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Abstract

Patients with multiple myeloma (MM) accumulate adverse copy number aberrations (CNAs), gains of 1921, and 17p
deletions during disease progression. A subset of these patients develops heightened 1g12 pericentromeric instability
and jumping translocations of 1g12 (JT1q12), evidenced by increased copy CNAs of 1g21 and losses in receptor
chromosomes (RQ). To understand the progression of these aberrations we analyzed metaphase cells of 50 patients
with >4 CNAs of 1921 by G-banding, locus specific FISH, and spectral karyotyping. In eight patients with >5 CNAs of
1921 we identified a chromosome instability phenotype similar to that found in ICF syndrome (immunodeficiency,
centromeric instability, and facial anomalies). Strikingly, the acquired instability phenotype identified in these patients
demonstrates the same transient structural aberrations of 112 as those found in ICF syndrome, suggesting similar
underlying pathological mechanisms. Four types of clonal aberrations characterize this phenotype including JT1g12s,
RC deletions, 1q12-21 breakage-fusion-bridge cycle amplifications, and RC insertions. In addition, recurring transient
aberrations include 1q12 decondensation and breakage, triradials, and 1q micronuclei. The acquired self-propagating
mobile property of 1q12 satellite DNA drives the continuous regeneration of 1q12 duplication/deletion events. For

patients demonstrating this instability phenotype, we propose the term “Jumping 1g Syndrome.”

Introduction

Chromosome instability (CIN) is defined as an
increased rate and ongoing acquisition and accumulation
of copy number aberrations (CNAs), and not simply the
existence (state) of structurally and numerically abnormal
aneuploid clones"?. The most common CIN phenotypes
are either whole-chromosome gains or losses or unba-
lanced structural aberrations leading to segmental focal
amplifications and deletions. CIN phenotypes are thought
to contribute to tumor progression and drug resistance
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through the amplification of oncogenes and/or loss of
tumor suppressor genes and will require novel therapeutic
interventions>*. In multiple myeloma (MM), numerical
and structural chromosome aberrations are most com-
monly identified by interphase fluorescence in situ
hybridization (iFISH)®>, which provides guidance for
patient stratification and therapeutic intervention®. The
International Myeloma Working Group (IMWG) has
designated a group of adverse IgH translocations includ-
ing t(4;14), t(14;16), and t(14;20), and adverse CNAs
including deletions of 17p and gains of 1q217*. The
accumulation of different combinations of these adverse
iFISH lesions during tumor progression has been reported
to be a factor contributing to high-risk disease and
eventual relapse’.
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In MM, whole-chromosome CNAs are reflected in
either hyperdiploid or nonhyperdiploid clones, which
are not indicative of CIN, since both of these aneuploidy
clones generally remain stable during the course of the
disease®. CIN phenotypes also include arm length and
smaller segmental CNAs involving focal amplifications
and deletions that are best identified by single-
nucleotide polymorphism (SNP) microarrays. SNPs
microarray analysis has shown that segmental CNAs are
frequent in MM, and that 1q21 is not only one of the
most frequent CNAs in this disease’®™'* but in all
cancers'”. Microarray studies have shown that in a
typical cancer 25% of the genome is affected by arm-
level CNAs, while only 10% by focal CNAs'®. Impor-
tantly, in MM the gains of the 1q21 region occur most
commonly as arm-level aberrations, but also occur as
focal amplifications, both of which have been shown to
result from 1q12 instability’”>'. The 1q21 region is
known to contain a number of putative oncogenes and
genes that may show the simultaneous amplification
and/or deregulated expression, including MCL1, IL6R,
BCL9, CKS1B, ANP32E, ILF2, and ADAR1**"**, Gains
of a single copy of 1q (CN 1q21 of 3) are found in about
30% of newly diagnosed patients, while in highly pro-
liferative disease or relapsed patients the accumulation
of additional 1q21 CNAs result in as many as 70% of
patients having four or more 1q21 aberrations®.
Increasing copy numbers of 1q21 are associated with a
worse prognosis>”. The accumulation of CNAs of 1q21
evidenced by the progressive gain of 1q21 from 3 to 4
and 5 copies is significant because it serves as a marker
for chromosomal instability, including whole-arm gains
and losses, breakage-fusion-bridge (BFB) cycle gene
amplification, and dispersed insertions. Recent com-
prehensive genomic analysis indicates that the nonran-
dom accumulation of genetic hits occurs on top of the
primary events in myeloma®®, and that high-risk sub-
groups can be defined by either biallelic deletion of
TP53 or amp 1q21 (=4 copies) on the background of ISS
I11*”. Unfortunately, the underlying mechanisms for the
genomic CNAs, such as del(17p) and gain of 1q21, are
still poorly understood.

We have previously reported increasing CNAs of 1q21
occurring as jumping translocations of 1q12 (JT1q12) and
that these translocations are the cause of unbalanced
aberrations in the receptor chromosomes (RCs)'’ ™', A
subset of these patients with CNAs >5 1q21 has shown an
increased level of site-specific instability in 1q12 satellite
DNA. Importantly, the 1q12 satellite DNA region in these
patients acquires a self-replicating mobile property that is
demonstrated by the ability to duplicate the 1q12 region
and to “jump” to different nonhomologous chromosomes.
This 1q12 CIN is continually regenerated in subsequent
cell cycles, resulting in both novel transient and clonal
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1ql12 aberrations. This intrachromosomal CIN strongly
suggests a mechanistic link to the CIN phenotypes found
in the autosomal recessive (AR) CIN syndromes, most
notably ICF syndrome (immunodeficiency, centromeric
instability, and facial anomalies)*®. AR CIN syndromes
include Fanconi anemia, Bloom syndrome, and ataxia
telangiectasia, all of which have distinct CIN pheno-
types®”. These disorders show intrachromosomal aberra-
tions including breaks, gaps, chromatid exchanges, and
multiradial chromosomes, with both Fanconi and ICF
syndromes showing unbalanced gains of 1q as part of
their cytogenetic phenotypes. In particular, ICF patients
show hallmark aberrations including site-specific 1q12
pericentromeric instability involving 1q12 decondensa-
tion, 1q12 triradials, multibranched chromosomes 1gq,
isochromosomes 1q (iso 1q), unbalanced translocations
with 16q, and 1q micronuclei in blood cultures®>*.
Strikingly, myeloma patients with highly proliferative
disease and high CNAs of 1q21 share these same transient
1q12 chromosome aberrations, but also display a spec-
trum of clonal 1q21 CNAs. A defining feature of this CIN
phenotype in MM is the continuous regeneration of
unstable aberrations of 1q12 that results in an ongoing
accumulation of both arm-level and focal CNAs'’~>!, The
distinction between the 1q12 instability in ICF syndrome
and that seen in MM is that in ICF the instability is
transient, found only in blood, while in MM the 1q12
aberrations become clonal and continue to drive sub-
clonal copy number heterogeneity.

To investigate the structural relationships of 1q12
aberrations to the accumulation of 1q21 CNAs during
disease progression, we undertook a metaphase FISH
study of 50 patients with >4 copies of 1q by G-banding.
This analysis revealed a subset of patients with high-risk
IgH aberrations and/or 17p deletions and >5 copies of
1q21. We now recognize and report the cytogenetic fea-
tures of a distinct acquired 1q12 CIN phenotype. These
patients show profound chromosome 1ql2 instability
including the major clonal features of JT1q12 gains, losses
of RC arms including 17p, amplification of the 1q12-23
region by BFB cycles, and dispersed insertions of non-
homologous chromosome segments. Transient features of
this phenotype include the decondensation and breakage
of 1q12, acentric lagging chromosomes 1q, 1q21 micro-
nuclei, and localized shattering of 1q distal to 1q12. In
addition, the identification of different copy numbers or
the switching of copy numbers can occur in different
subclones. For this constellation of 1ql2 cytogenetic
findings, we propose the term “Jumping 1q Syndrome.”
To provide guidance for patient stratification and ther-
apeutic intervention this phenotype can be identified by
IMWG iFISH panels by the presence of >5 CNAs of 1q21
concurrent with the detection of at least one other adverse
iFISH lesion.
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Patients and methods

The Institutional Review Board of the University of
Arkansas for Medical Sciences approved the research
studies, and all subjects provided written informed con-
sent approving the use of their samples for research
purposes. Metaphase chromosomes were prepared from
bone marrow, fine needle aspirate, and pleural effusion
specimens, and processed for G-band analysis as pre-
viously described"”.

Patient sample selection was based on the suspected
presence of at least two additional copies of 1q (=4); only
patients with >4 copies of 1q21 confirmed by metaphase
FISH were included in this study. Specimens with unre-
solved aberrations by FISH were further scrutinized by
spectral karyotyping (SKY).

FISH and SKY methods

Probes used to demark the pericentromeric regions of
chromosomes including sat III (1q12), sat II (D16Z3)
(16q11), and alpha sat (9q12) were used according to the
manufacture's protocol (Vysis, Downers Grove, IL). Two
probe sets for the detection of IgH translocations included
IGH/FGFR3 dual color, dual fusion probe set and the IGH
dual color, break-apart rearrangement probe (Vysis).
FISH probes for MCL1 (1q21), CKS1B (1q21), TP53
(17p13), and ERBB2 (17q12) were prepared as previously
described”. The SKY probe mixture and hybridization
reagents were prepared by Applied Spectral Imaging
(Carlsbad, CA) and procedure performed as previously
described®. Image acquisition for FISH and SKY was
performed using an SD200 Spectracube (Applied Spectral
Imaging, Inc.) mounted on a Zeiss Axioplan II microscope
(Gottingen, Germany). DAPI images were captured, and
then inverted and enhanced by SKY View software to
produce G-band-like patterns on the chromosomes™.
Original magnifications of all G-band and FISH images
were x1000. Original magnification for SKY images was
x630.

Results

Metaphase FISH results and clinical characteristics for
all 50 patients are provided in Supplemental Table 1, and
complete G-band karyotype designations®' are provided
in Supplemental Table 2. FISH analysis showed 27
patients with four copies of 1q21 (nos 3, 9, 10, 12, 13, 15,
16, 17, 19, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 39, 40, 41,
43, 44, 45, 48, and 50), while 23 patients had =5 copies
(nos 1,2,4,5,6,7, 8, 11, 14, 18, 20, 21, 22, 23, 30, 31, 32,
37, 38, 42, 46, 47, and 49). Patients with the IgH trans-
locations t(4;14), t(14;16), and t(14;20) were grouped
together and designated as adverse IgH lesions. Seventeen
patients showed adverse IgH lesions (nos 2, 4, 7, 16, 17,
18, 19, 20, 21, 25, 27, 39, 43, 45, 46, 47, and 49). Six
patients (nos 6, 8, 9, 24, 41, and 50) showed t(11;14), eight
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(nos 1, 11, 13, 32, 33, 37, 38, and 44) showed del 14q32 or
-14, and one (14) with t(8;14). Eighteen patients (nos 3, 5,
10, 12, 15, 22, 23, 26, 28, 29, 30, 31, 34, 35, 36, 40, 42, and
48) were normal for IgH FISH. FISH identified 22 patients
with deletion 17p (nos 3, 4, 5, 8, 9, 14, 16, 19, 22, 24, 29,
30, 34, 36, 37, 39, 40, 42, 43, 45, 49, and 50) and 28
normal. Five showed RC deletions of 17p by JT1q12 (nos
3, 30, 42, 43, and 49) (Supplemental Table 1).

Jumping translocations of 1q12 and concomitant deletions
in RCs

Among the total group of 50 patients, 36 with
JT1q12 showed a concomitant deletion in an RC, while
14 showed no deletion in an RC (Supplemental Table 1).
Recurring arm-length deletions in five or more patients
were identified in chromosome arms 1p, 19q, 6q, 16q, and
17p (Supplemental Table 1). Among the 23 patients with
>5 CNAs of 1q21 recurring arm-length losses were found
in 1p (nos 2, 4, 6, and 7), 6q (nos 1, 14, and 46), 17p (nos
30, 42, and 49), 16q (nos 20, 32, 37, and 38), 19q (nos 22
and 31), and six with no deletion (Table 1).

We identified a subset of eight patients with =5 of 1q21,
arm-length deletions (nos 2, 4, 7, 14, 22, 30, 42, and 49),
and at least one other high-risk iFISH lesion (Table 1) that
showed ongoing instability of 1q12 in their metaphase
cells. These patients showed continuous regeneration of
novel 1q12 and 1q21 CNAs, with concomitant losses in
RCs. For example, patient no 22 showed regenerating
JT1q12 instability with a range of CNAs for 1q21 from 5
to 9 and multiple sequential aberrations to chromosomes
19 (Fig. 1la—h). The driver of 1q21 CNAs in this patient is
evidenced by the presence of the hallmark triradial of
1q12, which propagates the extra copy to 1q21 (Fig. 1a).
In this patient, the JT1ql2 jumped to RC19 deleting the
19q (Fig. 1b), which subsequently reduplicates and shows
two copies of 1q21 (Fig. 1c). In a second more complex
subclone a multichromosome rearrangement distal to
1q21 is identified by SKY (Fig. 1d), and continued
decondensation and breakage of 1q12 is seen (Fig. le). In
a third subclone (Fig. 1f-h), an isochromosome 1q is
identified containing four copies of 1q21 (Fig. 1h). The
continuous 1q12 instability on the RCs 19q resulted in
subclones containing different copy numbers of 1q21, in
different configurations (Fig. 1la—h).

The loss of chromosome 1p by the formation of iso-
chromosome 1q was identified in four patients (nos 4, 6,
7, and 8) with >5 of 1q21, with one of these showing
complex intra-arm amplification of the 1q12-23 region
generated by BFB cycle amplification'”. Patient no
7 showed the specific progressive expansion of the 1q12-
23 region by BFB amplification with 1q12 as the recurring
breakpoint in the amplification cycles. In this patient the
1q12-23 amplicon expanded, demonstrating increasing
CNAs with four, six, eight, and twelve copies of 1q21
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Table 1 Ploidy levels and metaphase FISH results for 23 patients with =5 copies for 1g21
Ploidy IgH trans 1912 CN 1921 CN 17p CN 1912 trans to RC 1912 deletion in RC

1 NHRD del(14932) 6 6 2 der(1:6) del 6g
2 NHRD t(4,14) 5-10 5-6 2 der(1;8) del 1p
4 NHRD 1(4;14) 4-6 5-7 1 iso 1q del 1p
5 HRD Normal 5 5 1 der(1;12) None
[§ NHRD t(11;14) 5-6 5-6 2 iso 19 del 1p
7 NHRD t(4;14) 5-9 5-9 2 iso 1q del 1p
8 NHRD t(11;14) 6-8 6-8 1 iso 1q del 1p
11 NHRD del(14) 5-7 5-7 2 quad 1q, trip 1921 None
14 HRD (8;14) 5-6 5-6 1 der(1;19) del 6q
18 NHRD t(4;14) 5-7 5-7 2 dup 1q, der(1;7)dup 2 None
20 NHRD t(4,14) 6 6 2 der(1;16) del 169
21 NHRD t(4:14) 5 5 der(1;7) None
22 HRD Normal 5-9 5-9 1 der(1;19) del 199
23 HRD Normal 5 5 2 dup 1q, der(1;13) None
30 NHRD Normal 5-6 5-6 1 der(1,9p)der(1;17) del 17p
31 NHRD Normal 7 7 2 der(1;19) del 19g
32 NHRD del(14932) 6 6 2 der(16), der(1;22) del 16g
37 NHRD del(14932) 5 5 1 der(1;16),der(1;20) del 16g
38 NHRD del(14932) 5 5 2 der(1;16) del 169
42 HRD Normal 5 5 1 der(1;17) del 17p
46 NHRD t(4,14) 5 5 2 der(1;6), dup 1q del 6q
47 HRD t(4:14) 5 5 3 der(1;2), der(19), der(22) None
49 NHRD t(4;14) 5 5 1 der(1;17) del 17p

IgH translocations, CNAs for 1912, 1921, 17p, and receptor chromosome gains and losses related to 1q12. Chromosome ploidy levels defined by hyperdiploid (HRD)
equaling 47-75 chromosomes and nonhyperdiploid (NHRD) equaling 46 and/or >75 chromosomes

(Fig. 2a—d [top]). In addition to the ladder-like amplifi-
cation pattern resulting in higher CNAs of 1q12-23, some
cells also displayed small extra-chromosomal rings (Fig.
2d [top]). In a second patient (no 4) with iso 1q, extensive
cell to cell heterogeneity was found for both copy number
and the positioning of 1q12 and 1q21 within the long arm
of 1q (Fig. 2a—e [bottom]). These cells showed CNAs for
1q21 which ranged from 4 to 7 and also showed transient
features of instability associated with catastrophic chro-
mosome aberrations including localized 1q pulverization
and 1q21 micronuclei (Supplemental Fig. 1a—c).

Deletion of 17p and concomitant gain of 1q21, der(1;17)
(q12;q10)

Deletion of 17p is the single most important iFISH
indicator of poor prognosis”®>** and has previously been
found to occur by the JT1q12%. In this study five patients
showed del(17p) resulting from JT1q12s (nos 3, 30, 42, 43,
and 49). Two of these patients had four copies of 1q21,
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and three showed five copies (nos 30, 42, and 49), all of
which showed additional CNAs of 1q21 involving differ-
ent RCs (Fig. 3a—c). These cases demonstrate that the der
(1;17) is a recurring secondary aberration, which involves
both an amplification of 1q21 and concomitant deletion
of TP53. The additional copies of 1q21 involving different
RCs demonstrate the ongoing subclonal heterogeneity
introduced by the 1q12 instability.

Amplification and insertions of MYC and MET

The amplification and distribution of insertions in
cancer cells is poorly understood**. In this study we found
two patients with cryptic unbalanced insertions resulting
from 1q12 instability. Patient no 2 showed multiple sub-
clones demonstrating both transient and clonal 1q12
aberrations (Fig. 4). The initial 1q12 aberrations involved
a JT1q12 to distal 8q (Fig. 4a). SKY detected a cryptic t
(8;16)(q24;p13) had taken place prior to the JT1ql2,
resulting in the presence of 16p13 inserted between MYC
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Fig. 1 Partial karyotypes from patient no 22 demonstrating subclonal heterogeneity and the ongoing regeneration 1q21 CNAs. FISH

probes 1g12(red) and 1921 (green) and SKY classified colors for chromosomes 1 (yellow), 2 (crimson), 5 (orange), and 19 (green) (a-h). Blue arrows
depict evolving lineage of the 1q12 aberrations appearing in the different subclones. Subclone A demonstrates transient triradial chromosome 1912
(@), which regenerates extra copies of 1921 (arrows). Note branching of 112 pericentromeric heterochromatin (arrow) leading to the duplicate 1q
arm displaying the extra copy of the 1g21. b A JT1g12 to RC19 results in a der(19) with gain of 1g and a concomitant whole-arm deletion of 19g. ¢ A
reduplication of the der(19) shows an additional direct duplication of the 1q12-g21. A total of six copies of 1921 were identified in this subclone
(normal chromosome 1 not shown). In subclone B (d, e), the evolution of der(19)s is demonstrated by a complex multichromosome rearrangement
in one of the der(19)s (d). SKY identified segments of chromosomes 5 and 2 translocated distal to 1921 (d). The other der(19) in this subclone

demonstrates the transient decondensation and breakage in the 1912 pericentromeric heterochromatin (e). This subclone shows five copies of 1921
(normal chromosomes 1 not shown). The further progression of 1g12 aberrations in subclone B is evidenced by the new aberrations found in

subclone C, which shows the decondensation and breakage in 112 (f), and the generation of a novel iso (1) with four copies each of 112 and

1921 (h). This subclone shows a total of nine copies of 1921 (normal chromosomes 1 not shown)

and 1q12 on the der(8) (Fig. 4a). Additional progression
events included a direct duplication of 1q12-21 on the 8q
resulting in extra copies of 1q12, 1q21, MYC, and 16p13
(Fig. 4b). BEB cycle amplification (Fig. 4c—e) of both MYC
and 16p was found, with the initial step being the loss of
1q, followed by a sister chromatid fusion (SCF) at 1q12
(Fig. 4c). The SCF resulted in the formation of an unstable
8q dicentric with 1q12 as the bridging point (Fig. 4d) and
subsequent BFB cycle amplification of MYC and 16p (Fig.
4e). In a different subclone, a translocation/insertion of
both MYC and 16p into the 1q12 region of one of the
previously normal chromosome 1 homologs was found
(Fig. 4f)'®*°. This insertion could arise following the
ongoing instability of 1q12 demonstrated by the presence
of the hallmark 1q12 triradial on the distal 8q in the same
cell as an extra acentric lagging copy of 1q (Fig. 4g). These
transient 1ql2 aberrations demonstrate first, that the
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continuous regeneration of 1ql2 triradials occurs on
nonhomologous RCs, and secondly this mechanism can
cause dispersed insertions of nonhomologous chromo-
some segments, such as MYC translocations. Additional
transient aberrations in this patient included 1q12
micronuclei, interphase bridging of 1q12, and acentric iso
(1q)s (Supplemental Fig. 2).

The amplification and dispersed insertion of the
7q31lregion containing the MET loci was identified in
patient no 14. This patient demonstrated the amplifica-
tion of both the MET region and 1q21 to 6q and 1q (Fig.
5). In this patient a JT1q12 to 7q occurred where a direct
duplication of 1q12-23 occurred (Fig. 5a). Subsequently, a
JT1q12 to 6q carrying the MET region caused a deletion
in the 6q (Fig. 5b). A second JT1ql2 resulted in an
insertion of MET into the 1ql12 region of one of the
previously normal chromosomes 1 (Fig. 5¢). Of note,
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Fig. 2 Metaphase cells from patients demonstrating different types of progression events involving isochromosomes 1q. Top patient no 7
(a—d) showing progressive gains of both 1912 and 1921 resulting from BFB cycle amplifications of the 1g12-1g21 region. The 1q12 breakpoints
generate gains of 1921 in extended ladder-like pattern. FISH probes 1g12(red) and 1g21 (green). Normal chromosomes 1 from these cells (@-d) not
shown. a An isochromosome 1qg showing an alternating pattern of 112 and 1921 with four copies of each (arrows). b Increased copy number
amplification of both 121 and 1g12 resulting in six copies of both 112 and 1921 in this chromosome. ¢ The iso(1q) in this cell shows the
characteristic alternating copies of 112 and 1921 and extended ladder-like structure seen in BFB cycles demonstrating eight copies of both 1912
and 1g21. d A cell with a total of ten copies of both 1g12 and 1921 with six copies on the iso(1q) and four small extra-chromosomal acentric rings
each with single copies of 1912 and 1g21. Bottom Partial karyotypes from patient no 4 demonstrating two isochromosome 1gs with intra-arm
heterogeneity of both CNAs and loci position of 1912 and 1g21. FISH probes 1q12 (red) and 1921 (green). a This cell shows the expected copy
number and loci position for two “normal” isochromosomes 1q with four copies of 1q12 and 1g21. b The iso(1q) on left shows normal copy number
and positions for 1912 and 1921, while the iso(1g) on the right shows the 1921 locus has inverted distally in both arms. ¢ The iso(1g) on left shows
the normal copy number and positions for 1q12 and 1g21; however, the iso(1q) on right shows four copies of 1q12 and three copies 1921 (arrows)
with unequal CNAs between the arms. d Both iso(1g)s show intra-arm changes, the iso(1q) on left shows two copies of 112 and three copies of
1921, while the iso(1qg) on the right shows a large focal amplification of 1q12. The copy number of 1921 in this cell is five. e A cell showing eight
copies of 1912 (arrows) and seven copies of 1g21 distributed among three chromosomes. Left, iso(1q) with three copies 1912 and two copies of
1g21. Center, iso(1q) with four copies of both 1912 and 1921 displaced distally of normal positions. Right single copies of 1q12 and 1921 on a der(16)

patient no 14 also showed nuclear budding, interphase
bridging of 1q12, and multiple variations of acentric lag-
ging 1qgs leading to cells with 1q21 counts of 7-8 (Sup-
plemental Fig. 3). Both patients, nos 2 and 14, add to the
previous reports demonstrating insertions of MYC, BCL2,
16q11, and 20qll into the 1ql2 region, are recurring
aberrations of this phenotype'®2°.

Major and minor metaphase aberrations identifying the
1912 instability phenotype

From this group of eight patients with >5 1q21s (nos 2,
4, 7, 14, 22, 30, 42, 49), and 21 patients from previous
reports’®~>!, we identify four major recurring types of
clonal cytogenetic aberrations that can be used to define
this 1ql2 site-specific instability phenotype. These
include: (1) JT1q12s to an RC, (2) arm-length deletions in
RC, (3) BEB cycle amplifications, and (4) 1q12 insertions.
In addition, five types of recurring transient aberrations
that define this phenotype include: (1) 1q12 deconden-
sation and breakage, (2) 1q12 triradials, (3) acentric lag-
ging 1ql2, (4) 1ql2 micronuclei, and (5) localized
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pulverization of 1q. The key structural chromosome
rearrangements defining this CIN phenotype are depicted
in Fig. 6. In normal cells, the 1q12 pericentromeric region
remains condensed in metaphase (Fig. 6a). Cells showing
the transient decondensation and breakage of 1q12 (Fig.
6b) are precursors to triradial formation at 1q12 as seen in
patient nos 2 and 22 (Fig. 6¢c). The extra copy of 1q
generated by the triradial results in a JT1ql2 and can
become a clonal arm-length duplication/deletion as
depicted for loss of 17p (Fig. 6d). Alternatively, breakage
at 1q12 can result in an acentric copy of 1q12 (Fig. 6e)
which subsequently is lost as a micronucleus. JT1q12s to
telomeres (Fig. 6f) can remain stable or can further evolve
to different sublcones. For example, in patient no 2 the
der(8) in subclone 1 (Fig. 6g) evolved by breakage at 1q12
and the loss of 1q, which initiated the formation of a SCF
at 1q12. This SCF resulted in the formation of a dicentric
der(8) (Fig. 6h), which in turn resulted in BFB cycles
amplifying MYC and 16p (Fig. 6i). In subclone no 2, a
triradial on the der(8) (Fig. 6j), is depicted with the sub-
sequent 1ql2 insertion of MYC and 16p into the 1q
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chromosome 9 (white), chromosome 17 (blue), and chromosome 18 (fuchsia), and chromosome 22 (pink). FISH probes for TP53 (green) and ERBB2
(red). a Patient no 30 showing chromosomes in brackets from left to right, normal chromosomes 1 with FISH (left) and SKY (right). Middle brackets
show two different der(3) RCs both with 1g12 and 1g21. In the brackets on right the chromosomes 17 show hybridization of the normal

chromosome 17 with probes TP53 (green) and ERBB2 (red) in their normal positions. The der(1;17) shows the deletion of TP53 (no green signal) and
ERBB2 (red) in normal position. In the right bracket the der(1;17) is shown with the 1q replacing 17p and normal positions of 112 (red) and 1921
(green) on 1q. The SKY on the right shows 1q (yellow) replacing 17p and the 17q (blue). b Patient no 42 with brackets on far left showing 1q FISH
with one normal chromosome 1 (left) and a small der(1) on (right) with large deletions of both 1p and 1g. Bracket middle left shows a der(9) with
1912 and 1921 (arrows) on the distal 9q. Brackets middle right shows the normal 17 showing TP53 (green) and ERBB2 (red), the der(1;17) showing
loss of TP53 (green) and presence of ERBB2 (red). The bracket on right shows the same der(1;17) chromosome hybridized with 112 (red) and 1921
(green) and SKY (right) showing 1q (yellow) replacing the short arm of 17 (blue). Far right bracket shows 1q FISH (left) with 1912 and 1921 on 22, and

c Patient no 49 in brackets on the left are normal chromosomes 1

showing 1q (yellow) on distal end of 18 (fuchsia)

SKY of der(22) with 1q (yellow) translocated to 22 (pink). A total of five copies of 1g21, three of which are distributed to RCs 9q, 17p, and 22q.

by FISH and SKY. Middle brackets show normal TP53 (green) and ERBB2 (red) left
and der(17) with deleted 17p (green) by FISH. The brackets on right show normal 1g12 and 1921 by FISH and 1q replacing 17p (blue) by 1q
by SKY. Bracket on far right shows an inverted duplication of 1921 on chromosome 18 with copies of 1921 on both sides of 1q12 (left) by FISH. SKY

(yellow)

(Fig. 6k). In patient no 14 unbalanced dispersed insertions
of the MET region of chromosome 7q31 (Fig. 6l) into
different RCs result in a duplication of MET and deletion
involving 6q (Fig. 6m), and an insertion of MET into 1q12
(Fig. 6n).

iFISH Identification of 1q12 Instability Phenotype

The jumping 1q12 instability phenotype is identified by
iFISH by the presence of 25 CNAs of 1q21 and at least
one other high-risk iFISH lesion, including high-risk IGH
translocations and del(17p). In addition, deletions of 1p
detected by iFISH can indicate either an interstitial dele-
tion of 1p or iso(1q), both of which are associated with
1q12 instability.
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Discussion

Chromosomal instability contributes to malignant
transformation by altering gene dosage and is known to
play a role in tumor progression, relapse, and therapeutic
failures®. The hallmark feature of CIN is the continuous
regeneration of either whole-chromosome or segmental
CNAs, the causes of which include mitotic segregation
errors, aberrant DNA repair, DNA replication stress, and
fragile sites, among others™*. Although these mechanisms
can account for many of the numerical and structural
aberrations found in MM, accumulating evidence indi-
cates that additional mechanisms, such as epigenetic
modifications and transcriptome remodeling, likely play a
role in the spectrum of segmental CNAs found in relapsed
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(red) on distal der(8q) showing an extra copy of 1921 (green) transiently attached to each chromatid of the der(8g). Note also in this
cell the presence of an extra acentric lagging copy of 1q with signals for both 1912 (red) and 1921 (green)

and refractory patients. The presence of 1q12 DNA
breaks, localized chromosome pulverization distal to
1q12, acentric lagging chromosomes 1q, and 1ql2
micronuclei as described here are part of a spectrum of
catastrophic chromosome aberrations associated with
chromothripsis®. In fact, localized pulverization of
chromosome arms in micronuclei has been suggested as
one mechanism for chromothripsis36 Interestingly,
chromothripsis has been reported in MM involving a rare,
aggressive entity in some patients with 1q aberrations®’
The CIN phenotype described here is acquired during
disease progression or at relapse with the accumulation of
a combination of adverse CNAs of 1q21, 17p, and IgH
translocations. This cytogenetic phenotype is character-
ized by the continuous regeneration of site-specific 1q12
aberrations that propagate and induce an apparently
unlimited number of both transient and clonal 1q12
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aberrations (Figs. 1 and 3). Four recurring 1q12 cytoge-
netic features of this phenotype include: (1) JT1ql2s to
the RCs, (2) 1q12 induced deletions in RCs, (3) 1q12
induced BFB cycle amplifications, and (4) 1q12 insertions
(Fig. 6). In addition, five transient features include: (1)
1q12 decondensation and breakage, (2) 1q12 triradials, (3)
acentric lagging 1q12, (4) 1ql2 micronuclei, and (5)
localized pulverization of 1q distal to 1q12.

The cause of this cytogenetic phenotype is currently
unknown; however, it has been speculated that hypo-
methylation or other modifications to the 1q12 region are
responsible’”. The 1q12 pericentromeric heterochromatin
is made up of the single largest block of late-replicating
highly repetitive satellite DNA in the human genome,
contains a 1q12 fragile site, and undergoes satellite repeat
expansions in cancer’®*, In normal cells this region
remains highly condensed; however, in tumor cells this
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region can become perturbed, decondensed and prone to
breakage and jumping as occurs in ICF syndrome. ICF
patients have a known mutation in DNA methyl-
transferase (DNMT) 3B, which is thought to be respon-
sible for the site-specific hypomethylation of the 1q12
pericentromeric heterochromatin and 1q12 instability™.
In MM and other B-cell disorders no DNMT mutations
known to affect 1q12 have been reported, although global
DNA hypomethylation of repetitive elements and aber-
rant methylation patterns have been reported as asso-
ciated with disease progression®’.

Accumulating evidence also now suggests modifications
of the 1q12 region by other genetic and epigenetic factors.
For example, reprogramming of 1ql2 pericentromeric
satellite DNA domain has been reported to be associated
with polycomb body formation on the 1q12 satellite DNA.
This epigenetic conversion coincides with both global and
satellite DNA demethylation, and has been shown to be
induced by inhibition of DNMTs*. Another possible
cause of instability is the overexpression of the chromatin
modifying enzymes, such as KDM4A. KDM4A is a his-
tone demethylase, which binds the BCL9 locus and causes
the rereplication and site-specific copy number gains of
1q12 and 1q21%, altered expression of microRNAs, and
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. . 44-46
selective pressures, such as hypoxic stress . The

induced gains of 1q12 and 1q21 reported in these studies
are not stably inherited but transiently regenerated in
subsequent S phases, just as in ICF syndrome and MM.
The in vitro modification of the 1ql2 region by 5-
azacytidine also provides evidence that the site-specific
hypomethylation of the 1ql2 region can induce copy
number gains of 1q21 and regions translocated next to
it*’. This finding demonstrates that 1q12 pericentromeric
heterochromatin can potentially drive CNAs of any
genomic region juxtaposed to it.

Alterations in RNA processing have also been linked to
121 CNAs through amplification and overexpression of
ILF2. ILF2 is a gene, which promotes tolerance of geno-
mic instability and the stabilization of transcripts involved
in homologous recombination (HR). The upregulation of
1q21 by ILF2 deregulates HR resulting in increased
abnormal nuclear morphologies including nucleoplasmic
bridges, nuclear buds, and micronuclei*’, demonstrating
the same types of chromosomal instability characterized
here (Supplemental Figs. 1-3). Elevated levels of HR are
thought to mediate genomic instability, an increase in
mutations, and the accumulation of genetic alterations in
MM™®, Finally, RNA editing in MM of ADARI, an
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adenosine deaminase acting on RNA-1 in the 1q21 region,
has been reported to promote malignant regeneration
resulting in reduced survival in MM®,

Recent genomic studies have shown that most patients
already have complex subclonal structure at diagnosis that
undergoes further evolution over time®®*’. The chronol-
ogy of CNAs in MM suggests a greater degree of
instability is associated with complex deletions and a
punctuated evolutionary process®’. This is in agreement
with our findings that patients with more advanced dis-
ease show the onset of chromosome 1q12 instability and
the accumulation of >5 copies of 1q21 in association with
the deletions of 17p and other regions'’~*'. Here we
define a high-risk cytogenetic phenotypic as a constella-
tion of cytogenetic findings identifiable by current iFISH
panels. In this subset of patients, the 1q12 satellite DNA
acquires a self-propagating mobile property that adversely
impacts the genome by initiating whole-arm JT1q12 and
concomitant deletions in RCs. As part of this phenotype,
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additional smaller focal duplications/triplications of 1q21
and other regions occur, evidenced by BFB cycles and
insertions. We propose the term “Jumping 1q Syndrome”
for this cytogenetic phenotype type based on the two
factors. First, the striking mechanistic relationships of the
1q12 aberrations shared with ICF syndrome and second
on the four characteristic patterns of aberrations asso-
ciated with induced by 1q12 instability. CIN phenotypes
enable cells to enter different evolutionary trajectories and
adapt to selective pressures of therapies, which underlies
treatment failures®. Given the low prevalence of mutated
driver genes in MM, and the stronger impact of cytoge-
netic aberrations on prognosis over gene mutations', it
may be that the apparently unlimited combination of
unbalanced 1ql12 amplifications/deletions is in part
responsible. This study suggests that these patients may
exhibit a previously unrecognized form of ultra-high-risk
disease®®*?, and provides evidence that patients with =5
CNAs of 1q21 have a type of emerging epigenetic
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instability in need of novel types of therapeutic inter-
vention®*~>°,
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