DASB, which binds to the serotonin transporter (5-HTT), a target for many anti-

depressive drugs (Houle et al. 2000, Meyer et al. 2001). Previously published [11C]DASB 

PET papers have mainly used five preprocessing steps with multiple levels of options within 

each preprocessing step (Figure 1). However, while there is some consensus on the main 

preprocessing steps (MC, co-registration, VOI, PVC, and kinetic modeling), there is less 

consensus on the details within each step. In addition, with new methodological 

improvements continually being developed and refined (Zanderigo et al. 2017, Gryglewski 

et al. 2017) it may also be difficult to establish an optimal pipeline, with each choice 

potentially compromising one another. Nevertheless, for scientific, ethical and economical 

reasons it is important to know how the choice of preprocessing strategy influences the noise 

levels and thereby the sample size required to establish e.g. group differences. Inspired by 

the previously published preprocessing strategies for the radioligand [11C]DASB (Nørgaard 

et al. 2019), in this work we will focus on three key questions:

1. are measures of 5-HTT BPND using [11C]DASB robustly determined across a 

wide range of preprocessing strategies? The robustness will be estimated using 

the performance metrics; test-retest bias, within- and between-subject variability, 

global signal-to-noise ratio (gSNR), and intraclass correlation coefficient (Kim et 

al. 2006, Strother et al. 2002).

2. does optimization of the performance metrics result in a detectable tradeoff in 

within- and between-subject variability at the group level?

3. can study power be enhanced by optimized preprocessing of [11C]DASB?

We specifically chose to focus on the PET radioligand [11C]DASB because of its widespread 

use to study various aspects of brain function, but more importantly because the foundation 

for selecting a given preprocessing strategy seems to be an overlooked aspect in modern 

PET neuroscience (Nørgaard et al. 2019).

MATERIALS AND METHODS

1.1 Participants

A total of N=30 healthy women (mean age: 25 ± 5.9 years, range: 18 – 37) were recruited 

from a previous randomized, placebo-controlled and double-blind intervention study 

investigating the role of 5-HTT changes in depressive responses to sex-steroid hormone 

manipulation (Frokjaer et al. 2015). The women served as a control group receiving placebo 

treatment only (a saline injection), i.e., the data is considered to represent test-retest without 
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any expected changes in [11C]DASB binding. All participants were blinded and the blinding 

was successful as specified in detail in Frokjaer et al. 2015. The study by Frokjaer et al. 

2015 was designed to capture brain chemistry in two consecutive follicular phases of the 

menstrual cycle and participants were therefore planned to be re-scanned 23–35 days after 

their baseline cycle scan (depending on their follow-up cycle). Three participants were 

scanned one cycle-period later (61 days, 70 days, 56 days), one participant two periods later 

(92 days), and one participant three periods later (122 days). The midfollicular timing of the 

scan was kept in all participants. All the remaining 25 participants were scanned in a cycle-

period ranging between 27 and 37 days. In addition, participants were scanned at similar 

time of the day in scan 1 and scan 2, eliminating potential diurnal effects. Additional 

information can be found in Frokjaer et al. 2015. The study was registered and approved by 

the local ethics committee (protocol-ID: H-2–2010-108). All participants gave written 

informed consent.

1.2 Magnetic Resonance Imaging Acquisition

An anatomical 3D T1-weighted MP-RAGE sequence with matrix size = 256 × 256 × 192; 

voxel size = 1 × 1 × 1 mm; TR/TE/TI = 1550/3.04/800 ms; flip angle = 9° was acquired for 

all patients using a Siemens Magnetom Trio 3T MR scanner or a Siemens 3T Verio MR 

scanner. In addition, a 3D T2-weighted isotropic sagittal sequence with matrix size 256 × 

256 × 176; voxel size = 1 × 1 × 1 mm; TR/TE = 3200/409 ms; flip angle = 120° was also 

acquired for all subjects. All single-subject MRI sequences were corrected for gradient 

nonlinearities according to Jovicich et al. 2006, in order to correct for spatial distortions and 

achieve optimal PET-MR co-registration. All the acquired MR images were examined for 

structural abnormalities, as a criterion for subject inclusion.

1.3 Positron Emission Tomography using [11C]DASB

All patients were scanned using a Siemens ECAT High-Resolution Research Tomography 

(HRRT) scanner operating in 3D list-mode and with the highly selective radioligand 

[11C]DASB. The imaging protocol consisted of a single-bed, 90 minutes transmission 

acquisition post injection of 587 ± 30 (mean ± SD) MBq, range 375–612 MBq, bolus into an 

elbow vein. PET data was reconstructed into 36 frames (6×10, 3×20, 6×30, 5×60, 5×120, 

8×300, 3×600 seconds) using a 3D-OSEM-PSF algorithm with TXTV based attenuation 

correction (image matrix, 256 × 256 × 207; voxel size, 1.22 × 1.22 × 1.22 mm) (Sureau et al. 

2008, Keller et al. 2013).

1.4 Preprocessing Steps for PET and MRI

Here we establish a 5-step pipeline, each step with two to four options, to estimate the 

outcome measure BPND. All the individual procedures have previously been used in 

published [11C]DASB PET studies, except for PVC using the GTM. The steps are listed 

below in the order in which they were applied. Specific rationales for including/excluding 

each unique preprocessing step and their options are listed below.

Step 1 – Motion correction (2 options)—Within-scan PET motion correction was 

executed using a data-driven automated image registration (AIR v. 5.2.5, http://loni.usc.edu/

Software/AIR). Prior to alignment, each frame was smoothed using a 10 mm Gaussian 3D 
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kernel and thresholded at the 20-percentile level to boost SNR. Alignment parameters were 

estimated for the smoothed PET frames 10–36 to a reference frame with high SNR (frame 

26) using a scaled least squares cost-function in AIR. Subsequently, the non-smoothed 

frames were transformed using the estimated alignment parameters and resliced into a 4D 

motion corrected data set (e.g., as applied in Frokjaer et al. 2015 and Beliveau et al. 2017). 

The motion correction estimation for frame 10 was applied to the first 9 frames. We chose to 

register frames 10–36 only, because the first 9 time frames (10/20 sec) have low count 

statistics, high noise levels and have shown to produce highly variable alignment parameters.

Criterion for acceptable motion (quality control) was a median movement less than 3 mm 

across frames, as estimated by the median of the sum of the squared translations (x,y,z) 

across all voxels. All 30 participants had acceptable median motion below 3 mm. The MC 

process was fully automated according to parameters defined in previous work (e.g. Frokjaer 

et al. 2015, Beliveau et al. 2017). The rationale for testing the effect of MC in the pipeline is 

because motion artefacts vary by dataset. Furthermore, MC should ultimately control motion 

artefacts, but may also impose unwanted biases on the data or reduce experimental power, 

especially in cases of minor or no head movement (Churchill et al. 2012). In addition, 

Nørgaard et al. 2019 showed that MC lowers between-subject variability in striatum, 

resulting in 26% fewer subjects needed in a group analysis to achieve similarly power 

statistical tests. It is therefore of interest to validate this observation in an independent 

dataset.

Step 2 – Co-registration (4 options)—All single-subject PET frames were initially 

either summed (according to their frame length i.e. integral) or averaged over all time frames 

to estimate a time-weighted (twa) or averaged (avg) 3D image for rigid-body transformation 

co-registration. Two different co-registration techniques were subsequently applied to either 

the twa or the avg image, namely Normalized Mutual Information (NMI, Studholme et al. 

1999) or Boundary-Based Registration (BBR, Greve et al. 2009). Each co-registration 

technique depends on a cost-function, seeking to minimize the registration error of the PET 

and MRI image alignment. Both NMI and BBR use mutual information as their cost 

function, but BBR puts an additional cost on the boundaries being aligned.

The co-registation step is explicitly evaluated in this work, as its effects may vary by dataset 

and as a function of the spatial and temporal distribution of the PET signal. For example, 5-

HTT is only modestly expressed in the neocortex, and BBR may therefore not be the best 

algorithm to align cortical folding patterns, especially not if the resolution of the PET 

scanner is limited.

Step 3 – Delineation of Volumes of Interest (3 options)—All MRI scans were 

processed using FreeSurfer (http://surfer.nmr.mgh.harvard.edu, version 5.3). FreeSurfer 

contains a fully automatic structural imaging pipeline for processing of cross-sectional as 

well as longitudinal data. Furthermore, it includes several features such as skull stripping, 

B1 bias field correction, non-linear registration to a stereotaxic atlas, statistical analysis of 

morphometric differences, and probabilistic labeling of cortical/subcortical brain structures 

based on the Desikan-Killiany atlas (Fischl et al. 2004). A total of 28 subcortical and cortical 

regions were extracted, and averaged across hemispheres producing a final sample of 14 
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regions pr. subject/pipeline. The volumetric regions included the amygdala, thalamus, 
putamen, caudate, anterior cingulate cortex (ACC), hippocampus, orbital frontal cortex, 
superior frontal cortex, occipital cortex, superior temporal gyrus, insula, inferior temporal 
gyrus, parietal cortex, and entorhinal cortex. We chose these regions because they largely 

cover the entire brain, but also because many of the regions have been used in previously 

published DASB PET studies. Out of more than 100 published DASB PET studies 

(Nørgaard et al. 2019), each region is mentioned N times: amygdala (N=72), thalamus 

(N=105), putamen (N=88), caudate (N=82), ACC (N=74), hippocampus (N=71), frontal 

cortex (N=66), occipital cortex (N=48), temporal cortex (N=58), parietal cortex (N=34), 

entorhinal cortex (N=16). Subsequently to running the FreeSurfer pipeline, the researcher 

can choose to perform user-dependent manual edits to the FreeSurfer output, to correct for 

errors mostly located in the white matter (WM), cerebrospinal fluid (CSF) or on the pial 

surface. The manual editing was carried out according to FreeSurfer recommendations 

(https://surfer.nmr.mgh.harvard.edu/fswiki/Edits). To minimize eventual rater bias, the 

manual edits were carried out by two experts (Beliveau et al. 2017). For each MRI, manual 

edits were initially carried out by the two experts independently. Next, the manual edits from 

each expert were evaluated jointly by the two experts and a consensus was reached on the 

optimal edits. If a T2-weighted MRI is also available, semi user-independent edits can also 

be made to the FreeSurfer output by re-running the FreeSurfer reconstruction including the 

T2-weighted MRI. We examined all three pipelines in this study and now refer to these as 

FS-RAW (standard output from FreeSurfer), FS-MAN (output from FreeSurfer with manual 

edits) and FS-T2P (output from FreeSurfer with the T2 stream). Only the first test-scan MRI 

was used for the analysis. Different FreeSurfer options are tested, as the optimal correction 

has been reported to vary as a function of subject and scanner (McCarthy et al. 2015). 

Although choice of atlas (e.g. PVElab, AAL or MNI305) may have an impact on the 

outcome, we considered assessment of various atlas choices to be beyond the scope of the 

current work and we consistently applied the Desikan-Killiany atlas provided in FreeSurfer. 

However, as it is also common to include a normalization step to standard space and 

subsequently extract VOIs using a volumetric atlas, an evaluation and comparison of such a 

pipeline can be found in the supplemental material.

Step 4 – Partial Volume Correction (4 options)—The data were analyzed either 

without or with three partial volume correction (PVC) approaches. The VOI-based PVC 

technique, Geometric Transfer Matrix (GTM), by Rousset et al. 1998 was applied using 

PETsurfer (https://surfer.nmr.mgh.harvard.edu/fswiki/PetSurfer), establishing a forward 

linear model relating [11C]DASB intensities to the VOI means, as described in Greve et al. 

2016. Because the PSF for a HRRT scanner reconstructed with a OP-OSEM-PSF algorithm 

varies from 1–2.5 mm in radial orientation depending on the distance from the centre of the 

field of view (Olesen et al. 2009), we ran the analyses with the PSF settings; 0 mm and 2 

mm. However, because motion, inhomogeneous tracer uptake and varying uptake across 

frames are likely to further decrease the spatial resolution as compared to a point source in 

Olesen et al. 2009, we also ran the PVC analyses with 4 mm, as used in Greve et al. 2014. 

The PVC step is evaluated, because it has been suggested to be the optimal solution for VOI 

analysis, given that assumptions about the PSF, accurate delineation of regions, correct PET-

MRI registration, and constant uptake within each VOI are satisfied (Greve et al. 2016). In 
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addition, a homogeneous CSF and WM segmentation is important (provided in FreeSurfer), 

as these are primary regions to compensate for in gray matter uptake of the tracer. When the 

assumptions are satisfied (and under noiseless conditions), the GTM will provide the exact 

mean in each VOI.

Step 5 – Kinetic Modeling (4 options)—The Multilinear Reference Tissue Model 

(MRTM) was applied as described by Ichise et al. 2003 with cerebellum (excluding vermis) 

as a reference region, allowing for estimation of three parameters from which the non-

displaceable binding potential (BPND) can be derived.

The second model applied was the Multilinear Reference Tissue Model 2 (MRTM2) (Ichise 

et al. 2003) with cerebellum (excluding vermis) as a reference region (Ganz et al. 2017), and 

thalamus, putamen and caudate were averaged to represent a single less noisy high-binding 

region for estimation of k2’, the clearance rate constant from reference region to plasma 

(Beliveau et al. 2017). The MRTM2 is similar to MRTM, except that k2’ is determined after 

the first iteration of MRTM and its value is subsequently entered into the two-parameter 

MRTM2 model. This approximates a linear kinetic analysis, but is executed in only a 

fraction of the computational time. The simplified reference tissue model, SRTM, was 

applied as described by Lammertsma and Hume, 1996. SRTM allows for nonlinear least 

squares estimation of 3 parameters (R1, k2
’ and k2a) from the full dataset, and the BPND can 

be estimated from BPND = R1
k2′

k2a
− 1. R1 is the relative radioligand delivery and k2a is the 

apparent rate constant.

The non-invasive Logan reference tissue model was applied as described in Logan et al. 

1996 with t* = 35 minutes for all regions and subjects. It also assumes the existence of a 

valid reference region and an average tissue-to-plasma clearance k2’, and the distribution 

volume ratio can estimated as DVR = BPND − 1. All kinetic models applied in this work 

were implemented in MATLAB v. 2016b as specified in their original paper. The 

implementation in MATLAB was validated with PMOD v. 3.0 (10 subjects < 0.1% 

difference in BPND), but was carried out in MATLAB for parallel execution purposes to 

substantially reduce processing time.

Different kinetic modeling approaches are tested in this study, as the optimal estimation of 

5-HTT binding may vary as a function of scanner (i.e. resolution), subject and region.

From this 5-step list of preprocessing choices, we can quantify BPND for 3×2×4×4×4 = 384 

different pipelines per subject (Figure 2) and subsequently examine their impact on a set of 

chosen performance metrics (Section 1.5).

1.5 Analysis and pipeline performance metrics

To evaluate the effects of different PET preprocessing choices, we tested their performance 

on a set of common performance metrics, namely the test-retest bias, within-subject 

variability, between-subject variability, intraclass correlation, power calculation, and failure 

rate. While these analyses were applied for each region j individually and summarized over 

all subjects i, we also adopted a global reproducibility metric from the fMRI literature, 
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producing a single reproducibility measure for each subject i and pipeline k, taking the 

information from all regions into account (Strother et al. 2002). This sums to a total of 7 

performance metrics that serve to assess the individual pipelines against each other.

Unless otherwise stated, we used statistical subsampling to test several sample sizes of either 

ñ = 10 or 20 subjects randomly selected without replacement from the 30 subjects, and this 

was repeated 1000 times, to produce a mean estimate and a 95% confidence interval (CI). 

The sample sizes of 10 or 20 subjects were chosen to reflect the commonly used sample 

sizes in [11C]DASB PET studies (Nørgaard et al. 2019). Notation-wise, ñ indicates a 

resampling analysis, whereas N = 30 indicates that all subjects were included in the analysis.

Statistical differences in pipeline choice (e.g., motion correction vs. no motion correction) 

for each performance metric was determined across 1000 resamples (subsampling 20 

subjects without replacement), and then using the empirical distribution of the differences of 

the performance metric. This provides an empirical P-value for the difference between 

pipeline choices for each performance metric. Correction for multiple comparisons across 

regions was carried out using False-Discovery Rate (FDR), at FDR=0.05. The rationale for 

choosing these 7 performance metrics is to provide a quantitative estimate of what can be 

expected of biases and variability as a function of preprocessing pipeline choice and sample 

size.

Global Within-Subject Reproducibility Metric (FIX)—A global within-subject 

reproducibility metric over all regions was estimated by generating global signal-to-noise 

(gSNR) metrics for each subject i and pipeline k, as described in (Strother et al. 2002, 

Churchill et al. 2012, Churchill et al. 2015). The fourteen brain regions, described in section 

1.4 step 3, were selected for analysis, and a pairwise linear correlation based on the Pearson 

linear correlation coefficient, R, was estimated based on the test and retest BPND’s.

The gSNR for each subject and pipeline was estimated as

gSNRi, k =
1 + Ri, k − 1 − Ri, k

1 − Ri, k

Subsequently, we identified the pipeline that maximized the median-rank across all subjects, 

as described in (Churchill et al. 2012), and described in Supplemental Text 1. This pipeline 

is defined as the optimal fixed pipeline (FIX) across all subjects and regions.

The rationale for choosing the gSNR as performance metric is because it captures the test-

retest correlation between BPND estimates across all brain regions for each subject. 

Furthermore, it is less prone to real (physiological) second-scan effects, as captured by the 

test-retest bias metric presented below.

Test-retest Bias—The test-retest bias was estimated as the difference between the two 

measurements for subject i, region j, and pipeline k, and expressed as a percentage of the 

first measurement (Kim et al. 2006). This is given by
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Biasi, j, k = 100 ×
retesti, j, k − testi, j, k

testi, j, k

In the estimation of an average group-level bias (i.e. Bias j, k = 1
n ∑i = 1

n Biasi, j, k), BPND’s that 

were ≤ 0 or ≥ 10 in either test or retest were excluded in the estimation to avoid the influence 

of outliers. To account for this exclusion, we estimated a “failure rate” for a given region j 
and pipeline k, defined as the number of outliers divided by the number of subjects × 100.

Failure rate information is available in the supplementary material.

Within-Subject Variability Metric (WSV)—The within-subject variability (WSV) was 

estimated as the standard deviation across regions of the difference between test and retest. 

To normalize the metric to a coefficient of variation (CV) %, we divided the WSV by the 

average BPND’s over test and retest for all 30 subjects (outliers excluded). This can 

mathematically be expressed as

CV j, k = 100 ×

∑i = 1
n di, j, k − d j, k

2

n − 1
∑i = 1

S testi, j, k + retesti, jk /2
S

where di,j,k = testi,j,k − reseti,j,k, d j, k = 1
n ∑i = 1

n di, j, k and S is the number of subsamples (i.e. 

without outliers). BPND’s that were ≤ 0 or ≥ 10 in either test or retest were excluded in the 

estimation to avoid the influence of outliers.

The rationale for choosing WSV as performance metric is because it reflects the variability 

between measurements of the BPND estimate for individuals in a sample. For example if the 

WSV is too high it becomes infeasible to perform longitudinal studies applying a 

pharmacological intervention, e.g. if the expected within-subject variability is larger than the 

effect of the intervention.

Between-Subject Variability Metric (BSV)—Between-subject variability (BSV) was 

captured by identifying the pipeline that minimized the mean standard deviation across all 

regions and across subjects at baseline (i.e. test). To compare regions, we estimated the CV 

by dividing the standard deviation, σ, for ñ = 10 or 20 subjects for a given region by the 

mean, μ, estimated from all subjects at baseline and re-scan (outliers excluded). This is our 

final between-subject variability measure.

CV j, k = 100 ×
σ j, k
μ j, k
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where μ j, k = 1
n ∑i = 1

n testi, j, k + retesti, j, k /2 and 

σ j, k = 1
n − 1 ∑i = 1

n ((
testi, j, k + retesti, j, k

2 ) − μ j, k)
2
. BPND’s that were ≤ 0 or ≥ 10 in either test 

or retest were excluded in the estimation to avoid the influence of outliers.

The rationale for choosing BSV as performance metric is because it reflects the differences 

in BPND between individuals and our ability to detect group differences. For example, if the 

BSV is too high it may require an unreasonable number of subjects to establish group 

differences.

Intraclass-Correlation Reproducibility Metric (ICC)—We estimated the intraclass-

correlation coefficient (ICC(3,1)) across test-retest for all regions and for each pipeline, as 

given below

ICC j, k =
MSBS j, k − MSE j, k

MSBS j, k + (q − 1)MSE j, k

where q is the number of repeated measurements (i.e. q = 2), MSBS is the between-subjects’ 

sum of squares, and MSE is the error mean square. We chose ICC(3,1), as this measure 

eliminates possible systematic test-retest effects due to the scan-order, by treating repeated 

measurements as fixed instead of random. In the estimation of the ICC metric, BPND’s that 

were ≤ 0 or ≥ 10 in either test or retest were excluded to avoid the influence of outliers. We 

subsequently chose the pipeline, that maximized the ICC(3,1) and from now on we refer to 

this pipeline as ICC.

Power Analysis—Power analysis involves determining the number of subjects needed to 

show a given effect size, based on the variability of the data (Whitley et al. 2002). An 

example of such an estimation, can be expressed as

n j, k =
1.96 × σ j, k

E j, k

2

where n is the number of subjects needed to show an effect E, 1.96 corresponds to a 95% 

confidence interval, and σ is the group-level standard deviation i.e. the BSV. We estimated 

the average number of subjects needed to show an effect of either 5% or 10% change in 

BPND based on the previously estimated between-subject variabilities for 10 and 20 subjects, 

including a 95% confidence interval. The effects of either 5% or 10% were estimated as the 

percent change from the average BPND for a given region j and pipeline k. Outliers (BPND’s 

that were ≤ 0 or ≥ 10) were excluded in the estimation of both σ and E. We note, that there 

are different ways to estimate the needed sample size depending on the experimental setup, 

however, as we are mainly interested in the relative differences in sample size between 

pipelines, this procedure should be sufficient.
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RESULTS

An optimal pipeline across subjects and regions (Figure 3)

The evaluation of a median-rank profile for relative pipeline performance for each pipeline 

and across all subjects (N = 30) and regions (N = 14) is shown in Figure 3, based on the 

gSNR. Higher median rank indicates a higher gSNR, and better test-retest performance 

across subjects and regions for a given preprocessing pipeline. We found a significant 

pipeline performance effect across subjects (P < 0.0001, Friedman test), suggesting the 

existence of an optimal fixed pipeline. The highest median rank across subjects (Rmax = 

0.995), was achieved with the following preprocessing pipeline (FIX): without manual edits 

in FreeSurfer (FS-RAW), with motion correction (MC), boundary-based co-registration with 

the time-weighted average image, without partial volume correction (noPVC), and with 

MRTM2 as preferred kinetic modeling approach. We also identified a subset of several other 

pipeline choices, that statistically performed equally well as FIX, based on a Dunn-Sidak 

test, correcting for multiple comparisons for all possible pairwise combinations (P = 0.05). 

The horizontal dotted line in Figure 3 indicates that pipelines below this line are 

significantly different from FIX (Rcut-off = 0.989). The pipelines above the cut-off are not 

significantly different from each other (Rmin = 0.857).

MC was the factor that influenced pipeline performance most; it consistently increased the 

median rank when applying MC. The effect of MC also depended on which kinetic model 

was subsequently applied: whereas the rank for MRTM2 with either MC or nMC were not 

significantly different from each other (overlapping CI’s), the Non-invasive Logan, SRTM 

and MRTM performed significantly better after MC.

PVC with GTM generally decreased the median rank with increasing PSF (i.e. 0 mm, 2 mm, 

4 mm), but the effects were most evident when MC was applied.

The application of GTM with all PSF options and in combination with MRTM2 showed 

comparable performance to the noPVC, whereas PVC combined with other kinetic models 

significantly lowered the test-retest performance, as measured by the gSNR.

The co-registration with the time-weighted PET image for both BBR and NMI marginally 

outperformed the average image, when no MC was applied. This was particularly evident for 

the higher-rank cases where either Non-invasive Logan or MRTM2 were applied. Only 

minor effects of co-registration were evident when MC was applied.

The three different FreeSurfer approaches to delineate brain regions did not cause any 

consistent differences in median rank performance.

Test-retest bias (Figure 4)—98% of the pipelines revealed a negative test-retest bias 

(range: −6% to 0%), meaning that the regional BPND’s were lower on the second scan 

compared to the first scan. Motion correction had only minor effects on the mean bias for the 

high-binding regions thalamus, putamen and caudate ranging from 1–2% (Figure S1).

In contrast, when applying SRTM to the occipital cortex, the bias was reduced to −2% when 

using MC, whereas it was −4% without MC (Figure 4). The bias for the occipital cortex was 
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reduced to −1% when combining MC and GTM with either 2 or 4 mm. For the superior 

frontal cortex and entorhinal cortex, MRTM and SRTM created some spurious outliers 

producing up to 15% bias. The amygdala created the highest consistent test-retest bias over 

all pipelines for both MRTM and SRTM, ranging from −4% when MC was applied, to −6% 

when no MC was applied (Figure S2). The amygdala bias was reduced to negative 1–2% 

when either Non-invasive Logan or MRTM2 was used.

Figures of all estimated biases as a function of sample size (ñ = 10 or ñ =20), region and 

preprocessing pipeline are available through the CIMBI database (Knudsen et al. 2016).

Tradeoff in within- and between subject variability at the group level (Figure 5)
—The within- and between subject variability were assessed for four different optimization 

schemes according to the pipelines that for 20 subjects (subsampled 1000 times without 

replacement) and region j, (1) minimized the between-subject variability (BSV), (2) 

minimized the within-subject variability (WSV) across test and retest, (3) maximized the 

ICC(3,1) across test and retest, and (4) the fixed optimal pipeline (FIX).

Figure 5 shows the between-subject variability as a function of within-subject variability for 

these four pipelines, depicted for subcortical and cortical regions. For all regions, we 

observed a trade-off in between- and within-subject variability, meaning that e.g. 

minimization of within-subject variability increased between-subject variability, and vice 

versa (Figure 5). The worst case was the hippocampus showing stable WSV across the 

pipelines WSV, BSV, FIX and ICC at 10–11%, whereas between-subject variability 

decreased from 22% to 17% when using the BSV pipeline instead of the ICC pipeline. This 

translates into 30 fewer subjects needed in a group analysis to detect a 5% difference in 

BPND and to achieve similarly powered statistical results (approximately 6 more subjects 

needed per % increase in BSV).

Table 1 lists the optimal preprocessing pipelines for the 14 regions. Across all regions, use of 

either MRTM or MRTM2 consistently minimized WSV (Table 1). Notably, the application 

of GTM 4 mm minimized the between-subject variability in all regions except for the 

amygdala, thalamus and hippocampus, and the within-subject variability was similarly 

minimized in all cortical regions, except from the regions insula and entorhinal cortex (Table 

1).

Figure 6A and 6B display the within- and between-subject variability as a function of 

region, and with or without application of MC. In Figure 6C and 6D, the within- and 

between subject variability is displayed for noPVC vs. GTM 4 mm. Figure 6 shows the 

impact on within- (E) and between-subject (F) variability of choosing SRTM versus 

MRTM2.

Figures of all estimated variabilities as a function of sample size ( ñ =10 or ñ =20), region 

and preprocessing pipeline are avilable through the CIMBI database (Knudsen et al. 2016).

Power analysis across preprocessing pipeline choices (Figure 7)—The effects of 

pipeline choice on the sample size required to show a given effect size were also examined. 

Figure 7 shows the sample size required to detect a 5% difference from the anterior cingulate 
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mean BPND. A 95% CI is plotted for all pipeline combinations for Non-invasive Logan, 

SRTM and MRTM2 for ñ = 20.

The greatest reduction in sample size was seen with the choice of kinetic modeling: the Non-

invasive Logan in combination with GTM 4 mm and no MC was associated with a sample 

size of 27 subjects [CI: 16 subjects – 36 subjects] (Figure 7). Notably, when combined with 

GTM 4 mm, the FS-T2P stream resulted in substantially higher sample size (Figure 7). This 

result was driven by a single subject producing a substantially higher BPND after FS-T2P 

correction, consequently increasing the between-subject variability.

Figures for sample size as a function of pipelines, regions, subjects and effect sizes are 

available through the CIMBI database (Knudsen et al. 2016).

All average BPND estimates, standard deviation, min and max values for each region and 

preprocessing strategy is available in the Supplementary. In addition, average volume, 

standard deviation, min and max value for each region for the VOI choices FS-RAW, FS-

MAN and FS-T2p is available in the supplementary material.

DISCUSSION

In a comprehensive preprocessing framework, we report the evaluation of the impact of 384 

different preprocessing pipelines on a set of common performance metrics, based on test-

retest [11C]DASB neuroimaging data. Our findings suggest that the observed complex 

interaction between various preprocessing steps and brain regions necessitates careful 

consideration of the performance of a chosen preprocessing pipeline and the final outcome 

measure BPND.

Test-retest bias on [11C]DASB binding

Whereas test-retest studies are generally considered to provide valuable information about 

the repeatability of PET measures, variability may not only arise from measurement errors 

but also from biological variations between scans. Independent of the chosen preprocessing 

pipeline, we consistently found lower [11C]DASB BPND at the second compared to the first 

scan.

This observation was also made by Kim et al. 2006 who reported a negative bias of 2.5% - 

7.5% between first and second scan. Two other test-retest studies by Frankle et al. 2005 and 

Ogden et al. 2006 did not apply any test-retest bias metric in their evaluation.

Regardless, if the negative test-retest bias is a true biological effect or if it is introduced in 

the data-acquisition and/or preprocessing stage, care must be taken in analysis of 

longitudinal data to avoid attributing an effect to a treatment/condition that was actually due 

to the retest alone. Further, test-retest studies with a biologically determined bias means that 

attempts to define a pipeline that minimizes the bias may be counterproductive.

Extensive research in humans support a number of factors affecting cerebral [11C]DASB 

binding. Diurnal variation has been reported to affect 5-HTT binding (Meyerson et al. 1989) 

causing an increase in measurement variability if test and retest scans are executed in the 
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morning and afternoon. The effects of having repeated tracer injections may introduce carry-

over effects, or induce internalization or conformational changes of the 5-HTT to a different 

state (Zhang et al. 2016). The data used in the present study were acquired with an interval 

of 5 weeks, at the same phase in the menstrual cycle and at the same time of the day, which 

makes it unlikely that carry-over effects, hormonal or diurnal changes explain our 

observation. Kim et al. 2006 also discussed the possibility of increased stress levels at the 

first scan, elevating the circulation of cortisol, consequently increasing 5-HTT synthesis and 

thereby potentially lowering 5-HTT binding observed at retest. While increased stress levels 

at the first scan may be causing the negative bias, it may also be attributed to a change in 

levels of motion between test and retest, with less motion contributing to an increase in SNR 

(if subjects are more calm at retest). In contrast, high levels of motion may have substantial 

impact on the scanner reconstruction, potentially either over- or underestimating the true 

uptake by affecting attenuation- and scatter correction (Van den Heuvel et al. 2013).

Irrespective whether the bias appears from biological variations and/or is caused by data 

acquisition and/or preprocessing, it should be taken into account if it is likely to have an 

impact on the scientific question. More specifically, scientific question could depend on e.g. 

1) region 2) one or more scans 3) structural abnormalities such as atrophy, and 4) disorder 

related head motion. In contrast, bias may trade off with true between subject variability 

where greater variability may reflect more accurate between-subject biological variation. 

This is contrary to focusing only on group mean differences which we have mainly focused 

on in this study.

Nevertheless, depending on the ability to remove potential biases and depending on the size 

of their individual contributions, both the within- and between-subject variability should 

subsequently be assessed to decide whether an estimated effect can be considered a true 

biological effect or not.

Impact of preprocessing pipeline strategy

Using our evaluation framework, we identified a set of optimal pipelines across subjects and 

regions showing significant effects for MC, co-registration, PVC and kinetic modeling 

(Figure 3). Although it is well-known that MC can have a significant impact on PET results 

(Montgomery et al. 2006), about 40% of published [11C]DASB PET neuroimaging studies 

leave out MC (Nørgaard et al. 2019).

One of the most consistent outcomes of our analysis was that MC had an impact on the 

pipeline performance. Given that we only included scans with < 3 mm median movement, 

MC is likely to have an even larger impact in people with larger head motion. Conversely, in 

the absence of motion, MC will lead to some degree of smoothing due to interpolation 

which might have improved the performance. The improved performance with MC could 

also result from higher noise-levels at the end of the scan where the distribution of 

radioactivity is lower producing less true counts, or by a re-distribution of the tracer. Freire 

and Mangin 2001, and Orchard and Atkins 2003, demonstrated that least-squares cost 

functions may be susceptible to fMRI activation biases, which for PET means that the MC 

algorithm may attempt to incorrectly account for motion if the VOI has low SNR, or if the 

tracer distribution in the target volume changes significantly over time compared to the 
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reference volume. While the registration to one single frame is possible for [11C]DASB, this 

may turn out to be more complicated for other radiotracers, e.g., with heavily changing 

uptake over long acquisition times. This limitation could be overcome by using time 

dependent changing reference frames. One such approach is the AIR reconcile function 

(http://air.bmap.ucla.edu/AIR5/reconcile_air.html) which attempts to reconcile discrepancies 

between frames that represent all pairwise registrations. However, while this approach may 

be more optimal in cases with heavily changing uptake over time, it comes at a significantly 

increased computional cost and execution time. Nevertheless, given the impact of the motion 

corrections step this issue is an important topic for future research. While we identified an 

overall impact of MC on pipeline ranking using the performance metric gSNR (Figure 3), 

we also found that particularly the thalamus, caudate, medial-inferior TG and entorhinal 

cortex (Figure 6A) contributed to the within-subject variability. This is important, because 

thalamus and caudate are often used as high-binding regions in MRTM2, affecting the 

estimation of k2’ and consequently the BPND. While choice of reference region will impact 

all RTM’s, MRTM2 and Non-invasive Logan are particularly sensitive to the choice of an 

adequate high-binding region for estimation of k2’ (Ichise et al. 2003, Mandeville et al. 

2016). In previous studies, different high-binding regions have been used, without any 

particular justification, e.g., raphe, thalamus and striatum (Kim et al. 2006); midbrain, 

thalamus and striatum (Matsumoto et al. 2010); raphe (Hesse et al. 2011); occipital cortex 

(Brown et al. 2007); or thalamus (James et al. 2017). The same group may even choose 

different high-binding regions across studies, e.g. Gryglewski et al. 2017 (striatum) and 

James et al. 2017 (thalamus), and some studies do not mention which high-binding region 

was chosen (e.g. Zientek et al. 2016). A few studies also cite other studies as justification for 

using a high-binding region, but then use another high-binding region than the cited study 

(e.g. Kupers et al. 2011 & Frokjaer et al. 2009). Based on previous literature (e.g. Beliveau 

et al. 2017), we rather arbitrarily decided to use thalamus and striatum as high-binding 

regions for estimation high-binding regions for estimation of k2’. However, as displayed in 

Figure 6, this choice may not be optimal, as the putamen not only minimizes the within- and 

between-subject variability relative to thalamus and caudate, it is also the region least 

affected by preprocessing strategy; MC, PVC and kinetic modeling. The putamen 

delineation in FreeSurfer is a more homogeneous gray-matter region compared to thalamus 

(see supplementary text 3 for evaluation), and does not suffer from the same severe partial 

volume effects as caudate does because of its proximity to CSF. Therefore, one could 

consider the putamen to be the optimal choice of high-binding region to minimize potential 

biases originating from subject-dependent differences. In a post-hoc test we evaluated the 

use of putamen as high-binding region, and this indeed lowered the between-subject 

variability with 1–10% depending on the VOI, at the expense of bias in group mean. As this 

post-hoc test is a circular analysis, our observation needs to be tested in an independent 

cohort.

The performance of the optimal pipeline was also largely dependent on the use of noPVC or 

GTM with either 0 mm, 2 mm or 4 mm, with the latter contributing negatively to the overall 

pipeline rank, as highlighted by the performance metric gSNR (Figure 3). At first sight, this 

effect would seem to be caused by violations of the GTM assumptions, presumably the PSF 

and the constant uptake within each VOI. For subcortical regions, the thalamus delineation 
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and consequently the [11C]DASB uptake homogeneity has been shown to vary substantially 

between atlases (Nørgaard et al. 2015), which may make the estimate more noisy. For 

cortical regions where the 5-HTT density is relatively low and the average cortical thickness 

only 3 mm (Fischl et al. 2000), the voxel-wise noise level may be higher than in the 

subcortical regions.

However, in a post-hoc analysis on variability (Figure 6C and 6D), we identified a distinct 

difference in PVC performance across subcortical and cortical regions. While the application 

of GTM 4 mm caused a significant decrease in within-subject variability in all cortical 

regions except for the insula and entorhinal cortex, it significantly increased it in the 

amygdala, thalamus and hippocampus. More specifically, the amygdala and hippocampus 

were critically affected by this preprocessing step, increasing both within-subject and 

between-subject variability. This observation may be attributed to partial volume effects 

being similar in the amygdala, hippocampus, and cerebellum, resulting in more unstable 

estimates due to the correlation between regions. Regardless of the contribution to noise of 

the GTM, PVC is still highly recommended in studies where brain atrophy interacts with an 

effect of interest (e.g., age or diagnosis). Failure to properly account for partial volume 

effects in these cases can falsely inflate or degrade the effect of interest (Greve et al. 2016).

Amygdala and hippocampus have medium to high 5-HTT density and with long uptake 

times, the TACs tend to reflect irreversible binding, which may compromise the 

identification of stable model parameters, resulting in noisy estimates. For the pipeline-rank 

performance metric (Figure 3), if within-subject variability increases when GTM 4 mm is 

applied, this will have a negative impact on the pipeline-rank metric, as it largely depends on 

the Pearson’s correlation coefficient.

This variability was reduced after MC, but the remaining difference in pipeline performance 

was significantly affected by the choice of kinetic modeling. Depending on the difference in 

noise-levels at test and retest due to e.g. motion, this may be caused by a bias in the BPND 

estimates from kinetic models using non-invasive Logan, SRTM and MRTM, consequently 

reducing the test-retest performance. This is because BPND estimates from kinetic models 

are subject to noise-dependent bias, meaning that as the noise-level increases, the estimated 

BPND deviates from the true value (Ichise et al. 2003). The MRTM2 has no noisy term as 

independent variable when fitting the kinetic model parameters with multi-linear regression, 

thus effectively reducing the noise-induced bias and improving overall performance (Ichise 

et al. 2003).

Trade-off in within- and between-subject variability at the group level

The within-subject and between-subject variability analysis revealed important trade-offs in 

pipeline performance as a function of region (Figure 5). Minimization of between-subject 

variability increased within-subject variability relative to the fixed pipeline, particularly for 

the amygdala, thalamus and hippocampus quantified with the non-invasive Logan model.

Quantification with the non-invasive Logan method is often preferred due to it having the 

lowest between-subject coefficient of variation (Tyrer et al. 2016, Logan et al. 1996), 

however, our analyses indicate that this comes at the expense of a 3–5% increase in within-
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subject variability (range: 10% – 14%), as shown in Figure 5. Consequently, depending on 

the experimental setup (i.e. group or longitudinal study) the choice of preprocessing should 

be selected with caution and consideration of the study goals and design.

The analysis on the effects of spatial normalization on BSV and WSV (supplemental 

material), showed only a small difference in terms of average BPND compared to without 

normalization, but the within- and between-subject variability were substantially increased 

by a factor of 2–4. This effect is likely to be caused by contamination of CSF and white-

matter in the VOI in standard space, requiring a substantial increase in number of subjects 

needed to obtain similar statistical power.

The within-subjects design captures the difference among conditions (i.e., test and retest) 

and has the clear advantage that fewer subjects are required. However, the within-subjects 

design is subject to learning effects across conditions if the design is not placebo vs active, 

which is not the case for between-subject designs. Care must therefore be taken in the 

analysis of longitudinal data to avoid attributing an effect to a treatment/condition that was 

actually due to a potential retest bias. From a physiological point-of-view, the minimization 

of BSV might be misleading given that the potentially higher and true underlying BSV is 

due to real physiological differences. However, from a statistical and experimental point-of-

view it is of interest to minimize the BSV because it requires fewer subjects to detect group 

differences.

Moreover, by including participants that are thought to be similar (age, gender etc.), we 

expect the BSV to be smaller by minimizing the influence of other variables on the 

measurement. This assumption is, however, only valid under certain assumptions. For 

example, methods that introduce noise (inclusion of WM and CSF in the VOI) will have an 

impact on the BSV metric, but assuming these effects are independent of the true 

physiological variability the joint effects are additive and minimizing the methodological 

noise through BSV seems reasonable. However, there might be interactions between the true 

physiological signal and associated methodological effects leading to the major unsolved 

problem with BSV that it will be extremely difficult to distinguish between what is true 

biological variability and what is variability coming from the method. This is largely why 

we design preprocessing strategies to remove noise unrelated to the true underlying signal. 

In the absence of a “ground truth”, it remains a challenge to select the optimal preprocessing 

pipeline, and it may take alternative performance metrics to quantitatively evaluate and 

compare various pipelines (Strother et al. 2002, Churchill et al. 2015). In this work, we 

argue that explicit knowledge about the impact of preprocessing choices will help 

researcher’s to understand the variability in their data, so they are able to correctly identify 

and remove the noise sources affecting their measurements. Such understanding will help to 

ensure that noise is not mistakenly characterized as a true biological effect.

We want to emphasize that the aim of this study was not to identify a definitive 

preprocessing pipeline for [11C]DASB data, but to quantify the impact of the preprocessing 

choices selected in this study and their uncertainty on BPND.
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Enhancement of study power with optimal preprocessing pipelines

The comparison of subjects needed to show a given effect size, provided insight into the 

effect of preprocessing pipeline choice on sample size and as a function of region, based on 

the between-subject variability performance metric. The test-retest studies published so far 

for [11C]DASB included between 8 and 11 volunteers (Ogden et al. 2007, Frankle et al. 

2006, Kim et al. 2005) (the present study includes 30 subjects) and sample sizes in published 

[11C]DASB PET studies range from 5 (Ogawa et al. 2014) to 83 subjects (Miller et al. 

2013), but with approximately 20 subjects being the most common (Nørgaard et al. 2019). 

However, while the sample size required to show an effect should ultimately be determined 

by the variability of the measured random variable (i.e. BPND), power analyses may become 

biased if incorrect variability measures are used. Therefore, here we provide an estimate of 

what sample size is needed to show an effect of either 5% og 10% difference in BPND as a 

function of pipeline choice and for a specific hypothesis related to a given region (available 

through the CIMBI database (Knudsen et al. 2016)).

As highlighted previously, there exist a trade-off between the optimization of within- and 

between subject variation as a function of VOI and preprocessing pipeline. This ultimately 

affects our recommendation of preprocessing strategy to maximize power. For example, 

given no apriori hypothesis related to a specific region, we recommend the pipeline from the 

rank analysis using gSNR as performance metric. However, as the gSNR metric is mostly 

sensitive to within-subject variance and because the power estimation is largely driven by 

between-subject variance, there will exist other pipelines that maximizes power by 

minimizing between-subject variance at the expense of increased within-subject variance.

We strongly suggest that researchers take the reported biases and variations into account 

when they conduct power analyses prior to a study. In addition, we recommend choosing a 

fixed preprocessing pipeline prior to data acquisition depending on the researcher’s 

biological question, as this should help to avoid underpowered studies.

While it is quite common in the PET community to perform regional analyses, several 

attempts have also been extended to both voxel- and surface based analyses. The effects of 

bias and variance trade-offs as a function of various tracers and preprocessing pipelines are 

thus largely unknown for these types of analyses, and only a few papers have attempted to 

address some of these challenges for PET (e.g. Greve et al. 2014) and fMRI (e.g. Churchill 

et al. 2015).

All the reported results and analyses are available through the CIMBI database (Knudsen et 

al. 2016).

Generalizability to other PET radioligands

Nørgaard et al. 2019 found that across 21 PET centres in 105 studies for [11C]DASB only, 

the heterogeneous range of preprocessing steps used allowed for a total of approximately 

21.000.000 different workflows. We have no reason to believe that the preprocessing steps 

used for other radioligands and across PET centers are different. By contrast, the number of 

possible preprocessing strategies may even be larger with more available radioligands. 
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Further, many of the noise sources such as subject-motion and partial volume effects are 

inherent to the PET signal, independently of the radioligand.

In the current work, we found that MC had the most profound effect on the outcome, 

followed by PVC and kinetic modeling. MC has also been found to have an impact for other 

radioligands such as [11C]raclopride (Montgomery et al. 2006) and [11C]PHNO (Jin et al. 

2013), generally showing decreased variability with the application of MC. For PVC, 

Rousset et al. 2008 showed that for [11C]raclopride, average BPND and its variance 

increased with the application of PVC, and Yang et al. 2017 showed that the application of 

PVC for imaging of beta-amyloid plaques using the radioligand [18F]AV-45 increased the 

ability to detect the progression of Alzheimer’s. Generalization of such results across 

radioligands may be increased by expanding on the interactions for techniques of VOI 

definition and related characteristics.

While we are not in the position to evaluate the exact impact of preprocessing on other 

radioligands, the framework that we are proposing is intended to be used in the early test-

retest stage for a new radioligand, where recommendations are made to the community for 

subsequent studies. This should help scientists to make informed choices about pipeline, and 

thereby increase the likelihood of producing reproducible outcomes across PET studies. We 

believe that providing such preliminary guidelines for PET receptor results produced by 

different preprocessing processes is an important part of the neuroimaging community’s 

response to the problem of producing more reproducible results for human PET receptor 

studies. In addition, by demonstrating potentially significant increases in study power we are 

helping to optimize the value of the research money spent on such studies.

LIMITATIONS AND FUTURE CONSIDERATIONS

Our study is not without limitations. The results were derived from the radiotracer 

[11C]DASB measured in the HRRT scanner; however, as stated above we expect the results 

to generalize to other radiotracers and scanners, with a possible exception of PVC. Inclusion 

of PVC only had minor effects on most performance metrics. While this may be a specific 

finding in the context of using the HRRT with the PSF-OSEM reconstruction, it may be 

questionable whether PVC would generably be favourable in cases of PET images obtained 

with a conventional PET scanner offering a resolution of 4–5 mm.

We observed only minor differences in performance between FS-RAW, FS-MAN and FS-

T2P, but substantial differences in regional binding estimates could presumeably be obtained 

if a different brain atlas (e.g. PVElab, Svarer et al. 2005) is used. We deliberately abstained 

from testing other segmentation atlases since the outcome was likely to be influenced by 

differences in volumes, etc.

FreeSurfer returns 41 regions per hemisphere and to make the results more comparable to 

other atlases, we chose to extract only a subset of 14 regions covering all major parts of the 

brain. The results and interpretations of this study can therefore not be generalized to the 

remaining 27 regions, with the tradeoff being that the results are more comparable to regions 

from other atlases. Furthermore, the merging of regions between hemispheres is also a 
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limitation if lateralized effects are present. On the other hand, averaging across hemispheres 

is commonly done in PET studies because it reduces the number of statistical tests.

However, even though the extent to which a change in brain atlas affects regional binding is 

quantifiable, it is not trivial to determine whether a decrease/increase in the performance 

metrics suggests a better choice of atlas. Further investigation is therefore needed in order to 

understand this question.

With respect to kinetic modeling we decided not to include SRTM2 because SRTM2 and 

MRTM2 perform similarly well. Optimally, the current framework should be expanded to 

include data from different scanners and other acquisition parameters to evaluate inter-site 

differences, however data sharing initiatives are needed to accomplish this task (Knudsen et 

al., 2016). This is beyond the scope of this paper.

Last but not least, the chosen steps of preprocessing in this study is also a limitation. Our 

future goal is to make the data publicly available, so researchers can download the data and 

benchmark their own preprocessing pipeline using the same performance metrics and the 

same data. The results of the benchmark can subsequently be made publicly available on a 

website or in a database. The effort aligns well with current interests in the PET community, 

as was highlighted at the NRM2018 PET Grand Challenge (www.petgrandchallenge.com).

CONCLUSION

In summary, we provide evidence that preprocessing pipeline choices have significant 

impact on [11C]DASB BPND in a distributed set of brain regions, as evaluated by 7 

performance metrics. Given that no apriori hypothesis exist, we recommend researchers use 

the FIX pipeline (with MC, co-registration BBR and the time-weighted PET image, no PVC, 

and kinetic modeling using MRTM2). Given a specific clinical hypothesis (e.g. change in 

binding in putamen), we recommend researchers to use Table 1 as a guideline, with 

longitudinal studies using the WSV column, as this measure ensures minimum test-retest 

variability between scan sessions. For cross-sectional studies, we recommend researchers 

choose a pipeline that minimizes both within- and between subject variability (i.e. either the 

BSV or ICC column in Table 1), as this should ensure a compromise between low within-

subject variability and low between-subject variability.

Systematic evaluation of preprocessing choices using data-driven performance metrics can 

identify strategies that result in 80% fewer subjects needed in a group analysis to achieve 

similar statistical results. The use of MC had the most profound effect on BPND, prior to the 

effects caused by PVC and kinetic modeling. MC increases reproducibility because it 

respects the structural geometry by aligning the PET data over time, and so does not 

contaminate the GM signal with that from other tissue types. Thus, a systematic evaluation 

of preprocessing strategies in PET studies should result in improvements in reproducibility 

and reliability of study outcomes, allowing for better understanding of human brain function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Flowchart depicting a common pipeline for neuroimaging studies (multimodal PET and 

MRI) and its multiple stages ranging from (1) experimental design / subject selection, (2) 

data acquisition, (3) preprocessing, (4) data modeling/analysis, and (5) interpretation.
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Figure 2: 
Schematic overview of the various preprocessing steps applied for the [11C]DASB 

quantification. Abbreviations; average (avg), time-weighted average (twa), signal-to-noise 

ratio (SNR).
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Figure 3: 
Median rank profile for all pipelines across all subjects. The shaded errorbars indicate 95% 

confidence intervals. The optimal pipeline across subjects and regions (FIX) is visualized by 

the black bold circle. The horizontal dotted line indicates that pipelines below this line are 

significantly different from FIX. The pipelines above the cut-off are not significantly 

different from each other.
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Figure 4: 
Test-retest bias (%) as a function of pipeline for the occipital cortex, when SRTM is applied. 

The use of motion correction generally decreases the bias, and ranges from −1% to −4%. 

This is highlighted by three plots in the bottom, showcasing the test-retest effect on BPND.
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Figure 5: 
Between-subject variability as a function of within-subject variability for different pipeline 

optimization schemes, and for both cortical (A) and subcortical regions (B).
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Figure 6: 
(A) within-subject variability for 14 regions with or without motion correction, including a 

95% confidence interval (B) between-subject variability for 14 regions with or without 

motion correction, including a 95% confidence interval (C-D) similar to A and B, but with 

either no partial volume correction (noPVC) or with the Geometric Transfer Matrix (GTM) 

and a point spread function assumption of 4 mm (E-F) similar to A and B, but with the 

application of either the Simplified Reference Tissue Model (SRTM) or the Multilinear 
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Reference Tissue Model 2 (MRTM2) as kinetic modeling choice. * P < 0.05, ** P < 0.01, 

*** P < 0.001, FDR corrected for multiple comparisons (FDR=0.05).
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Figure 7: 
Sample size required to detect a group differece of 5% in BPND for the anterior cingulate 

cortex, depending on the kinetic modeling approach (Non-invasive Logan, SRTM and 

MRTM), and for all other pipeline choices. The blue is without motion correction (nMC) 

and the red line is with motion correction (MC). The shaded error bars indicate the 95% 

confidence interval, estimated by randomly choosing 20 subjects over 100 resampling’s.
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Table 1:

Overview of optimal pipelines for the brain regions amygdala, thalamus, putamen, caudate, anterior cingulate, 

hippocampus, orbital frontal cortex (FC), occipital, superior FC, superior temporal gyrus (TG), insula, medial-

inferior TG, parietal cortex and entorhinal, when optimized by median-rank (FIX), within-subject variability 

(WSV), between-subject variability (BSV) and intra-class correlation (ICC). 1st letter (Motion Correction 

(MC); A=MC, B=noMC), 2nd letter (Co-registration; A=BBTWA, B=NMITWA, C=BBAVG, D=NMIAVG), 3rd 

letter (Delineation of regions; A=FS-raw, B=FS-man, C=FS-T2p), 4th letter (Partial Volume Correction (PVC); 

A=noPVC, B=Geometrix Transfer Matrix (GTM) 0 mm, C=GTM 2 mm, D=GTM 4 mm), 5th letter (Kinetic 

modeling; A=MRTM, B=MRTM2, C=SRTM, D=Non-invasive Logan).

FIX WSV BSV ICC

Amygdala AAAAB BBCCB AABAD ABACB

Thalamus AAAAB AABAA BBAAD BABDA

Putamen AAAAB AACAA DACDA BAADA

Caudate AAAAB AACDB DACDA AAADB

Anterior Cingulate AAAAB ABBDB DBADD ABCDB

Hippocampus AAAAB BBBAB BBAAD BBCCB

Orbital FC AAAAB BBBDB DBCDD ABBDB

Occipital AAAAB BABDB DBADC BACDA

Superior FC AAAAB CBADB BBADA ABCDC

Superior TG AAAAB BBBDB BAADD ABBBB

Insula AAAAB BACBA BABDD BBCDB

Medial-Inferior TG AAAAB BBBDB BABDB BBCDB

Parietal C AAAAB ABADA CBADB ABBBC

Entorhinal AAAAB BACAB BBCDD BABDB

Neuroimage. Author manuscript; available in PMC 2020 October 01.


	Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	Participants
	Magnetic Resonance Imaging Acquisition
	Positron Emission Tomography using [11C]DASB
	Preprocessing Steps for PET and MRI
	Step 1 – Motion correction (2 options)
	Step 2 – Co-registration (4 options)
	Step 3 – Delineation of Volumes of Interest (3 options)
	Step 4 – Partial Volume Correction (4 options)
	Step 5 – Kinetic Modeling (4 options)

	Analysis and pipeline performance metrics
	Global Within-Subject Reproducibility Metric (FIX)
	Test-retest Bias
	Within-Subject Variability Metric (WSV)
	Between-Subject Variability Metric (BSV)
	Intraclass-Correlation Reproducibility Metric (ICC)
	Power Analysis


	RESULTS
	An optimal pipeline across subjects and regions (Figure 3)
	Test-retest bias (Figure 4)
	Tradeoff in within- and between subject variability at the group level (Figure 5)
	Power analysis across preprocessing pipeline choices (Figure 7)


	DISCUSSION
	Test-retest bias on [11C]DASB binding
	Impact of preprocessing pipeline strategy
	Trade-off in within- and between-subject variability at the group level
	Enhancement of study power with optimal preprocessing pipelines
	Generalizability to other PET radioligands

	LIMITATIONS AND FUTURE CONSIDERATIONS
	CONCLUSION
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Table 1:

