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Abstract

The brain can be considered as an information processing network, where complex behavior 

manifests as a result of communication between large-scale functional systems such as visual and 

default mode networks. As the communication between brain regions occurs through underlying 

anatomical pathways, it is important to define a “traffic pattern” that properly describes how the 

regions exchange information. Empirically, the choice of the traffic pattern can be made based on 

how well the functional connectivity between regions matches the structural pathways equipped 

with that traffic pattern. In this paper, we present a multimodal connectomics paradigm utilizing 

graph matching to measure similarity between structural and functional connectomes (derived 

from dMRI and fMRI data) at node, system, and connectome level. Through an investigation of 

the brain’s structure-function relationship over a large cohort of 641 healthy developmental 

participants aged 8 to 22 years, we demonstrate that communicability as the traffic pattern 

describes the functional connectivity of the brain best, with large-scale systems having significant 

agreement between their structural and functional connectivity patterns. Notably, matching 

between structural and functional connectivity for the functionally specialized modular systems 

such as visual and motor networks are higher as compared to other more integrated systems. 

Additionally, we show that the negative functional connectivity between the default mode network 

(DMN) and motor, frontoparietal, attention, and visual networks is significantly associated with its 

underlying structural connectivity, highlighting the counterbalance between functional activation 

patterns of DMN and other systems. Finally, we investigated sex difference and developmental 

changes in brain and observed that similarity between structure and function changes with 

development.
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1. Introduction

Human cognition that enables basic actions and their coordination is presumably driven by 

the complex and dynamic functional interactions among brain regions (Bressler and Menon 

2010). These functional interactions are facilitated through and constrained by anatomical 

connections between regions (Honey et al. 2009). The question of how the rich functional 

dynamics emanate from static anatomical connections has been a major focus of research 

(Menon 2011). Addressing this question has a crucial role in understanding 

neurodevelopment (Gu et al. 2015) and investigating disorders in which connectivity is 

affected, such as traumatic brain injury (TBI), autism, and a variety of other 

neuropsychiatric conditions (Cocchi et al. 2014; Ecker et al. 2015; Xiao et al. 2015).

Recent years have seen the evolution of connectomics, the study of brain connectivity, in 

which structural and functional connectivity of the brain are modeled as graphs of 

interconnected regions with weighted edges representing the strength of connectivity 

(Hagmann et al. 2008, Bullmore and Sporns 2009; Rubinov and Sporns 2010). Within such a 

representation, the relationship between the structure and function was initially studied at the 

level of individual edges between nodes, seeking correlations between functional and 

structural connectivity of brain regions (Honey et al. 2009, Hermundstad et al. 2013). 

Although strong functional connections were shown to exist in the presence of direct 

structural connections, relatively weaker functional connections were also evident in the 

absence of direct structural connections (Honey et al. 2010). Presence of such indirect 

connections among regions (Mišić et al. 2016) requires a system level analysis to have a 

better understanding of how indirect functional connections are facilitated through 

anatomical pathways.

1.1. Traffic patterns in the brain

Several studies in the emerging field of network neuroscience (Bassett and Sporns 2017) 

have presented the brain as an information processing network with special characteristics 

such as small worldness (Watts and Strogatz 1998), existence of hub regions (van den 

Heuvel and Sporns 2013), and community structure (Newman 2018). By modeling the brain 

as an information processing network, the structural pathways of the brain can be regarded 

as a geographical map where the functional interactions among brain regions would be 

considered as the traffic flow over the pathways. This perspective accounts for indirect 

functional interactions between regions by assuming information exchange through 

intermediate regions, which then requires defining the nature of the traffic pattern. Shortest 

path has been the most commonly adopted model for describing the interactions among 

regions, as it complies with the established theory of efficiency of brain networks (Bullmore 

and Sporns 2012). The main assumption of this model is that communication between 

regions is established through the unique optimal (shortest) path between them (van den 

Heuvel et al. 2012). Despite its widespread use, shortest path suffers from restricting 
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communication to a single pathway and requires global knowledge of the network for 

finding the unique paths between pairs, limiting its adaptability to brain networks. To 

overcome these limitations, “diffusive” traffic patterns such as path transitivity (Goñi et al. 

2014) and communicability (Estrada and Hatano 2008) were introduced, which assume 

information exchange between regions through multiple parallel pathways that are not 

necessarily the shortest, providing a better explanation for the communication in the brain, 

especially in the case of disruption of shortest connectivity due to pathology (Grayson et al. 

2016). Recently, a deep neural network-based approach was shown to predict function from 

structure efficiently, albeit providing little insight into the pattern of communication due to 

complex structure of deep learning methods (Rosenthal et al. 2018). Despite several studies 

in the field, the exact communication scheme that the brain adopts is difficult to ascertain 

and an extensive comparative analysis of traffic patterns is desirable.

1.2. Structure-function relationships at the level of large-scale functional systems

Analyzing the network structure of the brain further revealed that the human brain is 

functionally organized into large-scale systems, such as the default mode network (DMN), 

vision, and attention that interact at multiple temporal and spatial scales, giving rise to 

complex behavior (Bressler and Menon 2010). These findings triggered a shift of focus in 

the investigation of structure-function relationships from the level of individual connections 

towards network level interactions (Mišić and Sporns 2016). An early study demonstrated 

that functional systems in the brain are connected through structural white matter tracts that 

facilitate the communication between systems (van den Heuvel et al. 2009). Recently, the 

relationships between structural and functional networks have been studied by investigating 

correlations between sets of structural and functional connections in humans (Mišić et al. 

2016), and by investigating multiplex network models in rats (Crofts et al. 2016). Another 

recent study showed the distributed effects of removing a single region from the rhesus 

monkey brain, highlighting the global functional effects of local structural changes in the 

brain (Grayson et al. 2016). Although the structure-function relationship of certain systems 

such as DMN or vision are investigated individually in literature, a comprehensive analysis 

over major functional systems allowing comparison between their structure-function 

relationship is still lacking. Despite their promising results, such studies have a common 

limitation as they only consider the structural underpinnings of positive functional 

connectivity, while ignoring negative functional connectivity. Thus, it is desirable to jointly 

investigate the structural underpinnings of positive and negative functional connectivity of 

major functional systems.

1.3. Change in structure-function relationship with sex and age

Several studies have demonstrated behavioral differences between sexes, such as enhanced 

motor skills in males (Moreno-Briseño et al. 2010) and better social cognition skills in 

females (Williams et al. 2009). Structural and functional connectivity differences across 

sexes have been shown to characterize these behavioral differences (Satterthwaite et al. 

2014; Ingalhalikar et al. 2014; Tunç et al. 2016), providing insights into the differential 

developmental trajectories of sexes. Although the structural and functional connectivity 

differences across sexes are widely studied independently, sex difference in the structure-

function relationship remains unexplored.
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Developmental changes in structure and function of the human brain have been widely 

studied, with several studies reporting an increase in brain volume as well as structural and 

functional connectivity in early childhood and “pruning” in structural and functional 

connectivity with age in adolescence (Satterthwaite et al. 2013; Gu et al. 2015). Despite 

several studies investigating developmental changes in structural and functional connectivity 

independently, maturation of structure-function relationship with age have seldom been 

considered (Supekar et al. 2010; Betzel et al. 2014).

1.4. Graph matching as a tool for investigating the structure-function relationship in the 
human brain

Although various methods are devised for the analysis of the structure-function relationship 

of the brain, the topological information stored in the connectome is generally neglected that 

could otherwise be beneficial for identifying relationships between nodes as well as 

subnetworks. Considering the fact that the connectomes are graphs, the problem of finding 

(dis)similarities between structural and functional connectomes can be considered as an 

instance of the graph matching problem (Conte et al. 2004). The main idea in graph 

matching is to find a mapping between similar nodes and edges of two graphs along with an 

overall similarity measure, which subsequently facilitates statistical analyses, such as 

classification, clustering, or regression, based on the observed similarities. Graph matching 

is a robust method for defining similarity between network-like structures as it considers the 

network topology in similarity calculations in addition to local network features, and allows 

defining similarity measures from individual nodes to node clusters at various levels. 

Although widely applied in pattern recognition and computer vision over several decades 

(Conte et al. 2004, Osmanlıoğlu et al. 2016), graph matching techniques have only recently 

started to emerge as similarity metrics in neuroscience research (Ktena et al. 2017, 

Osmanlıoğlu et al. 2018). The studies in this setting commonly utilize connectomes obtained 

from a single modality (such as fMRI, EEG, or DTI) and investigate group differences 

across samples using various techniques, such as graph edit distance (Ktena et al. 2016), 

graph embedding (Richiardi et al. 2012), graph kernels (Mokhtari and Hossein-Zadeh, 

2013), or Reeb graph matching (Shi et al. 2014). Such methods have been used for 

determining brain states over fMRI, labeling brain regions (Yang and Kruggel, 2009), and 

finding similar brains in a dataset (Shi et al. 2014). As these studies investigate connectomic 

similarity over a single connectivity type, it is desirable to extend the use of graph matching 

into finding similarity across different connectivity types, such as structural and functional 

connectivity of human brain.

1.5. Contributions

Using a large cohort of 641 participants aged 8 to 22 years, we sought to elaborate how 

functional interactions between large-scale systems derived from resting state functional 

connectivity are shaped by underlying structural pathways reconstructed using diffusion 

tensor imaging. Considering the brain as an information processing network, we used graph 

matching to investigate the relationship between the structure and function of the human 

brain. Specifically:
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• We proposed matching accuracy obtained through graph matching as a similarity 

measure to quantify similarity between the structural and functional connectivity 

in the human brain at node, systems, and connectome level.

• Using graph matching, we investigated the traffic pattern that best describes the 

structure-function relationship in the brain. We made a comprehensive 

comparison of seven traffic patterns (i.e., direct connections, weighted and 

unweighted shortest path, search information, path transitivity, and weighted and 

unweighted communicability) and showed that weighted communicability 

provides the best explanation for the functional connectivity of the brain.

• We investigated how structure-function relationships determine the interactions 

among large-scale functional systems (e.g. DMN, vision, motor, frontoparietal) 

and how network characteristics of these systems affect their inter-relationship. 

We showed that systems display significant agreement between their structural 

and functional connectivity patterns, indicating that functional connectivity 

profiles of large-scale functional systems are shaped by their structural 

connectivity. We further showed that functionally modular systems such as visual 

and motor have stronger agreement between their structure and function, which 

supports the hypothesis that these systems act as sensory modules having sparse 

structural and functional connectivity with other systems (Bassett and Sporns 

2017).

• We demonstrated that negative functional connectivity of DMN with the motor, 

frontoparietal, attention, and visual systems are significantly associated with 

their underlying structural connectivity with respect to the rest of the brain. This 

result points to the possible structural basis of the dynamic counterbalance 

between activation patterns of the task-negative (DMN) and the task-positive 

(other) systems (Fox et al. 2005).

• We investigated sex differences in structure-function relationship and how the 

structure-function relationship changes with age. Although differences across 

genders have been reported for structural (Ingalhalikar et al. 2014; Tunç et al. 

2016) and functional (Satterthwaite et al. 2014) connectomes independently, we 

did not observe a consistent significant group difference between the sexes in 

how functional interactions arise from structural connectivity. On the other hand, 

we showed that similarity between structural and functional connectivity 

decreases during development, possibly indicating that the communication 

pattern in the brain becomes more complex with age.

2. Materials and methods

Fig. 1 gives an overview of the proposed matching approach for evaluating the structure-

function relationship in the human brain. In this section, we first present the details of the 

dataset used and the process through which structural and functional connectomes are 

derived from MRI image data. We then explain the graph matching approach and propose 

matching accuracy as a measure of similarity between structural and functional 

connectomes. Finally, we provide details of statistical tools that are used in our analysis for 
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evaluating the significance of matching results, identifying the group difference between 

sexes, and investigating the relationship between age and structure-function similarity.

2.1. Participants

The cross-sectional dataset used in this study was acquired as part of the Philadelphia 

Neurodevelopmental Cohort (PNC) containing scans of 1601 subjects. Institutional Review 

Board approval was obtained from the University of Pennsylvania and the Children’s 

Hospital of Philadelphia. Participants were excluded from this analysis due to poor structural 

and functional imaging data quality or a history that suggested potential abnormalities of 

brain development such as a history of medical problems that might affect brain function, a 

history of inpatient psychiatric hospitalization, or current use of psychotropic medication. 

The final study sample included 641 participants between 8 and 22 years of age (see Table 

1).

2.2. Data acquisition, preprocessing, and connectomes

2.2.1. Image acquisition—Resting-state functional MRI (fMRI) and diffusion weighted 

MRI (dMRI) scans were acquired for each individual, on the same 3T Siemens Tim Trio 3 

Tesla whole-body scanner and 32-channel head coil at the Hospital of the University of 

Pennsylvania. Resting-state BOLD fMRI was acquired using a whole-brain, single-shot, 

multislice, gradient-echo echo planar sequence (TR/TE = 3000/2ms, flip angle = 90, FOV = 

192×192mm, matrix = 64×64, gap = 0, resolution = 3×3×3mm, volumes = 124). DTI scans 

were acquired using a twice-refocused spin-echo single-shot echo-planar imaging sequence 

(TR/TE = 8100/82ms, flip angle = 90/180/180, FOV = 240×240mm, resolution = 

1.9×1.9×2mm, gap = 0, volumes = 71, 64 diffusion directions with b=1000s/mm2 and 7 b = 

0 images).

2.2.2. Parcellations—In order to capture the robustness of structure-function 

relationship across various resolutions of the same atlas, as well as across different atlases of 

comparable resolution, we parcellated the structural and functional data into 129, 234, and 

463 regions using three scales of the Lausanne atlas (Hagmann et al. 2008) as well as 400 

regions of the Schaefer atlas (Schaefer et al. 2017). In our analysis, we considered the 

Lausanne 234 parcellation as the basis and used the rest of the parcellations for validation of 

our results.

2.2.3. Generating functional connectomes—The preprocessing of fMRI data 

involved motion correction, signal stabilization, band-pass filtering, alignment, skull 

stripping, and segmentation (see Satterthwaite et al. 2014 for details). In our analysis, we 

mainly investigated the relationship between the structural connectomes and full correlation-

based functional connectomes which we estimated using Pearson’s correlation between time 

points (referred as “full connectomes”). Additionally, we investigated relationship between 

structural and partial correlation based functional connectivity, where we obtained partial 

functional connectomes using L1 regularization (referred as “partial connectomes”) (see 

section SI.1. for details). We then calculated the Fisher z-transform of the resulting 

correlation matrices to obtain the finalized functional connectomes. We considered positive 

and negative connections separately and derived two weighted connectomes for each 
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(referred as “function-based connectomes”), where nodes correspond to the brain regions 

and the edges correspond to the absolute value of functional activities (Fig. 1.a. bottom).

2.2.4. Generating structural connectomes—We preprocessed data with a pipeline 

involving skull stripping, registration, Eddy current, motion, and distortion correction. We 

performed deterministic tractography (see Baum et al. 2017 for details). After preprocessing 

of dMRI data, we obtain a structural connectivity matrix with the same regions as functional 

connectomes, where the number of streamlines between regions are used as an indicator of 

the strength of their connectivity. Representing the regions as nodes and fiber counts 

between regions as edge weights, we constructed a weighted structural connectome. Using 

this connectome as the base, we derived the following seven weighted connectomes (referred 

as “structure-based connectomes”) for considering various traffic patterns that are devised in 

the literature, simulating the functional interactions between brain regions (Fig. 1.a top) (see 

section SI.2 for a detailed explanation of communication patterns).

• Direct connections (DC): This pattern represents the standard weighted structural 

connectome which models direct communication between regions.

• Unweighted shortest path (USP): Commonly considered as the communication 

pattern of the brain (Honey et al. 2009), this traffic pattern assumes that the 

communication between regions occurs through minimum number of 

intermediary regions.

• Weighted shortest path (WSP): Being the weighted version of the USP, this 

scenario assumes that the communication occurs through the path with maximal 

number of connecting fibers.

• Search information (SI): An extension to WSP, search information (Goñi et al. 

2014) quantifies the accessibility of the shortest path between two nodes within 

the network by measuring the amount of knowledge needed to access the path.

• Path transitivity (PT): Being another extension to WSP, this traffic pattern (Goñi 

et al. 2014) quantifies the density of local detours available on the shortest path 

between two nodes, assuming that having alternate reroutes at nodes over the 

shortest path will facilitate communication.

• Unweighted communicability (UC): This traffic pattern considers 

communication as a diffusion process as it assumes that the communication 

between regions occurs through multiple pathways simultaneously (Estrada and 

Hatano 2008). This unweighted version considers the strength of connection 

between two nodes to be proportional to the number of possible walks between 

them.

• Weighted communicability (WC): In this weighted version of UC, strength of 

edges are taken into account in the calculation of diffuse connectivity between 

regions.

2.2.5 Data and code availability—The PNC dataset is publicly available in the raw 

format at [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
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study_id=phs000607.v3.p2]. Processed connectomic data that support the findings of this 

study and the code that is developed for calculating matching accuracy are available from 

the corresponding author, upon reasonable request.

2.3. Matching accuracy: A connectomic similarity measure based on graph matching

Having obtained seven structure- and four function-based connectomes, our goal was to find 

similarities in the connectivity patterns across different modalities. Since graph theory 

provides a rich repertoire of tools that can be utilized to characterize the properties of brain 

networks and solve various network related problems (Fornito et al. 2013), we considered 

structure- and function-based connectomes as weighted undirected graphs. We then 

evaluated the problem of finding similar connectivity patterns across connectomes as an 

inexact graph matching problem (Conte et al. 2004) (Fig. 1.b) with the goal of finding a 

mapping between similar nodes of two given graphs. One way to tackle inexact graph 

matching is by formulating it as an instance of the combinatorial optimization problem 

known as linear assignment (Koopmans and Beckmann 1957). Given two sets of nodes A 

and B, and a cost function c: A X B → ℝ determining the cost of assigning each node in A 

to a corresponding node in B, the linear assignment problem aims to find a one-to-one 

mapping function f: A → B between the nodes of the two sets minimizing the following 

objective function:

a ∈ Ac(a, f (a)) .

In order to define assignment cost c(∙,∙) between nodes of graphs, we annotated each node 

with a k-dimensional feature vector for a parcellation with k ROIs representing their 

connectivity with the rest of the nodes in the graph and considered Euclidean distance 

between feature vectors as the cost function for the matching problem. We then used the 

Hungarian algorithm (Kuhn 1955) for matching nodes of structural graphs with that of 

functional graphs.

By applying this graph matching, we obtain a k x k matching matrix (Fig. 1.c. top), 

representing a one-to-one mapping between the nodes of the two graphs, identifying the 

functional node that exhibits the most similar connectivity pattern for each structural node. 

Since structural and functional graphs were of the same size, we regarded a structural node 

matching its corresponding functional counterpart as an accurate match. Our choice of using 

matching accuracy as a measure of structure-function relationship stemmed from the 

observation that two regions with strong anatomical connectivity tended to display strong 

functional connectivity as well. Generalizing this observation of pairwise relationships 

between nodes to network level connectivity, we expected the structural connectivity 

signature of nodes (connectivity of a node to the rest of the brain) to be similar to their 

functional connectivity signature.

The matching algorithm can arbitrarily match nodes having weak connectivity information. 

In order to filter out such arbitrary matchings, we calculated the statistical significance of 

matching a structural node to a functional node accurately by using a permutation test with 

1000 permutations. Each time, we randomly shuffled the edges of the original structural 
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graphs while preserving the node degree distribution. Note that shuffling only changes the 

order of edges in the connectivity signature of nodes. It does not alter the relative ordering of 

nodes in the connectome. We then matched the shuffled structure-based graphs with the 

function-based graphs. This produced a null distribution of matching probabilities for each 

node pair, corresponding to the null hypothesis that the probabilities obtained from matching 

random graphs would be greater than or equal to the actual matching probability. Comparing 

the actual matching probability to the null distribution, we estimated the likelihood (i.e. p-

value) of observing the actual or a higher probability value when the null hypothesis is true. 

We denoted a match as statistically significant if this likelihood was 0.05 or smaller.

Using accurate matches as the basis, we then defined similarity measures between 

connectomes quantifying similarity at three levels.

- Connectome level: Calculated as the percentage of nodes with statistically significant 

accurate matches, structure-function matching accuracy at connectome level quantifies how 

well the associated traffic pattern explains the functional connectivity for the given subject. 

We note that a structure-function matching accuracy of 100% implies that the structure-

based connectome fully explains the observed functional connectivity, whereas a 0% 

accuracy indicates a lack of resemblance between the two graphs.

- Node level: By performing graph matching between structural and functional graphs for 

each subject and taking the average of the resulting matching matrices across all subjects, 

we obtained a k x k average matching matrix where each cell indicates the likelihood of 

mapping a structural node to a functional node. Hence, the diagonal entries of the average 

matching matrix denote the matching accuracy at node level (Fig 1.c. bottom and Fig. 2.a).

- System level: Grouping regions of the connectomes into seven functional systems as 

described in Thomas Yeo et al. 2011, that is, visual, motor, dorsal, ventral, limbic, 

frontoparietal, and default mode network, along with an additional module grouping 

subcortical regions, (Fig. 4) we evaluated the structure-function matching accuracy at system 
level. While calculating the structure-function matching accuracy of a subject at the system 

level, we regarded an accurate match to be the statistically significant mapping of a 

structural node to a functional node belonging to the same system. We calculated matching 

accuracy of systems as the average matching scores at system level across subjects.

2.4. Effect of network topology of systems over structure-function matching

We also explored whether there exists an association between the network structures of the 

functional systems and the systematic difference that is observed among their structure-

function matching accuracies. To this end, we used the participation coefficient (PC) as a 

summary measure of network topology quantifying how much a given node is connected to 

other nodes within and between functional modules (Rubinov and Sporns 2010). Weighted 

PC for a node i is defined as follows:

PCi = 1 −
m ∈ M

ki(m)
ki

2
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where M is the set of functional modules, ki is the strength of node i, and ki(m) is the 

strength of connections that node i makes with the nodes in functional module m. In order to 

quantify the segregation of specific systems, we averaged PCi across brain regions included 

in each system. Low PC in a system implies a specialized network while high PC suggests 

high interaction with other networks.

2.5. Sex difference in structure-function matching

Previous works on this dataset and others have demonstrated sex differences in structural 

and functional connectivity, when investigated separately (Gur et al. 1999; Ingalhalikar et al. 

2014; Tunç et al. 2016). We investigated whether the structure-function relationship varies 

across sexes. We compared the connectome and system level matching accuracies of males 

and females using the two sample t-test.

2.6. Developmental changes in structure-function matching

Investigating whether the relationship between the structure and function also changes with 

age, we first calculated Pearson’s correlation between connectome level matching accuracy 

and age, which revealed a significant negative correlation. We further investigated whether 

the inverse relationship between age and matching varies between sexes. In our evaluation, 

we used multivariate linear regression to model matching accuracy as a linear combination 

of age and sex.

3. Results

3.1. Comparison of traffic patterns

The model adopted by the brain to shape the message passing traffic along the underlying 

anatomical pathways is crucial for describing the communication between directly and 

indirectly connected brain regions. Among several models that are offered in the literature 

(Estrada and Hatano 2008; van den Heuvel et al. 2012; Goñi et al. 2014), we compared the 

efficacy of structure-function matching based on the unweighted and weighted shortest path, 

search information, path transitivity, unweighted and weighted communicability as well as 

only direct connections.

We first calculated the matching between the structure-based connectomes and full positive 

functional connectome. We observed that structural connectomes that were generated using 

weighted communicability (WC) as the traffic pattern achieved the highest connectome level 

matching accuracy score of 20.3%, which was followed by direct connections (DC) with 

18.0% accuracy with a significant group difference as assessed by a paired t-test (p<10−30, 

Cohen’s d=0.676) (Fig 2.b). With a marginal difference in accuracy, DC was followed by 

search information (SI), weighted shortest path (WSP), and path transitivity (PT) with 

17.8%, 17.3%, and 16.1% matching accuracies, respectively, where the group difference 

between DC and SI was not statistically significant (p=0.25, Cohen’s d=0.065) while it was 

significant but weak for SI and WSP (p=0.01, Cohen’s d=0.139) and WSP and PT (p<10−12, 

Cohen’s d=0.411) after FDR correction. Unweighted versions of the shortest path (USP) and 

communicability (UC) achieved lowest scores with 10.1% and 9.7%, respectively. 

Analyzing the structure-function relationship at node level (Fig 2.a), we observed that 
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structure of lateral occipital, superio-frontal, superio-parietal, isthmus cingulate, rostral 

anterior cingulate, cuneus, and precuneus accurately matched their function in both left and 

right hemispheres more than other regions (see Table SI.1 for a detailed list).

Calculating the matching between structural and positive partial functional connectomes, we 

observed that weighted communicability, again, outperformed all other traffic patterns with 

18.6% matching accuracy. As in the previous experiment, WC was followed by direct 

communication with 17.3% accuracy and the derivatives of shortest path with their relative 

ordering being mostly preserved (see section SI.1. for detailed results).

3.2. Validating structure-function matching with correlation of connectomes

In order to validate our graph matching approach as a viable method to define similarity 

between structural and functional connectivity in brain, we investigated whether the 

commonly used correlation-based approach would produce similar results (Honey et al. 

2009; Hermundstad et al. 2013). We observed a highly similar ordering of traffic patterns 

when we used Pearson’s correlation as a similarity measure to calculate edgewise 

relationship between structural and functional connectomes, supporting our matching 

accuracy-based findings (see section SI.5 for details).

3.3. Structure-function matching at system level

We next investigated structure-function matching at the level of eight functional systems 

(visual, somatomotor, dorsal attention, ventral attention, limbic, frontoparietal, default mode 

network, and subcortical) obtained by grouping regions according to the mapping presented 

in (Thomas Yeo et al. 2011) (Fig. 3.a). We observed that the majority of significant 

matchings (63.5%) occurred within the same system (Fig. 3.b). Reducing the overall 

matching matrix into eight systems, we observed that the overall matching score increased to 

51.1% when comparing the structural graph with the positive functional graph, with a 

statistically significant structure-function matching within each system (p<10−4 after FDR 

correction). Matching was highest for visual, somatomotor, and DMN systems (Fig. 3.c) 

with matching accuracies being 81.0%, 70.5%, and 56.3%, respectively, indicating a strong 

structure-function matching.

The strong relationship between the structure-based graphs and positive function-based 

graphs led us to investigate how the underlying structural connectivity was related to 

negative functional connectivity. Applying graph matching between the WC-based structural 

connectome and negative full functional connectome, we observed that structural 

connectivity of the visual, somatomotor, dorsal, ventral, and frontoparietal systems matched 

the negative functional connectivity of the default mode network significantly (p<10−4 for 

all), with relatively high matching accuracies (Fig. 3.d). Among the five systems, the 

matching accuracies of the somatomotor and dorsal systems were especially high.

3.4. System modularity and structure-function matching

Due to higher structure-function matching in the visual, motor and DMN systems, we 

investigated whether this result was driven by their modular characteristics, namely, how 

much these systems participate in the rest of the brain network. We evaluated modularity 
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using the participation coefficients (PC) of systems (average of PC of their nodes) on 

functional and structural connectomes. We observed that visual, motor, frontoparietal, and 

DMN had low PC in both cases, indicating modularity of these systems (Fig 4.a and 4.b). 

Comparing the PC of systems with their structure-function matching accuracies (Fig. 4.c), 

we observed that the systems with low PC (visual and motor) had high matching scores. We 

further noted moderate negative correlations between structure-function matching and the 

PC of individual nodes of the structural and functional connectomes, which showed that 

regions connecting to few sub-networks (low PC) presented a high correspondence between 

structural and functional connectivity (Pearson’s r=−0.486, p<10−6 and Pearson’s r=−0.376, 

p<10−6) (Fig. 4.d and 4.e).

3.5. Stability of structure-function matching across various parcellations and atlases

Connectomic analysis of brain relies heavily on the parcellation of the brain into regions of 

interest (ROI), where results of analysis can widely vary according to the density of ROIs 

and the choice of parcellation scheme (Moreno-Dominguez et al. 2014, Craddock et al. 

2012). In order to ensure the reproducibility of the structure-function matching results that 

we obtained through a base parcellation over the Lausanne atlas with 234 ROIs, we first 

evaluated the effect of the number of regions in the connectome on the matching accuracy. 

We parcellated the brain into 129 and 463 ROIs over the Lausanne atlas (Hagmann et al. 

2008), where the regions correspond to super- and sub-regions of the 234 ROI base 

parcellation, respectively. We also investigated whether our results were specific to the 

parcellation scheme of Lausanne atlas, which was obtained from analyzing a population of 5 

male participants within the age range of 24 to 32 years. In order to test this, we evaluated 

structure-function matching using connectomes parcellated using the Schaefer atlas with 400 

ROIs, where parcellation was defined based on a population of 1489 subjects (57.6% 

female) within the age range of 18 to 35 years (Schaefer et al. 2017).

We observed that weighted communicability consistently achieves the highest structure-

function matching accuracy across all schemes, with 19.7% and 15.5% over the 129 and 463 

ROI parcellations of Lausanne atlas and 16.4% over the 400 ROI parcellation of the 

Schaefer atlas (Fig. SI.4). We noted that the relative order of the communication patterns 

was also highly consistent across parcellations. Evaluating the structure-function matching 

at system level, we observed that the structure of systems consistently matched their 

function across parcellations, with visual, somatomotor, and DMN achieving higher 

accuracy, validating our initial results (Fig. 5). In matching structure with negative function, 

we observed that structure of some of the systems matched with the function of DMN as in 

the Lausanne 234 parcellation, with the matching of the somatomotor and the ventral 

systems being the most consistent (see section SI.6 for a detailed discussion).

3.6. Sex difference in structure-function matching

An investigation of sex differences in structure-function matching demonstrated that 

weighted communicability achieves the highest matching accuracy for both sexes at 

connectome level over all parcellation schemes. Furthermore, WC as the traffic pattern 

elucidated a significant yet weak group difference (p=0.007, Cohen’s d=0.225) between 

males and females over the Lausanne 234 parcellation (Fig. 6.a). We note that this group 
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difference between structure-function matching of sexes does not remain statistically 

significant for other parcellations (Lausanne 129: p=0.97, Cohen’s d=0.003, Lausanne 463: 

p=0.13, Cohen’s d=0.12, Schaefer 400: p=0.12, Cohen’s d=0.13). At the system level, the 

only statistically significant group difference was observed for the frontoparietal system 

(p=0.001, Cohen’s d=0.3, FDR corrected) over the base parcellation, while no significant 

group difference was observed over other parcellations.

3.7. Developmental changes in structure-function matching

Investigating the relationship between the connectome level structure-function matching 

accuracy and age revealed a significant negative correlation (Pearson’s r=−0.262, p<10−10) 

over the base parcellation (Fig. 6.b), indicating that matching reduced with age. We further 

observed that this inverse correlation is consistent across parcellations of Lausanne 129 (r=

−0.176, p<10−5), Lausanne 463 (r=−0.333, p<10−17), and Schaefer 400 (r=−0.317, p<10-15), 

where the correlation gets stronger with higher parcellation resolution. Expanding our 

investigation to the system level, we observed significant correlations in the limbic and 

dorsal systems highly consistently across parcellations, after FDR correction (Table 2). We 

also observed significant but weak correlations in the frontoparietal and DMN systems at 

higher resolution parcellations.

We further investigated whether the relationship between age and matching accuracy 

differed between sexes. We obtained a significant fit to our linear model with adjusted 

R2=0.078 (p<10−11) where both age (p<10−10) and sex (p=0.004) were significant predictors 

over the base parcellations. Evaluating the consistency of this result over other parcellations, 

we observed that sex became an insignificant predictor with p>0.05 despite the model fit 

retaining its significance in Lausanne 129 (adj. R2=0.031, p<10−4), Lausanne 463 (adj. 

R2=0.112, p<10−16), and Schaefer 400 (adj. R2=0.102, p<10−15) parcellations.

4. Discussion

The relationship between structural and functional connectivity of brain regions has gained 

increased attention due to its significance in normative and clinical applications (Honey et al. 

2010; Sporns 2013; Baum et al. 2017). Understanding the mechanisms of how functional 

deficits result from underlying structural changes, for instance, have advanced understanding 

of brain plasticity and injury (Draganski et al 2004; Sharp et al. 2011). Several empirical and 

computational (Honey et al. 2009; Mišić et al. 2016) studies have demonstrated a robust 

relationship between the two modalities, suggesting that many properties of functional 

connectivity are affected by the topological and geometric features of the underlying 

structural connectivity (Bullmore and Sporns 2009; Goñi et al. 2014).

We investigated the relationship between the structural and functional connectivity of the 

brain at the level of large-scale systems. Using a large cohort of 641 subjects aged 8 to 22 

years, we first compared several traffic patterns proposed in the literature modeling 

functional activity and demonstrated that a diffusive pattern provides a better explanation for 

brain functional connectivity compared to other models. We then showed that the functional 

interaction between systems strongly match their underlying structural connectivity. 

Additionally, we investigated whether there exists any disparity between sexes in the 
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structure-function relationship, and noted a lack of consistent significant group difference. 

We finally showed that the way structure explains functional connectivity in brain reduces 

with age, where the reduction at system level is especially significant in limbic and dorsal 

systems.

4.1. A diffusive traffic pattern better explains functional connectivity

Defining a traffic pattern is essential for characterizing how the brain’s functional 

connectivity arises through interactions among brain regions, given the underlying structural 

pathways among them. As we demonstrated in Fig.2, Fig.SI.1, and Fig.SI.6, 

communicability (Estrada and Hatano 2008), a diffusive traffic pattern that considers all 

possible walks for establishing communication between regions, best explains the observed 

direct and indirect functional connectivity, as compared to other traffic patterns that focus on 

the shortest path and its surroundings (Honey et al. 2009; Goñi et al. 2014). Due to its 

diffusive structure, communicability suggests that dynamic interactions among neuronal 

clusters are not simply shaped by the shortest path between them, or even in the broader 

context that the shortest path is embedded in the brain network, but rather are influenced by 

the whole set of structural connections in the brain. Such a holistic model of communication 

combines local properties of neuronal clusters with meso-scale and global features of the 

entire network, further highlighting the utility of a complex systems approach in future 

cognitive neuroscience studies. As shortest path and its extensions (i.e., WSP, SI, PT) 

achieve no better matching accuracy than direct connections over most parcellations, this 

work indicates that the shortest path assumption might not reflect the actual communication 

pattern in the brain any better than the direct connections. Unweighted versions of the 

shortest path (USP) and communicability (UC) consistently achieve the lowest scores across 

parcellations, indicating that the strength of connection between regions plays a significant 

role in the communication between brain regions.

These findings provide an insight into how information propagates in the brain, facilitating a 

framework for better predicting functional outcomes of structural changes, especially in 

clinical conditions. This knowledge could be crucial for studies in TBI where it is important 

to understand how the functional recovery is impacted by the structural changes; to address 

questions like whether the functional recovery is due to neuroplasticity or due to the 

rerouting of function to alternate structural pathways. The same would apply to studying 

changes in brain tumor patients after surgery and radiation. This traffic pattern could explain 

the functional recovery or cognitive deficits that appear as a result of structural changes.

4.2. Functional connectivity profiles of large-scale functional systems are shaped by their 
structural connectivity

Studies on the functional connectivity of the brain have revealed stable large-scale functional 

systems (Bressler and Menon 2010; Thomas Yeo et al. 2011) that consist of sets of brain 

regions with coupled activation patterns. These functional systems are believed to form a 

basis for the cognitive capacities of the human brain (Mattar et al. 2015). Therefore, the 

interactions among these systems are of prime interest to cognitive neuroscience studies in 

development (Gu et al. 2015), learning (Bassett et al. 2011), and specific cognitive capacities 

such as executive functioning (Baum et al. 2017) or memory (Rugg and Vilberg 2013). 
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Similarly, atypicalities in the dynamic interactions among functional systems have been 

associated with many disorders and diseases (Menon 2011).

An intriguing question is how functional connectivity profiles of large-scale systems of the 

brain network are shaped by their structural connectivity. As suggested by several studies, 

including this work, functional interactions among brain regions are not influenced only by 

direct structural connectivity, but also by indirect connections between regions (Honey et al. 

2009; van den Heuvel 2012; Mišić et al. 2014), as well as by the global properties of the 

brain network (Goñi et al. 2014). Our analysis of structure-function relationship at the node 

level revealed that the individual regions that achieved highest accurate matching 

probabilities belong to visual, DMN, and somatomotor systems, with lateral occipital, 

superio-frontal, superio-parietal, isthmus cingulate, rostral anterior cingulate, cuneus, and 

precuneus being accurately matched in both left and right hemispheres more than other 

regions (Table SI.1). We also observed that a majority of the regions (nodes) get matched 

either to their neighboring regions on the same hemisphere or to the mirroring regions and 

their neighbors in contralateral hemisphere, indicating a similarity of connectivity patterns 

among mirroring and neighboring regions (Fig 2.a). This motivated us to investigate the 

relationship between structural and functional connectivity of large-scale functional systems 

by considering their connectivity to the rest of the brain. Our results, presented in Fig. 3 and 

Fig. 5, suggest that the positive functional connectivity of a functional system is strongly 

influenced by its structural connectivity. The functional connectivity of each system best 

matched with its own structural connectivity with communicability as the traffic pattern. 

This finding further supports communicability to be a reliable model of information 

processing in brain, explaining the relationship between functional and structural 

connectivity.

As we have demonstrated in Fig.4, the agreement between structural and positive functional 

connectivity of systems that are relatively more segregated (that is, having less connectivity 

with other systems), such as the motor and visual systems, are stronger compared to the 

other systems. The average participation coefficient of motor and visual systems (both for 

structural and functional connectivity) were among the lowest three systems, suggesting that 

brain regions comprising these systems predominantly connect within the system and hence 

are segregated. The stronger agreement between structural and functional connectivity in 

such segregated systems may suggest that these systems act as sensory modules (Fodor 

1983) with sparse structural and functional connectivity with other systems. These findings 

are notable considering commonly suggested lower cognitive roles of motor and visual 

systems (Gur et al. 2012), further supporting their being sensory modules. These findings 

might also indicate that using weighted communicability to describe the traffic pattern in the 

brain is able to explain the functional behavior of modular systems better given their 

underlying structural connectivity. Of note, although it does not display modular 

characteristics as the motor and vision systems do, DMN followed these two modular 
systems with the third highest matching accuracy. Other systems that are involved in higher 

level cognitive tasks (Sporns et al. 2004; Bressler and Menon 2010; Telesford et al. 2016) 

and have more diffuse connectivity showed a significantly weaker relationship between their 

structural and functional connectivity. Accordingly, the functional connectivity of such 

higher level systems is less influenced by their structural connectivity. Our results suggest 
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that the relationship between structural and functional connectivity of large-scale functional 

systems may characterize their cognitive role as well -- a promising direction for future 

studies.

4.3. Dynamic interactions between task-positive and task-negative systems are 
supported by structural connectivity

The default mode network (DMN) is a set of brain regions that displays greater activity at 

wakeful rest compared to performance of differing goal-directed tasks (Raichle et al. 2001; 

Buckner et al. 2008). It is commonly referred to as the task-negative network due to 

exhibiting decreased activity during task performances, while the networks that are activated 

during goal-directed task performances are regarded as task-positive (Fox et al. 2005). DMN 

and task-positive networks interact and jointly control decision making, working memory, 

and other high-level cognitive operations (Dosenbach et al. 2007; Anticevic et al. 20012; 

Chen et al. 2013).

Notably, when matching negative functional connectivity of large-scale systems with their 

structural connectivity, the highest matching accuracies were observed between DMN and 

several task-positive systems, including dorsal and ventral attention, frontoparietal, motor, 

and visual systems. Several studies suggested that the DMN may have an important role in 

integrating different cognitive processes (Greicius et al. 2003; Gu et al. 2015). It was further 

demonstrated that DMN shows strong structural and functional connectivity with other 

systems (Esposito et al. 2006; Bonnelle et al. 2012), as well as making strong connections 

with several of its hub regions (Hagmann et al. 2008). Our results support these findings, and 

further suggest that the task-induced deactivation patterns observed between DMN and other 

systems (Greicius et al. 2003; Buckner et al. 2008) may be shaped by the structural 

connections that these systems make with the rest of the brain. That is, how DMN and other 

systems are structurally embedded inside the brain network determines their system level 

functional roles and how they interact with each other.

4.4. Relationship between structural and functional connectivity might not be affected by 
sex

Functional and structural brain connectivity differences between the sexes have recently 

drawn great attention (Gur et al. 1999; Ingalhalikar et al. 2014; Tunç et al. 2016) due to their 

potential in offering important considerations for differential developmental trajectories and 

personalized medicine, as well as for social policy making. Sex differences in brain 

connectivity is an intriguing scientific pursuit also due to many observed behavioral 

differences between sexes, including enhanced motor skills in males (Moreno-Briseño et al. 

2010) and better social cognition skills in females (Williams et al. 2009). Several studies 

have demonstrated that such behavioral differences are indeed accompanied by underlying 

structural and functional connectivity differences (Satterthwaite et al. 2014; Tunç et al. 

2016). Our results (Fig.6.a) add another dimension to the discussion of sex differences by 

showing that neither the kind of relationship between structural and functional connectivity 

(that is, communicability) nor the strength of this relationship (that is, structure-function 

matching accuracy) demonstrate any significant difference between sexes. Despite many 

reported differences both in structural and functional connectivity between sexes, when 
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studied separately, our result seems to suggest that the underlying mechanism of information 

processing in the brain is consistent between sexes. Indeed, the relationship between 

structural and functional connectivity and the mechanism that underlies this relationship is 

an integral aspect of the human brain network. That this mechanism is not modulated by sex 

might suggest that communicability can be adopted as the traffic pattern of choice for 

studying information processing in both sexes.

4.5. Relationship between structural and functional connectivity changes with 
development

Studies on connectomic maturation in the brain have reported significant age-related 

structural and functional changes in early development as well as across the human lifespan 

(Satterthwaite et al. 2013, Gu et al. 2015). In several of those studies, structural and 

functional connectivity were shown independently to reduce with age after childhood, while 

the rates of change in structure and function were reported to be uneven in the relatively 

limited number of studies that have analyzed the development of the structure-function 

relationship (Supekar et al. 2010, Betzel et al. 2014).

Our results demonstrate a reduction in connectome level structure-function similarity by age 

(Fig.6.b), which points to an uneven rate of change in the structural and functional 

connectivity during development. Our result supports previous findings that report change in 

structure-function relationship during development, such as functional connectivity in the 

DMN of children aged 7 to 9 reaching adult-like levels despite having weak structural 

connectivity (Supekar et al. 2010) and another study reporting a temporal lag between 

development of structural and functional connectivity in normal aging (Tsang et al. 2017). 

Negative correlation of structure-function matching with age may also imply that 

communicability as the traffic pattern becomes insufficient in explaining how the functional 

connectivity arises from structural pathways in later stages of development. Supporting 

previous findings (Betzel et al. 2014), this might suggest that the traffic pattern assumed in 

brain is dynamic and develops with age, possibly becoming more complex during 

adolescence. Investigating performance of various traffic patterns across ages is a promising 

direction for future research.

Our results further demonstrate that the agreement between structural and functional 

connectivity considerably reduces with age in limbic and dorsal systems (Table 2). This may 

indicate that the structural and functional connectivity develops at varying rates in these 

systems within the age range of 8 to 22 years. In conjunction with the negative correlation 

observed in DMN and lack of significant correlation in other systems, these results may 

imply that these systems develop at varying degrees before and during adolescence (Hoff et 

al. 2013). This would also make for an exciting and independent future study.

4.6. Future work

In this study, we demonstrated structure-function matching at system level, along with the 

adoption of graph matching as a similarity measure describing the relationship between 

structural and functional connectivity. Our matching scheme utilizes Euclidean distance 

between the connectivity signatures of regions to obtain the best matching between the 
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structural and functional regions, where contribution of regions to the distance is uniform, 

making the algorithm sensitive to noise. Modulating the contribution of regions and 

investigating various distance functions can be considered in future studies. Additionally, a 

combination of traffic patterns may also be explored in the future instead of using each 

model exclusively. Although the large sample size used in this study provides significant 

statistical power, the cross-sectional design of the samples is a limiting factor especially for 

evaluating the relationship between age and structure-function similarity. Investigating the 

reproducibility of results over a longitudinal dataset is a promising future research direction. 

We also note that, reproducibility of connectivity maps in brain, especially over rs-fMRI 

data, is known to be affected by several parameters such as the preprocessing pipeline or the 

state of mind of the subject at the time of scan (Zuo and Xing 2014). Consequently, results 

reported in this study should be considered taking the limitations of the medium into 

account. Studying the variation of the structure-function relationship during development 

requires additional investigation of adolescence, amongst other factors, that will be 

undertaken in the future. The discussion of sex differences and developmental changes are 

anecdotal to the main contribution of the paper, which was to investigate the communication 

pattern that best explains the structure-functional relationship in the brain.

5. Conclusion

In summary, we demonstrated that functional interactions in the brain occur through 

multiple structural pathways at the same time rather than a unique shortest path, and a strong 

structure-function matching at the level of functional systems is attainable with the use of 

such a diffusive traffic pattern. Our findings also provide an insight into the structural 

underpinnings of functional deactivation patterns between DMN and task positive systems. 

These results widen our understanding in structure-function interactions at the level of large-

scale functional systems, paving the way for future studies in how pathology induced 

structure-function alterations affect information processing in the brain.
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Figure 1. 
Overview of study of structure-function relationship using graph matching. (a) (top) 

Separate connectomes corresponding to various traffic patterns are derived from the 

weighted structural connectome (i.e., direct connections, unweighted and weighted shortest 

path, search information, path transitivity, unweighted and weighted communicability). 

(bottom) Positive and negative functional connectivities for full and partial correlation-based 

functional connectomes are considered separately in order to investigate structural 

underpinnings of positive and negative functional connectivity independently. (b) Taking one 

structure and one function derived connectome, the similarity between their graph 

representations is calculated using graph matching, yielding a binary matching matrix (c) 

(top) which contains ones to indicate nodes of a structure-based graph (rows) mapped to 

those of a function-based graph (columns) with the most similar connectivity patterns, and 

zeros elsewhere. (Note the difference between a matching matrix and a connectome: a cell of 

the matching matrix corresponds to a node of structure-based graph matching to a node of 

function-based graph, whereas a cell in the connectome indicates two regions of the brain 

being structurally or functionally connected.) (c) (bottom) Averaging the resulting binary 

matching matrices for all subjects, we obtain the likelihood of accurately matching each 

structural region with its functional counterpart.
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Figure 2. 
Determining the traffic pattern of human brain. (a) Average of the structure-positive function 

matching matrix across subjects in the Lausanne 234 atlas, where diagonal entries are 

deemed accurate matches. As neighboring regions within the same hemisphere are ordered 

consecutively in the matching matrix, we observe that most of the mismatches occur 

between either neighboring or contralateral regions. (b) Matching various structure-based 

connectomes with full positive functional connectomes, we observe that weighted 

communicability achieves the highest matching accuracy. (* indicates a significant group 

difference, obtained by a paired t-test with p≤0.05 after FDR correction)

Osmanlıoğlu et al. Page 24

Neuroimage. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Structure-function matching at system level. (a) By investigating node level matching 

accuracies over the brain, we found that regions of some of the systems achieved higher 

accuracies than that of others. (b) Regions belonging to the same functional systems in the 

average matching matrix were grouped together, demonstrating that most of the structure-

function matchings occurred within systems. (c) Matching of structure and positive-

function-based graphs at system level using weighted communicability as the traffic pattern. 

(d) Matching results obtained by repeating the same experiment with negative-function-

based graph.
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Figure 4. 
Relationship between system modularity and structure-function matching. Average 

participation coefficient of large-scale systems in (a) positive full functional and (b) 

structural connectomes. (c) Structure-positive function matching accuracies at large-scale 

system level (* indicates p≤0.05 after FDR correction). Correlation between structure-

function matching accuracy and participation coefficient for individual regions in (d) 

positive functional and (e) structural connectomes.
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Figure 5. 
Effect of parcellation on structure-function matching at system level. We evaluated (left and 

middle columns) the structure-function matching at a low (129 ROIs) and a high (463 ROIs) 

resolution over the Lausanne atlas in order to study the effect of parcellation resolution on 

the matching, and (right column) the effect of parcellation scheme by carrying out the 

matching experiments using the Schaefer atlas consisting of 400 regions of the brain cortex 

only. Top and bottom rows show matching of structural connectivity with positive and 

negative functional connectivity, respectively.
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Figure 6. 
Relationship between structure-function matching and (a) sex and (b) age.
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Table 1.

Demographics of the age-matched samples of the males and females

Count Age years (SD)

Total 641 15.61 (3.37)

Females 380 15.60 (3.31)

Males 261 15.62 (3.45)
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Table 2.

Pearson’s correlation coefficient calculated between structure-function matching and age across various 

parcellations.

Overall
Systems

Limbic Dorsal Fronto. DMN Ventral Visual Subcor.

Lausanne 
129

−0.176 
(p<10−5)

−0.134 
(p<0.01)

−0.126 
(p<0.01)

−0.045 
(p=0.35)

−0.030 
(p=0.51)

−0.062 
(p=0.27)

0.024 
(p=0.55)

−0.044 
(p=0.35)

Lausanne 
234

−0.262 
(p<10−10)

−0.123 
(p=0.01)

−0.092 
(p=0.08)

−0.082 
(p=0.10)

0.021 
(p=0.68)

−0.037 
(p=0.48)

−0.006 
(p=0.88)

−0.036 
(p=0.48)

Lausanne 
463

−0.333 
(p<10−17)

−0.234 
(p<10−6)

−0.171 
(p<10−4)

−0.100 
(p=0.03)

−0.064 
(p=0.17)

−0.077 
(p=0.10)

−0.043 
(p=0.33)

−0.038 
(p=0.34)

Schaefer 
400

−0.317 
(p<10−15)

−0.289 
(p<10−6)

−0.220 
(p<10−6)

−0.097 
(p=0.03)

−0.142 
(p<10−3)

−0.025 
(p=0.52)

−0.056 
(p=0.18) ---
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