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Summary

In a meta-analysis, we assemble a sample of independent, non-identically distributed p-values. The 

Fisher’s combination procedure provides a chi-squared test of whether the p-values were sampled 

from the null uniform distribution. After rejecting the null uniform hypothesis, we are faced with 

the problem of how to combine the assembled p-values. We first derive a distribution for the p-

values. The distribution is parameterized by the standardized mean difference (SMD) and the 

sample size. It includes the uniform as a special case. The maximum likelihood estimate of the 

SMD can then be obtained from the independent, non-identically distributed p-values. The MLE 

can be interpreted as a weighted average of the study-specific estimate of the effect size with a 

shrinkage. The method is broadly applicable to p-values obtained in the maximum likelihood 

framework. Simulation studies show our method can effectively estimate the effect size with as 

few as 6 p-values in the meta-analyses. We also present a Bayes estimator for SMD and a method 

to account for publication bias. We demonstrate our methods on several meta-analyses that assess 

the potential benefits of citicoline for patients with memory disorders or patients recovering from 

ischemic stroke.
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1 | INTRODUCTION

In a meta-analysis, we usually can not access the individual patient data and have to work 

with aggregated data such as the reported p-values. A common approach is to estimate the 

overall effect size. In this report we will concentrate on combining the different p-values to 

provide such an estimate.
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Let p1, p2, …, pn represent a sample of independent p-values obtained from n studies 

assembled in a meta-analysis. We assume the studies are randomized placebo-controlled 2-

arm studies. The p-values were obtained from the between-group comparisons. The goal of 

the meta-analysis is to combine these p-values to provide an overall summary of the data. 

Not only it is convenient, but the combination approach can be nearly as powerful as the 

combined analysis of pooled individual data1.

The Fisher’s combination procedure (Fisher, 19322; Section 14.8.3 of Sutton, Abrams et al. 

2000, page 2203)

X = − 2 ∑
i = 1

n
log pi

provides a statistic with a chi-squared distribution with 2n degrees of freedom if the pi are 

independently sampled from the uniform distribution, i.e. the distribution of the p-values 

under the null hypothesis of no between-group difference.

As is often the case in a meta-analysis, after we reject the null hypothesis, we are still faced 

with the problem of how to combine the assembled p-values. There are other methods to 

combine p-values. Cousins’ review paper4 is a summary with some historical account. Won 

(2009)5, Chen and Nadarajah (2014)6, and Chen, Yang et al. (2014)7 provide some recent 

developments on the topic. Briefly, the combination procedure takes the form of

ZW = ∑
i

n
wiH pi / ∑

i

n
wi

2
1/2

, (1)

where wi ≥ 0 is the weight given to study i and H(p) is a cumulative distribution function 

(CDF)-based transformation of p. When H(p) is the inverse CDF of the standard normal, 

then procedure (1) gives various z-test, either weighted or unweighted. When wi = 1 and 

H(p) is the inverse CDF of the chi-squared distribution, then (1) is the Lancaster (1961)8 

generalization of the Fisher’s test. Chen, Yang et al. (2014)7 further generalize the test (1) by 

adopting the gamma CDF for H(p). These methods essentially transform the p-values to 

various quantiles, then the test statistic is constructed as a weighted average of the quantiles. 

The thinking follows the reverse process of how the p-values were obtained albeit the p-

values may be obtained through different test statistics in different studies but one CDF-

based transformation function H(p) is uniformly applied.

What transformation function H(p) we should apply remains a natural question. Our attempt 

to answer this question has led us to another fundamental question concerning the 

distribution of the assembled p-values under the alternative hypotheses. In this work, we first 

address this question by developing a distribution for the p-values for the common two-

tailed normal test. The distribution provides us a theoretical approach to combining the p-

values. Another issue with the existing methods is that the p-values were usually obtained 

from studies with different sample sizes. The sample sizes and the underlying true difference 
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impacts the distribution of p-values. We show this relationship between the distribution and 

the sample size in Section 2 when we present our derived distribution (2). With this set-up 

the assembled p-values form an independent, non-identically distributed sample. This led us 

to a maximum likelihood estimate (MLE) of the common overall effect size. This is 

motivated by the objective of a meta-analysis to integrate evidence to come to an overall 

summary of the efficacy. We will focus on the standardized mean difference which is a 

common effect size measure used in the meta-analysis literature (see Section 2.4.2, page 31 

of Sutton, Abrams et al. 20003). Three real data meta-analysis examples in Section 5 further 

demonstrate its utility. In Section 6, we comment on a connection between our method and 

some existing methods of the form (1). Finally, another common issue concerning meta 

analyses is that the p-values may be obtained using different test statistics in different 

studies. We discuss this issue and comment on an advantage of our methods in Section 6. It 

is demonstrated in real meta-analyses in Section 5.2.

In Section 2, we derive a distribution for p-values specifically for the normal test. Using this 

distribution we first develop the MLE of the standardized mean difference in Section 3.1, 

followed by a Bayesian estimator in Section 3.2. Then we propose a method to account for 

publication bias in Section 3.3. We demonstrate the three methods on three meta-analysis 

examples in Section 5. We conclude the manuscript with a discussion in Section 6.

2 | DISTRIBUTIONS FOR P-VALUES

In a two-sided hypothesis testing, consider a continuous-valued test statistic X with 

cumulative distribution function F(·) and density function f(·) under the null hypothesis. 

Define xp to be the p–th percentile of the statistic X so F(xp) = p. Under a specific alternative 

hypothesis, suppose the test statistic X follows the cumulative distribution G(·) with density 

function g(·). Then ψ(p) = ψ(p | G) denoting the density function for the generated p-value p 
is g(x1−p)/f(x1−p), or the likelihood ratio evaluated at the upper p–th quantile of F. This result 

can be traced to Pearson (1938)9 for goodness of fit tests and later it was used to understand 

the interpretation of p-values by Hung, O’Neill et al. (1997)11 and Donahue (1999)10. Yu 

and Zelterman (2017)12 used it to develop a parametric model to estimate the proportion 

from the null in p-value mixtures. Koziol and Tuckwell (1999)13 used this result to develop a 

Bayesian method to combine statistical tests.

The current work concentrate on the two-tailed normal test. We derive the density function 

for the p-value first. Then we develop several approaches to combining p-values to provide 

an estimate of the standardized mean difference.

The quantile function for the two-tailed normal test is x1−p = Φ−1(1 − p/2). The density 

function for the test statistic under an alternative is g(x) = ϕ(x + δ) + ϕ(x − δ) for 0 ≤ x ≤ ∞,
where Φ and ϕ denote the distribution and density functions of the standard normal 

distribution, respectively. The density of p for this folded normal test is

ψ(p δ) = exp −δ2/2 exp −δ x1 − p + exp δ x1 − p /2 (2)
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using the ratio g x1 − p / f x1 − p . A similar result to (2) for the one sample normal test was 

obtained by Genovese and Wasserman (2004)14. Yu and Zelterman (2017)12 also derived the 

distribution for p-values generated using the chi-squared test. These distributions may 

provide alternatives to model p-values. However, their parameterization does not provide as 

clear an intepretation as distribution (2). We will use distribution (2) to estimate the 

standardized mean difference in the examples in Section 5. We restrict δ ≥ 0 in (2) for 

identifiability.

Its cumulative distribution is

Ψ(p δ) = 2 − Φ x1 − p − δ − Φ x1 − p + δ (3)

from (2).

In a two-sample normal test with means μ1, μ2 and common variance σ2, we have

δ = n1n2/ n1 + n2
1/2 μ2 − μ1 /σ = c d, (4)

where d = μ2 − μ1 /σ denotes the effect size and c = n1n2/ n1 + n2
1/2 denotes a sample 

size-based coefficient. The parameter d is also noted as the standardized mean difference 

(SMD). The SMD is a common measure used in the meta-analysis literature (see Section 

2.4.2, page 31 of Sutton, Abrams et al. 20003). The density function (2) is plotted in Figure 

1 for several combinations of SMD and sample sizes (n1, n2).

If the standard deviation σ is not known, the two-sample t-test is often conducted. For a two-

tailed t-test with ν df, the numerator of g x1 − p / f x1 − p  is pt x1 − p |v, δt + pt x1 − p |v, − δt

and the denominator is 2pt x1 − p |v, δt = 0 . Here the probability density function 

pt x1 − p |ν, δt  for the non-central t distribution with non-centrality parameter δt can be found 

in Johnson, Kotz, and Balakrishnan (1995, p 516). The two-tailed quantile function is 

x1 − p = H−1(1 − p/2), where H denotes the distribution function of the (central) t 

distribution. The density of p for the two-tailed t test is then

ψ t(p) = e
−δt

2/2 ∑
j = 0

∞ Γ((v + 2 j + 1)/2)
(2 j)!Γ((v + 1)/2)

2δt
2x1 − p

2

ν + x1 − p
2

j

. (5)

The t-statistic can be written as
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T =
Y2 − Y1

σ2/n1 + σ2/n2
1/2 =

Y2 − Y1 − μ2 − μ1

σ2/n1 + σ2/n2
1/2 +

μ2 − μ1

σ2/n1 + σ2/n2
1/2

n1 + n2 − 2 σ2

σ2 / n1 + n2 − 2
1/2 , (6)

where Y1, Y2 are sample mean and σ is the pooled estimate of the standard deviation. Then 

we can see the non-centrality parameter δt = μ2 − μ1 / σ2/n1 + σ2/n2
1/2, which is the same 

function of the sample size and the SMD as for the normal test. When the degree of freedom 

v = n1 + n2 − 2 is large, the t-test statistic (6) behaves like the normal test. The rest of the 

work will focus on developing estimators of SMD for the normal test.

Three estimates of SMD, including the maximum likelihood estimate (MLE), a Bayesian 

estimate, and an estimate that accounts for publication bias, are developed next.

3 | ESTIMATES OF THE COMMON EFFECT SIZE SMD

3.1 | Maximum likelihood estimate of d

Let p1, p2, …, pn represent a sample of independent p-values obtained from n studies such as 

those assembled in a meta-analysis. In the ith study, n1i and n2i denote the study-specific 

sample sizes.

We recognize different studies may have different μ2i − μ1i and σi for reasons such as the 

studies may be conducted on different populations and/or may have used different 

measurement instruments. This issue of study heterogeneity is discussed elsewhere15,16. In 

this report we focus on a meta-analysis in which the investigator would like to combine the 

p-values to infer what an overall effect is. We use the SMD d to represent this common 

overall effect although the individual di = μ2i − μ1i /σi may vary. At the end of this section, 

we will generate the convexity plot developed by Lambert and Roeder (1995)17 for our 

model and the plot provides an indication of heterogeneity. We also conduct simulations to 

assess the impact of heterogeneity on our estimate in Section 4.

With this set-up, p1, p2, …, pn are independent non-identically distributed from the density 

function (2) with a common overall effect size d. The likelihood function for d is

L = ∏
i = 1

n
exp −δi

2/2 exp −δi x1 − pi
+ exp δi x1 − pi

/2, (7)

where δi = cid and ci = n1in2i/ n1i + n2i
1/2 .

Its score function with respect to d is
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S = (∂ / ∂ d)log(L) = ∑
i

ci −cid + x1 − pi

exp cix1 − pi
d − exp −cix1 − pi

d

exp cix1 − pi
d + exp −cix1 − pi

d
. (8)

The observed information is

I = − ∂2 / ∂ d2 log(L) = ∑
i

ci
2 − 2cix1 − pi

2 exp 2cix1 − pi
d

exp 2cix1 − pi
d + 1

2 .

There are a couple of remarks regarding (8).

Zero is one root of the score function (8). However, −I(d = 0) = ∑ici
2 x1 − pi

2 − 1  could be 

positive, zero, or negative. This is consistent with the maximum likelihood theory when a 

local maximum occurs on the boundary of the parameter space. So the root d = 0 could 

correspond to a local extremum of the likelihood (7) and not necessarily the MLE, or the 

root d = 0 is the MLE when the null hypothesis is true.

If we assume there is only one p-value observation, then the score function (8) is

S1 = c1 −c1d + x1 − p1

exp 2c1x1 − p1
d − 1

exp 2c1x1 − p1
d + 1

. (9)

This score function shows that if the sample size is not small and the effect size d is away 

from zero, then the fraction

exp 2c1x1 − p1
d − 1

exp 2c1x1 − p1
d + 1

in (9) is approximately one. Then the estimate is d = x1 − p1
/c1 with a slight negligible 

shrinkage represented by the above fraction. If the sample size is small and the effect size d 
is close to zero, then the shrinkage fraction in (9) may be much smaller than one, providing a 

significant shrinkage of the effect size estimate d = x1 − p1
/c1 towards zero.

Figure 2 shows the log likelihood function for 4 sets of p-values that we analyze in Section 

5.1. These figures show the log likelihood function is maximized when the score function is 

zero. We also studied the log likelihood for a fixed effect size d but with different sample 
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sizes (n1, n2) in the individual studies to understand their impact on the likelihood function 

and the consequence on the estimate of d. At the maximum, the negative second derivative 

with respect to d is larger when the assembled studies have larger sample sizes, suggesting 

larger observed information and consequently smaller variance of the MLE.

Figure 2 shows the MLE d  exists for the 4 sets of observed p-values, however, we can not 

solve the score function (8) for a closed-form solution. The MLE d  can be obtained by 

iterating

dk + 1 = ∑
i

cix1 − pi

exp 2cix1 − pi
dk − 1

exp 2cix1 − pi
dk + 1

/∑
i

ci
2 (10)

until convergence, i.e. dk + 1 − dk  is sufficiently small. This algorithm is not the Newton 

iterations. It is to solve for the intersections of a linear and a non-linear function of d.

Some algebra shows that

x1 − pi
=

Yi2 − Yi1
1/n1 + 1/n2

1/2σi
= ci Yi2 − Yi1 /σi,

where Y i1 and Y i2 are the mean responses for groups 1 and 2 in study i. This leads to an 

unbiased estimator x1 − pi
/ci of the effect size from study i. Therefore the overall estimate 

(10) could be interpreted as a weighted average with weight ci
2 of the study specific 

estimates of the effect size each with a shrinkage factor.

To directly maximize the likelihood (7), we have developed R programs to evaluate the log 

likelihood numerically to obtain the MLE and its standard error. The negative log likelihood 

of (7) is minimized using the optimization routine nlm in R. This routine uses a Newton-

type algorithm and it also provides an estimate of the Hessian matrix that was used to 

construct the confidence interval reported in Table 2 for an example that we use to 

demonstrate our methods.

We next present an indication of heterogeneity among the studies. The indication is the 

convexity plot developed by Lambert and Roeder (1995)17. These plots are C(z) against z 
with

C(z) = n−1∑
i

n
ψ pi d + z S

d
/ψ pi d ,
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Where d  is the MLE of d and S
d
 is its estimated standard error. The convexity plot indicates 

heterogeneity when we see a convex plot. Figure 6 shows the plots for a real data example in 

Section 5.1.

3.2 | Bayes estimate of SMD

With distribution (2) derived in Section 2, it is natural to develop a Bayesian estimate of the 

SMD d. The likelihood is given in (7). Let d have a prior distribution d f (d | ⋅ ) . Here we 

consider a couple of prior distributions for f (d | ⋅ ) . In our set-up, the range for d is d ≥ 0. 

The gamma distribution would be a natural choice since it has a non-negative support. 

However, in meta-analysis, the value for d is rarely larger than 0.5. A quick power 

calculation tells us we only need 26 subjects per group to have 80% power to detect an effect 

size d = 0.8 with type I error rate of 0.05 using the 2-sample t-test. Meta-analyses are usually 

applied to a situation where several small or medium sample-sized studies were conducted. 

The studies showed a trend for a relatively small effect size and many of the studies did not 

demonstrate statistical significance. A combined meta-analysis would help us assemble the 

evidence for better inference. Such examples are presented in Section 5. With this 

consideration, we used the uniform (0, 1) distribution to quantify our knowledge on d that 

we believe d is equally likely between 0 and 1. In a second example where we infer the log 

odds-ratio (OR), we used uniform [−2, 2] prior. In neither example, we could obtain a 

closed-form expression for the posterior distribution of d or the log OR. We obtained the 

posterior distribution through MCMC simulations using the rstan package18. We ran 20,000 

iterations with 3 chains. The mean of the posterior and the 95% credible intervals are 

reported in Tables 2 and 3.

3.3 | A model to account for publication bias

We next propose a method to account for the publication bias that has been of concern in 

meta-analysis. It is well-recognized that studies with larger p-values are more difficult to be 

accepted for publication by journals and this bias results to truncated p-values when they are 

assembled from the literature. To minimize this bias, investigators are urged to conduct a 

thorough search on the subject to include as complete a sample of studies as possible, even 

to use their connections to obtain data from known but not published studies. Statistically 

this phenomenon can be described as the observed p-values are truncated at a threshold. 

Since p-values larger than the threshold τ were not accepted for publication, the observed 

(published) p-values follow a truncated distribution

ψTr(p |δ, τ) = exp −δ2/2 exp −δ x1 − p + exp δ x1 − p /2 /Ψ(τ |δ) (11)

where the denominator is evaluated using the CDF (3). Then the PDF (11) can be used in the 

likelihood function (7) to obtain a publication bias-corrected MLE of d.

A practical issue here is how to choose the threshold τ in the model. A reasonable 

approximation would be to use the maximum p-value of the observed sample as the 

threshold. We assume p-values larger than this threshold are truncated. The estimates based 
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on the truncated distribution (11) can be similarly obtained using the numerical methods as 

used in Section 3.1. These estimates for several real data examples are reported in Tables 2 

and 3 in Section 5.

Another publication bias concerns unequal probabilities for studies with different p-values to 

get accepted by journals. That means the studies we assembled have different probabilities 

getting into the meta-analysis sample. One way to account for this bias is to use inverse 

probability weighting19. However, to apply inverse probability weighting, we need to know a 
prior or to be able to estimate the sampling probability for each p-value, and this is beyond 

the focus of the current work. The inverse probability weighting can be readily applied to 

our method if the probabilities are known.

4 | SIMULATION STUDIES

We simulate a spectrum of possible meta-analyses. The scenarios are determined by the 

number of studies (n = 6 or 12), sample size in the studies (1/3 each with sample size of (30, 

50, 80) or 1/3 each with sample size of (100, 150, 200) in both arms), and the effect size d = 

0.2 to 0.6. Table 1 shows the power for the studies at the two ends of the spectrum. At one 

extreme, investigators conduct 6 studies with sample size of (30, 50, 80, 30, 50, 80) in both 

arms. The powers range from 11% to 24% for an overall effect size of 0.2. This represents a 

situation in which investigators try to combine p-values from a group of under-powered 

studies. The other extreme is that investigators try to combine a group of well-powered 

studies, and there are many situations between the two scenarios. As our method is based on 

the maximum likelihood, we focused the simulation on its small sample performance (n = 6 

or 12). This sample size is also consistent with many meta-analyses in practice. For each 

simulation scenario, the number of simulation replicates was set to 500.

Figure 3 shows the estimates (averaged over 500 simulation replicates) along with the point-

wise 95% confidence interval (dotted lines) against the true effect size. The top two panels 

show that our methods can estimate the effect size well for a broad range of the effect size. 

The right panel shows that the increased sample sizes n1i and n2i in the studies help with the 

estimate in terms of smaller standard errors. This suggests the practical value of combining a 

set of p-values from small under-powered studies. The bottom two panels show the estimates 

for the same simulation set-up except for a sample of 12 p-values in stead of 6 as in the two 

top panels. The estimates show similar excellent performance in terms of bias. The 

improvement with more (n = 12) studies in the meta-analysis mainly comes as smaller 

standard errors of the estimates. This is reflected as better power for the test against H0 : d = 

0 that we discuss next. It may not be the case in practice, but we can report the study-
specific SMD estimate in these simulated meta-analyses. As a comparison, we report the 
weighted sample mean of these study-specific SMD estimates. The inverse of the squared 
standard error of the estimates was used as the weight. These weighted means were almost 
identical to our estimates. The absolute difference between the two was in the range of 
0.0002 to 0.002 for the simulated scenarios in Figure 3.

From these simulations, we can also report the power of the Wald test against H0 : d = 0. As 

expected, the power of this test depends on d, the sample size n1i and n2i in the ith study, and 
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the number of studies n in the meta-analysis. For the simulations shown in the upper left 

panel of Figure 3, i.e 6 studies with sample size of (30, 50, 80, 30, 50, 80) in both arms, the 

power was 62.6% and 91.6% for d = 0.2 and 0.3, respectively; and 100% power for d ≥ 0.4. 

When the sample size becomes (100, 150, 200, 100, 150, 200) per arm in the 6 studies 

(upper right panel), the power improves to 97.4% for d = 0.2; and 100% power for d ≥ 0.3. 

On the other hand, when the number of studies increases to n = 12 in the meta-analysis with 

4 each with sample size (30, 50, 80) in both arms (lower left panel), the power improves to 

79.6% for d = 0.2; and 100% power for d ≥ 0.3. For the scenario with n = 12 studies with 

larger sample size (lower right panel), the power improves to 100% for d ≥ 0.2.

In the above simulations, all the studies included in the meta-analysis have exactly the same 

effect size. In practice, these studies may have heterogeneous d’s. We simulated the scenario 

with n = 6 studies with sample size of (30, 50, 80, 30, 50, 80) in both arms, but the effect 

size d spreads as a sequence of 0.125, 0.135, 0.145, 0.155, 0.165, 0.175 with mean 0.15. 

Scenarios of similar sequentially-spreaded effect sizes with means of 0.20, 0.25, 0.30, and 

0.35 are also simulated. Figure 4 shows the estimates (averaged over 500 simulation 

replicates) along with the point-wise 95% confidence interval (dotted lines) against the 

average of the heterogeneous effect size among the 6 studies. Here we use the arithmetic 

average of the heterogeneous effect size to represent the simulation scenario for plotting 

purpose. The average itself is not meaningful. This is the case where a true overall common 

effect size does not exist, however we used our methods to estimate such an overall effect. 

The estimates are 0.145, 0.195, 0.259, 0.310, 0.362, which happen to be close to the average 

effect size. The top line in Figure 4 is the power of the Wald test against H0 : d = 0. In this 

case with heterogeneous effect size, the power is slightly smaller than but fairly close to the 

power in the above correct configurations of scenarios each with one exact common effect 

size.

From these simulations, we have observed our methods provide a good estimate of the 

overall common effect size when all the studies have the same SMD. When the effect size is 

heterogeneous, our methods still provide a reasonable summary of the overall effect. The 

Wald test against the null hypothesis H0 : d = 0 has excellent power when the true d or the 

estimate of d in the case with heterogeneous effect size is not too small in a meta-analysis 

with as few as 6 studies.

5 | META ANALYSES OF THE EFFECTS OF CITICOLINE

Citicoline, also named Cytidinediphosphocholine or CDP-choline, is a widely available 

supplement in the US. It is a drug approved for the treatment of acute ischemic stroke in 

Europe20. It has been studied in many clinical trials to evaluate its potential benefits for 

patients with memory disorders15 and ischemic stroke20,21,22. Many meta-analyses have 

been conducted to assemble the evidence15,20. Here we reanalyze three recent meta-analyses 

to demonstrate our methods.

5.1 | Effect of citicoline on memory function and behavior

Fioravanti and Yanagi (2005)15 reported a carefully-conducted meta-analysis to assess the 

efficacy of citicoline in the treatment of cognitive, emotional, and behavioral deficits 
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associated with chronic cerebral disorders in the elderly. The outcomes they examined 

include attention, memory, behavioral, the Alzheimer’s disease assessment scale (ADAS-

cog), clinical evaluation of improvement, the clinicians global impression of change (CIBIC) 

score, and tolerability measures. Among the endpoints, clinical evaluation of improvement 

and tolerability measures are assessed using odds ratios. Outcomes ADAS-cog and CIBIC 

score were only assessed in 1 study and 2 studies, respectively. Therefore, in this report only 

continuous outcomes attention, memory, behavioral, and memory recall are analyzed using 

our methods.

Table 2 summarizes the studies included in this meta-analysis and their contributions to the 4 

continuous endpoints. The p-values are calculated from the means and standard deviations 

reported in the analysis tables in Fioravanti and Yanagi (2005)15 using the two-sample t-test. 

Almost identical p-values were obtained when we also applied the two-sample normal test. 

The bottom of Table 2 are estimated effect size with their 95% confidence intervals (CI) 

based on these p-values using our methods.

For endpoint attention, its log-likelihood plotted in Figure 2 shows a maximum at zero, 

suggesting a close to zero SMD.

For endpoint memory measures, the MLE of the SMD is 0.23 with 95% CI (0.09, 0.37). The 

study of Bonavita (1983)23 contributed a very small p-value. The meta-analysis by 

Fioravanti and Yanagi (2005)15 deemed this study an outlier since it “used an idiosyncratic 

non-standardized procedure for memory evaluation”, and they repeated their analysis with 

this study removed. We would like to note in our set-up this is not a reason to remove a 

study from the meta analysis. Table Analysis 1.2 in Fioravanti and Yanagi (2005)15 clearly 

shows that there was heterogeneity among the studies that collected memory measures. The 

density curves for p-values given in Figure 1 show that small “outlier” p-values are possible. 

Instead, we borrow the concept of Dfbeta from the regressions to evaluate each p-value’s 

impact on the estimate. We obtained d  when each p-value is deleted from the sample in a 

jackknife. The dashed lines in Figure 5 are the jackknife d  for the endpoints. As expected, 

these jackknife estimates deviate in both directions from the estimate using the full sample. 

Some of the deviations are sizable, however, we would like to note the sample size (the 

number of p-values) is small in this meta-analysis and any one p-value could potentially 

have a significant impact on the overall estimate. We need to exercise caution when 

removing any one study from the meta-analysis.

Figure 6 shows the convexity plots discussed at the end of Section 3.1 for this data example. 

These plots suggest a large amount of heterogeneity in behavior (B); a small amount in 

memory (M); but none in attention (A) or memory recall (MR).

The MLE dT based on the truncated distribution (11) are similar to the regular MLE dMLE

except for the endpoint memory recall. It is because the maximum p-values were 0.9530, 

0.9718, and 0.9400 for the other 3 endpoints, which result to very little truncation. On the 

other hand, the maximum p-value was 0.5579 for the endpoint memory recall. This results to 

a notable difference on the estimates.
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The Bayesian estimates dB using non-informative uniform (0, 1) prior are also reported in 

Table 2. These Bayesian estimates are consistent with the MLE’s.

In summary, our analyses are consistent with the results reported in Fioravanti and Yanagi 

(2005)15 for these endpoints, supporting a small but statistically significant treatment effect 

of citicoline on memory, behavioral, and memory recall.

5.2 | Effect of citicoline on recovery from stroke

The effect of citicoline on recovery from stroke has not been consistent. While the largest 

trial to date, the International Citicoline Trial on acUte Stroke (ICTUS)21, found no benefit 

of administering citicoline on survival or recovery from stroke, many early smaller-sized 

trials and two meta-analyses20,21 support some beneficial effect in the treatment of acute 

ischemic stroke.

Secades at al. (2016)20 conducted a systematic review to identify published randomized, 

double-blinded, placebo-controlled clinical trials of citicoline in patients with acute ischemic 

stroke. They assembled 10 studies to conduct a meta analysis to assess if treatment with 

citicoline (started within 14 days of stroke onset) improves independence when compared 

with placebo. The binary outcome independence is defined as a modified Rankin Scale score 

of 0–2 or equivalent. The contributions of these studies to the 3 meta-analyses are 

summarized in Table 3.

When reporting the results of the ICTUS trial, Dávalos et al.21 also conducted a meta 

analysis to put their results in the context. They included five studies and their ICTUS in the 

meta analysis. These 5 studies are a subset of the studies in the meta analysis by Secades at 

al. (2016)20. The reasons why Dávalos et al. (2012) included these studies can be found on 

page 35521. The results are in the last column of Table 3.

These meta-analyses reported odds-ratio (OR) as the efficacy measure since the outcome 

independence is binary. We worked with the log OR since the common model-based MLE of 

log OR is asymptotically normally distributed. This is generally true for many model-based 

parameter estimates based on the maximum likelihood theory. Our methods can be broadly 

applied to combine p-values from these studies due to the normality of the estimates.

For all 4 meta-analyses, our methods provided OR estimates that are smaller than the 

originally reported estimates20,21, suggesting a small but still statistically significant 

citicoline effect. The MLE ORT based on the truncated distribution (11) are very close to the 

regular MLE ORMLE since there is very little truncation in the p-values. The Bayesian 

estimates ORB using non-informative uniform [−2, 2] prior are also reported in Table 3. 

These Bayesian estimates are almost identical with the MLE’s. We also run the analysis 

using normal (0,1000) prior, and the estimates are almost unchanged.

In summary, our analyses are consistent with the results reported in earlier meta-

analyses20,21, suggesting a smaller but still statistically significant treatment effect of 

citicoline on post-stroke independence.
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6 | DISCUSSION

This work started with a set of p-values to be combined and we ended up developing an 

estimator of SMD. We would like to comment on a connection between our maximum 

likelihood-based method and some of the existing methods in the literature.

The popular z-tests can be generally formulated as:

ZW = ∑
i

n
wiΦ

−1 pi ∑
i

n
wi

2
1/2

, (12)

where wi is the weight for study i. When all wi = 1, test (12) is the unweighted Stouffer test 

by Stouffer et al. (1949)24. A limitation of this approach is that studies with different sample 

sizes give us estimates with different precision and this needs to be accounted for when we 

combine the studies. When wi = ni, where ni is the sample size for study i, test (12) is called 

the Mosteller-Bush test25. Our method is similar to this procedure, but with a shrinkage 

factor that discounts studies with small sample sizes. Other researchers suggested that we 

use the square root of the sample size or the inverse of the estimated standard error as 

weights1. Our MLE provides a theoretical justification on choosing the weight and it has a 

built-in shrinkage against chance finding in small-sized studies.

Another issue in meta-analysis is that the assembled p-values may be obtained using 

different test statistics. For tests that are not associated with an effect size indicator, e.g. 

nonparametric tests, dequivalent or requivalent developed and discussed in Rosenthal and Rubin 

(2003)26, Kraemer (2005)27, and Hsu (2005)28 may be obtained for the individual studies. 

Then traditional weighting schema may be used to combine them. We derived the 

distribution of the p-values for the 2-tailed normal test and the t-test. The MLE of the SMD 

is developed for the normal test. This may appear to be a limitation of our method since our 

method would be ideally applied to a set of p-values obtained using the normal test. 

However, it is straight forward for readers to extend the MLE for their specific tests or even 

for a mixture of tests as long as the parameter has the same interpretation since the 

likelihood can be constructed accordingly for p-values from different tests. In the case of 

regression analysis of randomized clinical trials with two arms, when covariates that are 

orthogonal to the treatment assignment are included in the model, the estimate of the 

between-arm difference remains the same, but the residual error variance σ2 decreases. The 

net effect is improved power. However, when the number of covariates is far less than the 

sample size, the distribution of the p-values follows (5) from a t-test and is approximately in 

the form of (2). Furthermore, given the relationship between the normal test and the t-test 

and the chi-squared test, our methods can be applied to combine p-values obtained using 

these test statistics. We present such an example of inference on the log OR in Section 5.2. 

In other scenarios, such as when p-values are obtained using the Wald test, the score test, or 
the likelihood ratio test, we would not suggest our method would fit for all of them. The 
distribution of the p-values needs to be individually derived for these scenarios.
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We developed our method for a 2-tailed test in which the direction of the efficacy is lost as is 

the case for many other methods discussed above. This appears to be a limitation. From the 

technical aspect, our method can be modified to combine one-sided p-values. However, one-

sided test is not common and needs to be justified prospectively for use in practice (Section 

5.5, page 25, International Conference on Harmonisation of Technical Requirements for 

Registration of Pharmaceuticals for Human Use, 199829). Furthermore, one should always 

carefully examine the studies included in the meta-analysis and be particularly cautious 

when combining a set of p-values where some of the studies point to opposite directions of 

efficacy if ever one decides to pursue such a meta-analysis.

There is nonparametric work14,30,31,32 that describes distributions for p-values. These non-

parametric distributions may fit the p-value mixtures well, however, they did not explicitly 

parameterize the effect size and the sample size in the distribution. Therefore, it is difficult 

to utilize them in meta-analyses. Our method using derived distributions for p-values allows 

us to establish a spectrum of estimates for the SMD, including an estimator to account for 

publication bias and Bayesian estimators.
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FIGURE 1. 
Density function (2) for 4 combinations of effect size and sample sizes: d = 0.2 and n1 = n2 

= 30, d = 0.2 and n1 = n2 = 80, d = 0.2 and n1 = n2 = 200, d = 0.6 and n1 = n2 = 100.
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FIGURE 2. 
Log-likelihood function for endpoints attention (A), memory (M), behavioural (B), and 

memory recall (MR) of the CDP data example analyzed in Section 5.1.
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FIGURE 3. 
Top: Estimate of d versus true d from a sample of 6 p-values, left: 1/3 each with sample size 

of (30, 50, 80) and right: 1/3 each with sample size of (100, 150, 200) in both arms of the 

study; Bottom: same as top 2 panels except that the estimates were based on a sample of 12 

p-values. The solid line is the MLE and the dotted lines are point-wise 95% confidence 

bound. We also report the weighted sample mean of the study-specific SMD estimates. The 
inverse of the squared standard error of the estimates was used as the weight. These 
weighted means were almost identical to our estimates and the two plots are not 
distinguishable.
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FIGURE 4. 
Estimate of d versus average d from a sample of 6 p-values with heterogeneous sequentially-

spreaded effect size, 1/3 each with sample size of (30, 50, 80). The effect sizes for the 6 

studies are 0.125, 0.135, 0.145, 0.155, 0.165, and 0.175 with mean 0.15, and 0.175 to 0.225 

with mean 0.20, 0.225 to 0.275 with mean 0.25, 0.275 to 0.325 with mean 0.30, and 0.325 to 

0.375 with mean 0.35. The solid line is the MLE and the dotted lines are point-wise 95% 

confidence bound. The top line is the empirical power of the Wald test against H0 : d = 0.
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FIGURE 5. 
Jackknife influence of each p-value on dMLE : solid line for dMLE using the full sample, 

dashed line for jackknife dMLE with the p-value from one study removed.
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FIGURE 6. 
This convexity plot indicates a large amount of heterogeneity in behavior (B); a small 

amount in memory (M); but none in attention (A) or memory recall (MR).
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TABLE 1

Effect size, sample size and study power.

Effect Size d n1 = n2 Power (%) Effect Size d n1 = n2 Power (%)

0.2 30 11 0.6 30 62

0.2 50 16 0.6 50 84

0.2 80 24 0.6 80 96

 

0.2 100 29 0.6 100 98

0.2 150 40 0.6 150 > 99

0.2 200 51 0.6 200 > 99
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TABLE 2

Estimated overall effect size d  for various endpoints for the data analyzed by Fioravanti and Yanagi (2005)15 

on the effect of citicoline. The sample sizes (n1, n2) for the citicoline and placebo groups are also noted under 

the p-values if they are different for the endpoints.

Endpoint

Study
† Sample Size

(n1, n2)
Attention Memory Behavioural Memory

Recall

Alvarez 1999 (12, 16) 0.7313 0.4932

Barbagallo 1988 (60, 65) 0.3471 0.9718 0.2894

( 56 59) (44 47) (60 65)

Bonavita 1983 (20, 20) 1.5e-08

Capurso 1996 (17, 14) 0.1122 0.2347 0.1122

Cohen 2003 (15, 15) 0.5770 0.3523 0.9400 0.3523

Falchi Delitala 1984 (15, 15) 1.03e-08

Madariaga 1978 (16, 16) 0.0017

Motta 1985 (25, 25) 0.0482 0.2402 0.2404

Piccoli 1994 (43, 43) 0.8660 0.5579 0.6370 0.5579

(34, 33) (35, 34) (43, 43) (35 34)

Senin 2003 (220, 232) 0.9530 0.1107 0.3956 0.1107

(216, 226) (216, 221) (220, 232) (216, 221)

Sinforiani 1986 (26, 32) 0.6253 0.0596 0.0417 0.0596

Spiers 1996 (46, 44) 0.5272

Estimates

MLE dMLE
0.000 0.2283 0.2307 0.1801

95% CI N/A (.0856, .3709) (.0828, .3787) (.0018, .3583)

dT
‡ 0.000 0.2252 0.2253 0.1039

95% CI N/A (.0821, .3683) (.0757, .3748) (.0000, .3253)

Bayes dB
0.07 0.22 0.22 0.17

95% CI (.00, .19) (.06, .37) (.04, .37) (.01, .34)

†
Detailed references for the studies are in Fioravanti and Yanagi (2005)15.

‡
MLE based on truncated distribution (11).
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TABLE 3

Meta analysis estimate OR for various sets of patients: (A) all patients, (B) patients not treated with rt-PA, and 

(C) patients who started the highest dose of citicoline from studies reported by Secades et al. (2016)20, and (D) 

a meta analysis by Davalos et al. (2012)21. The sample sizes (n1, n2) for the citicoline and placebo groups are 

noted under the p-values if the study contributes a subset of subjects to the analysis.

Meta Analyses by Secades et al. (2016)

Study
† Sample Size

(n1, n2)
(A) All
patients

(B) Not
on rt-PA

(C) On
highest dose

(D) Dávalos
2012 study

Boudouresques 1980 (23, 22) .0092 .0092

Goas 1980 (31,33) .0264 .0264

Corso 1982 (17, 16) .9943 .9943

Tazaki 1988 (136, 136) .00005 .00005 .00005

USA 1 1997 (193, 64) .3169 .3169 .2353 .3169

(65, 64)

USA 2 1999 (267, 127) .4440 .4440 .4440

USA 3 2000 (52, 48) .9085 .9085 .9085

USA 4 2001 (452, 446) .0240 .0240 .0044 .0240

(396, 368)

Alviarez 2007 (29, 30) .3668 .3668 .3668

ICTUS 2012 (1148, 1150) .5384 .7153 .7153 .5384

(613, 615) (613, 615)

Estimates

MLE ORMLE
1.10 1.13 1.09 1.09

95% CI (1.03, 1.17) (1.04, 1.21) (.99, 1.19) (1.02, 1.16)

ORT
‡ 1.10 1.13 1.07 1.08

95% CI (1.02, 1.17) (1.04, 1.21) (0.97, 1.18) (1.01, 1.16)

Bayes ORB
1.09 1.12 1.09 1.08

95% CI (1.02, 1.17) (1.03, 1.21) (1.01, 1.19) (1.01, 1.16)

†
Detailed references for the studies are in Secades et al. (2016)20.

‡
MLE based on truncated distribution (11).
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