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BACKGROUND: Single omic analyses have provided some insight into the basis of lung
function in children with asthma, but the underlying biologic pathways are still poorly
understood.

METHODS: Weighted gene coexpression network analysis (WGCNA) was used to identify
modules of coregulated gene transcripts and metabolites in blood among 325 children with
asthma from the Genetic Epidemiology of Asthma in Costa Rica study. The biology of
modules associated with lung function as measured by FEV1, the FEV1/FVC ratio, bron-
chodilator response, and airway responsiveness to methacholine was explored. Significantly
correlated gene-metabolite module pairs were then identified, and their constituent features
were analyzed for biologic pathway enrichments.

RESULTS: WGCNA clustered 25,060 gene probes and 8,185 metabolite features into eight
gene modules and eight metabolite modules, where four and six, respectively, were associated
with lung function (P # .05). The gene modules were enriched for immune, mitotic, and
metabolic processes and asthma-associated microRNA targets. The metabolite modules were
enriched for lipid and amino acid metabolism. Integration of correlated gene-metabolite
modules expanded the single omic findings, linking the FEV1/FVC ratio with ORMDL3
and dysregulated lipid metabolism. This finding was replicated in an independent population.

CONCLUSIONS: The results of this hypothesis-generating study suggest a mechanistic basis for
multiple asthma genes, including ORMDL3, and a role for lipid metabolism. They demon-
strate that integrating multiple omic technologies may provide a more informative picture of
asthmatic lung function biology than single omic analyses. CHEST 2018; 154(2):335-348
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Asthma, a disorder characterized by variable and
reversible airway obstruction, hyperresponsiveness, and
inflammation, represents one of the most common
chronic conditions among children and adults
worldwide.1,2 Asthmatic lung function abnormalities are
present early in life,3,4 track through childhood and
adulthood,5,6 and are strong determinants of disease
exacerbations and severity.7,8

Reduced lung function in patients with asthma is
thought to emerge from complex gene-environment
interactions.9 Advances in high-throughput technologies
allow us to explore such interactions at the level of the
epigenome, genome, transcriptome, proteome, and
metabolome. Combining the transcriptome, which
reflects genomic activity, with the metabolome, which is
sensitive to environmental influences and closely related
to phenotype, may be particularly informative. Although
previous studies have investigated metabolomic and
transcriptomic profiles of asthma separately, to date only
two studies, with limited sample sizes, have integrated
the two omes together in humans.10,11 Relative to the use
of single omics technologies, this integrative approach
demonstrated increased predictive ability for asthma
and its subtypes, and greater biologic insights.
Consequently, integrative omics represents an exciting
new avenue in asthma research.12

Currently, there are no analytic standards for integrative
omics. However, network medicine, a rapidly emerging
field that moves away from reductionist methodologies
to combine systems biology and network science,
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represents a particularly promising approach. It provides
a holistic methodology to better understand disease
through the identification and investigation of nonlinear
relationships and networks of interacting components.
This provides insights into these conditions beyond the
level of a single gene or omic platform. Weighted gene
coexpression network analysis (WGCNA) is a network
method for identifying clusters or modules or highly
correlated variables (eg, genes, metabolites) that are
likely to be coregulated, or working together in a
biologically coherent fashion. A module can then be
summarized as a single unit, which can be correlated
with phenotypes or other modules of interest.

The aim of this study was to conduct an integrated
analysis of the blood transcriptome and metabolome
among children with asthma participating in the Genetic
Epidemiology of Asthma in Costa Rica13 cohort to
identify biologically informative networks of genes and
metabolites associated with asthmatic lung function. The
Genetic Epidemiology of Asthma in Costa Rica cohort
recruited children with mild-to-moderate asthma from
the Central Valley of Costa Rica. This area represents a
Hispanic population isolate which is genetically
homogenous and has one of the highest prevalences of
asthma in the world (24% in children),14 making it
uniquely suited for the exploration of the integrative
omic underpinnings of asthmatic lung function. In
particular, the study focuses on FEV1 and FEV1/FVC
ratios, which are thought to mediate the association
between early life characteristics and asthma.15
Methods
Study Population

This integrative omic study was nested within the Genetic
Epidemiology of Asthma in Costa Rica Study,13 which recruited
children 6 to 14 years of age with mild-to-moderate asthma and their
parents from the Central Valley of Costa Rica. Children were eligible
if they had physician-diagnosed asthma and at least two episodes of
respiratory symptoms or asthma attacks in the prior year, and a high
probability of having six or more great-grandparents born in the
Central Valley of Costa Rica.16,17 A total of 1,165 children with
asthma were enrolled in the original study. All children completed a
protocol at enrollment, including questionnaires, spirometry, and
collection of blood when children were not exacerbated. Most blood
samples were processed within 4 h; RNA was extracted and stored
in PAXgene tubes (QIAgen). Genome-wide single-nucleotide
polymorphism (SNP) genotyping and RNA expression profiles were
generated for a subset of the children with suitable samples.
Genotype data were obtained with TaqMan real-time polymerase
chain reaction with an ABI Prism 7900 machine (Applied
Biosystems).18 Standard manufacturer-recommended polymerase
chain reaction conditions were used. Children were prioritized for
metabolomic profiling if they had both genome-wide genetic and
genome-wide expression data, with the goal of conducting integrative
omic analyses. Children with both metabolomic and transcriptomic
profiling were included in the current study. Written parental and
participating child consent was obtained. The study was approved by
the Partners Human Research Committee at Brigham and Women’s
Hospital (Boston, MA; protocol No. 2000-P-001130/55) and the
Hospital Nacional de Niños (San José, Costa Rica).

Lung Function
At enrollment, baseline lung function was investigated by spirometry
(FEV1 and FEV1/FVC ratio), bronchodilator response (BDR)
(percentage difference in FEV1 from baseline after inhaled albuterol),
and airway responsiveness to methacholine (determined as the
provocative dose of methacholine resulting in a 20% drop in FEV1

from baseline) (e-Appendix 1).
[ 1 5 4 # 2 CHES T A UGU S T 2 0 1 8 ]

mailto:hprke@channing.harvard.edu
https://doi.org/10.1016/j.chest.2018.05.038


Transcriptomic Profiling

Whole-blood gene expression profiles were generated with 47,009
probes from the HumanHT-12 v4 Expression BeadChip (Illumina,
Inc.) that passed stringent and commonly used quality control (QC)
metrics.19 Expression data were log2 transformed and quantile
normalized as a single batch using the lumiT and lumiN functions,
respectively, from the R package lumi (version 2.22; The R
Foundation). Principal components of gene expression were
generated using the getPCAFunc function from the R package
iCheck (version 0.6). Prior to downstream statistical analyses, we
applied a standard nonspecific variance filter to the expression data
using the nsFilter function from the R package genefilter (version
1.52). Probes not annotated with a valid Entrez gene identifier or
Human Genome Organization gene symbol and probes with
interquartile ranges of expression variance below the 50th percentile
were removed to select only the most informative probes.20 Data
were then collapsed to a single probe per gene based on the largest
interquartile range of expression variance.19

Metabolomic Profiling

Plasma samples were shipped from the sample repository to the Broad
Institute (Cambridge, MA) on dry ice for metabolomic profiling.
Samples were thawed on ice for subaliquoting for each of the
metabolomic methods and then refrozen on dry ice and stored
at �80�C until analysis. Four liquid chromatography-tandem mass
spectrometry (MS) platforms measured complementary sets of
metabolite classes: (1) hydrophilic interaction liquid chromatography
(HILIC)-positive platform, amines and polar metabolites that ionize
in the positive ion mode using HILIC and MS analyses; (2) HILIC-
negative platform, central metabolites and polar metabolites that
ionize in the negative ion mode using HILIC with an amine column
and targeted MS; (3) C8 platform, polar and nonpolar lipids using
reverse-phase chromatography and full-scan MS; and (4) C18
chromatography platform, free fatty acids, bile acids, and metabolites
of intermediate polarity using reverse chromatography with a T3
ultra performance liquid chromatography column and MS analyses
in the negative ion mode (e-Appendix 1).

QC was performed using previously described methods21: metabolite
features with a signal-to-noise ratio < 10 were considered
unquantifiable and excluded, as were features with undetectable/
missing levels for > 10% of the sample. All remaining missing
values were imputed with the median peak intensity for that feature
across the whole population. Features with a coefficient of variance
in the QC samples > 25% were excluded to ensure good technical
reproducibility. The mean coefficient of variance of the remaining
features was 13.1% (interquartile range, 8.7%-17.1%). Features were
indexed by mass/charge ratio, retention time, and ion spectra for
subsequent annotation. Features were analyzed as measured liquid
chromatography-tandem mass spectrometry peak areas and were log
transformed and Pareto scaled prior to analysis. This data processing
pipeline has previously been used for multiple peer-reviewed
publications.16,21-23

Of 18,064 measured metabolite features, 8,185 passed QC and data
processing procedures (e-Appendix 1). Of these, 574 could be
reliably annotated to known metabolites by matching measured
mass/charge ratio and retention time with authentic reference
standards. Reference compounds were spiked into biologic samples
to mitigate any matrix effects. MS/MS data were not acquired during
the profiling to facilitate acquisition of sufficient numbers of data
points across peaks for precise quantitation. To confirm
identification during analytic runs, synthetic mixtures of standards
and pooled QC samples were analyzed.

To reflect the fact that only a small proportion of metabolites could be
annotated, both known and unknown metabolite features were
chestjournal.org
included in the analysis. This allowed the capture of all relationships
between the features with no missing links, which would be
inevitable if only named metabolites were included, thereby reflecting
the whole metabolome. Furthermore, annotation of metabolites is
ongoing; metabolites identified as important in this analysis will be
prioritized for annotation so they can be available for future analyses
in this population.

Network Identification and Association With Lung
Function Traits

WGCNA24 was used to identify transcriptomic and metabolomic
networks based on correlation patterns. The correlation matrix
quantifies interconnectedness between features (genes and metabolite
features) and assigns them to coexpression modules. Features that did
not show high enough coexpression metrics with any module were
excluded from further analysis. Highly correlated modules were then
merged using a cut height (ie, Euclidean distance between clusters) of
0.75 for the transcriptomic data and 0.70 for the metabolomic data.
These cut-heights were chosen using an iterative process to identify an
optimal number of adequately sized modules for analysis.

Modules were summarized by an eigenvector (based on the first
principal component of each module) for each participant.
Associations between the modules with lung function traits were
computed using multivariate regression models with adjustment for
potential confounders (age, sex, height, weight, and treatment
regimen [daily use for persistent systems vs only intermittent use for
acute symptoms]). For the modules nominally significantly (P # .05)
associated with at least one lung function phenotype, the hubs were
identified. Hubs are the features that are most highly connected
within a module, and therefore drive module formation. WGCNA
computes a module membership value and associated P value for
each feature within a module, which is a measure of how connected
or coexpressed that feature is with others within the same module.
Features with a module membership P value that retained
significance after Bonferroni correction were considered to be hubs.

Pathway Enrichment Analysis

For the transcriptomic data, pathway enrichment analysis was
performed using the g:GOSt tool within the g:Profiler25 web server
(BIIT Group).

Metabolomic pathway analysis was performed using MetaboAnalyst
v.3.026 (XiaLab at McGill University). Metabolomic pathway analysis
was limited to those metabolites that could be assigned Human
Metabolome Database identification; therefore, it was used here as a
hypothesis-generating tool (e-Appendix 1).

Integrated Omics Analysis

Relationships between the WGCNA-generated transcriptomic and
metabolomic modules were explored by computing the correlation
and corresponding P value between the eigenvector of the two sets
of modules. Constituent hub features of correlated pairs were
submitted for integrated pathway analysis using IMPaLA: Integrated
Molecular Pathway Level Analysis to identify pathways
simultaneously dysregulated on both a transcriptional and metabolic
level (e-Appendix 1). These pathways were then prioritized for
further follow-up.

Replication
Replication of select findings was performed in a comparable
childhood cohort of patients with mild-to-moderate asthma who
were phenotyped in the same way as the Costa Rican cohort. The
Childhood Asthma Management Program (CAMP) is a multicenter,
randomized, double-masked, clinical trial designed to determine the
long-term (approximately 16.5 years of follow-up) effects of three
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inhaled treatments (placebo, nedocromil, or budesonide) for mild-to-
moderate asthma in children 5 to 12 years of age at baseline.27 A
follow-up study to the primary trial extracted blood samples from
620 CAMP subjects at early adulthood (after trial completion) for
gene expression profiling19 using the HumanHT-12 chip and the
same protocols and methods as the Costa Rican study. Genome-wide
SNP genotyping on the HumanHap550v3 BeadChip (Illumina, Inc.)
was also available for these children.28 A total of 207 children
additionally had metabolomic profiling conducted on the same blood
samples at the Broad Institute. Metabolomic profiling was conducted
TABLE 1 ] Epidemiologic and Clinical Characteristics of
325 Children With Asthma

Epidemiologic and Clinical Characteristics Value

Sex, No. (%), male 190 (58.5)

Age at recruitment, ya 9.1 (1.8)

Height, cm 132.1 (11.5)

Weight, kg 32.5 (11.3)

BMI, kg/m2 18.1 (3.9)

Controller treatment, No. (%), yes 297 (91.4)

Baseline FEV1, L 1.8 (0.5)

Baseline FEV1/FVC ratio, % 86.5 (7.7)

Postbronchodilator FEV1/FVC ratio, % 89.1 (6.7)

Airway responsiveness measured by
methacholine challenge, PD20, mmol

1.7 (2.1)

FEV11 bronchodilator response, % 5.0 (8.7)

Values are mean (SD) or as otherwise indicated. Controller treatment ¼
receiving regular treatment for the control of chronic symptoms in the
form of oral or inhaled steroids, prednisone, long-acting inhaled B2 ag-
onists, or leukotriene inhibitors/modifiers; FEV11 bronchodilator
response ¼ bronchodilator response as % of baseline FEV1; PD20 ¼
20% drop in FEV1.
aLung function testing and blood draw performed at recruitment.
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on serum at the Broad Institute (e-Appendix 1). A total of 14,587
metabolite features including 324 named metabolites passed the
sample QC and data processing pipeline as applied to the Costa
Rican metabolomics data. A total of 222 named metabolites were
common to the CAMP and Costa Rican populations. The CAMP
study was approved by the institutional review board of Partners
Healthcare (Partners Human Research Committee; protocol No.
1999-P-001549/29), all eight CAMP clinical centers, and the CAMP
Data Coordinating Center. Each child’s parent or guardian signed a
consent statement; the clinics also obtained each child’s assent.
Results

Baseline Characteristics

Of 1,165 children with asthma from the Costa Rican
cohort, 328 had RNA available for transcriptomic
profiling and sufficient plasma for metabolomic
profiling. Initial clustering based on the transcriptomic
data profiles identified three outliers which formed a
distinct cluster that could be separated from the rest of
the population using a cut-height of 0.9 (e-Fig 1). No
metabolomic outliers were detected, and in total 325
children were included in all analyses (e-Fig 2). All
children were Hispanic/Latino, 139 (42.8%) were girls,
the mean age was 9.1 years (range, 4.5-13.3 years), and
90% reported asthma controller or reliever treatment
(Table 1). Although distinct, there was significant
correlation between the measured lung function
phenotypes (e-Table 1). The 325 children with omics
profiling data were representative of the entire
population of 1,165 children (e-Table 2).

Transcriptomic Network Analysis

WGCNA clustered the 25,060 gene probes into 39
different modules. After merging highly correlated
modules using a cut-height of 0.75 (e-Fig 3), a total of
eight modules, spanning 19,581 genes, were
characterized (e-Table 3). A nominal significance
threshold of P # .05 was used to capture all potentially
biologically interesting relationships. Six modules were
significantly correlated with at least one measure of lung
function (e-Fig 4). Four of these modules retained
significance at a 95% CI after adjustment for age, weight,
height, sex, and asthma treatment (Table 2).

Lung function-associated modules were enriched for
distinct groups of defined biologic processes (Table 3):
the dark green and plum modules for immune processes
(renamed the adaptive immunity and innate immunity
modules, respectively), the dark gray modules for cell
cycle and mitotic processes (cell cycle module), the dark
olive green module for asthma-related microRNA
targets sites (asthma microRNAs module; g:Profiler
allows functional interpretation of gene lists in the
context of computationally predicted microRNA target
sites from the MicroCosm database), the pink modules
for processes relating to translation (translational
module), and the yellow module for multiple
transcriptional and metabolic processes (transcriptional
module) (Table 3).

Metabolomic Network Analysis

WGCNA clustered 8,185 metabolite features (including
574 annotated metabolites) into 44 different modules.
After merging (cut-height 0.7) (e-Fig 5), there were eight
modules including 7,473 metabolite features (excluding
the gray module) (e-Table 4). Six modules were
correlated at a nominal significance level of 95% with at
least one measure of lung function (e-Fig 6), and five
modules were robust to confounder adjustment
(P # .05) (Table 4).
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TABLE 2 ] Association Between Gene Modules and Measures of Lung Function After Adjustment for Confounders

Transcriptomic Module Trait b (95% CI) P Value

Dark green, adaptive immunity Post-BD FEV1/FVC ratio �0.0009 (�0.0018 to 4.7 � 10�5) .064

Dark gray, cell cycle Baseline FEV1, L �0.0233 (�0.1696 to 0.123) .755

Baseline FEV1/FVC ratio 0.0013 (0.0005 to 0.0021) .002a

Post-BD FEV1/FVC ratio 0.0014 (0.0005 to 0.0023) .004a

Dark olive green, asthma microRNAs Post-BD FEV1/FVC ratio �0.0005 (�0.0014 to 0.0004) .29

FEV1 BD response 0.0008 (0.0001 to 0.0015) .023a

Pink, translational Baseline FEV1/FVC ratio 0.0009 (0.0001 to 0.0017) .031a

Plum, innate immunity PD20 0.0078 (0.0041 to 0.0116) < .001

Baseline FEV1/FVC ratio �0.0008 (�0.0016 to 1.5 � 10�5) .055

Post-BD FEV1/FVC ratio �0.001 (�0.0019 to �0.0001) .027a

Yellow, transcriptional FEV1 BD response �0.0007 (�0.0014 to 3.0 � 10�5) .062

Adjusted for age, height, weight, sex, and treatment regimen. BD ¼ bronchodilator. See Table 1 legend for expansion of other abbreviation.
aSignificant at 95% confidence.
All pathways with a nominally significant P < .10 are
reported for hypothesis-generating purposes. The
medium purple module (renamed the lipid module) was
enriched for glycosylphosphatidylinositol anchor
biosynthesis (P ¼ .034), sphingolipid metabolism
(P ¼ .061), glycerolipid metabolism (P ¼ .077), and
glycerophospholipid metabolism (P ¼ .093). The tan
module was enriched for caffeine (P ¼ .017) and purine
metabolism (P ¼ .075) (Table 5).

Integrated Omics Analysis

There were 10 nominally significant (P # .05)
associations between metabolite modules and gene
modules based on their eigenvector (Fig 1). Of these,
seven were between modules that both correlated with
lung function phenotypes.

Integrated analyses of the asthma microRNAs
transcriptomic and lipid metabolomic modules, which
correlated with FEV1 and the FEV1/FVC ratio, identified
186 pathways including 51 pathways robust to false
discovery rate correction (top pathways in Table 6, full
list in e-Table 5). Most were for the asthma microRNAs
module, most of which relate to immune regulation.
This integrative analysis extends on the findings of the
metabolomic analysis, where sphingolipid, glycerolipid,
and glycerophospholipid metabolism were all enriched
by identifying the upstream hub genes, including
ORMDL3, SLC1A2, and AKR1B1, driving the
dysregulation of these pathways.

The asthma microRNA module was also correlated with
the red ubiquinone-containing metabolite module, and
both were associated with the FEV1/FVC ratio (Table 6).
chestjournal.org
Integration of these modules identified a large number
of pathways involved in cellular respiration; however,
none were significant after correction for multiple
testing.

Cellular respiration was also captured by the integration
of the translational gene module and the red metabolite
module, which both associated with the FEV1/FVC
ratio.

ORMDL3

Given the role of ORMDL3 as a hub gene in the asthma
microRNAs transcriptomic module, we used genotype
data available for the Costa Rican subjects to identify
SNPs that may influence the expression of this gene and
which also associate with the lipid metabolite module.
Three relevant SNPs were available in the Costa Rican
population (rs2872507, rs7216389, and rs8079416).
Although all three associated with at least one of the
lipids in the lipid metabolite module, the strongest
results were observed for rs8079416, which was
associated with 165 of the 537 metabolites (31%)
comprising the module, and with the module
eigenvector (P ¼ .024), with an increasing number of C
alleles associated with lower levels of these lipids
(e-Fig 7). Importantly, the C allele was also strongly
associated with increased expression of ORMDL3 in this
population (additive model P ¼ .0006), which provides a
further link between ORMDL3 and dysregulation of
lipid metabolism.

Replication of the Integrated Analysis

To explore the validity of the nominally significant
integrative findings, a replication analysis was
339
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TABLE 3 ] Top Gene Ontology-Defined BPs in Six Transcriptomic Modules Correlated With Lung Function Traits

Module P Value

Dark green, adaptive
immunity

Graft-vs-host disease (keg) < .001

Natural killer cell mediated cytotoxicity (keg) < .001

Immunoregulatory interactions between a Lymphoid and a non-Lymphoid
cell (rea)

< .001

Natural killer cell mediated immunity (BP) .013

Antigen processing and presentation (keg) .029

Cellular defense response (BP) .043

Dark gray, cell cycle Mitotic cell cycle process (BP) < .001

Cell Cycle (rea) < .001

DNA metabolic process (BP) < .001

Cell cycle (keg) < .001

Histone kinase activity (MF) < .001

RHO GTPases Activate Formins (rea) < .001

Protein localization to chromosome, centromeric region (BP) < .001

G1/S-Specific Transcription (rea) < .001

Chromosome condensation (BP) .014

Proteasome-mediated ubiquitin-dependent protein catabolic process (BP) .017

Oocyte meiosis (keg) .018

Signal transduction by p53 class mediator (BP) .026

SUMOylation of DNA replication proteins (rea) .027

G0 and Early G1 (rea) .037

Dark olive green,
asthma microRNAs

MI:hsa-miR-423-5p (mi) < .001

MI:hsa-miR-615-5p (mi) < .001

MI:hsa-miR-564 (mi) .025

MI:hsa-miR-339-5p (mi) .028

MI:hsa-miR-214 (mi) .034

MI:hsa-miR-331-3p (mi) .036

Poly(A) RNA binding (MF) .043

MI:hsa-miR-874 (mi) .046

Pink, translational RNA binding (MF) < .001

RNA processing (BP) < .001

Ribonucleoprotein complex biogenesis (BP) < .001

Translation (BP) < .001

Mitochondrion organization (BP) .022

Structural constituent of ribosome (MF) .044

Negative regulation of translational initiation in response to stress (BP) .046

DNA metabolic process (BP) .05

Plum, innate immunity Innate immune system (rea) < .001

Antimicrobial humoral response (BP) < .001

Heparin binding (MF) < .001

Serine-type endopeptidase activity (MF) < .001

Extracellular matrix organization (rea) .011

(Continued)
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TABLE 3 ] (Continued)

Module P Value

Yellow, transcriptional RNA binding (MF) < .001

mRNA metabolic process (BP) < .001

Cotranslational protein targeting to membrane (BP) < .001

Structural constituent of ribosome (MF) < .001

Protein transporter activity (MF) < .001

Macromolecular complex subunit organization (BP) < .001

Mitochondrion organization (BP) < .001

Posttranscriptional regulation of gene expression (BP) < .001

Multi-organism metabolic process (BP) .027

Ribonucleoprotein complex localization (BP) .033

Viral transcription (BP) .04

BP ¼ biologic process; keg ¼ KEGG-defined biologic pathway; MF ¼ molecular function; mi ¼ regulatory motif in miRBase microRNA; rea ¼ reactome-
defined biologic pathway.
conducted, focusing on the relationship between the
lung function-associated transcriptomic asthma
microRNAs and metabolomic lipid modules. Whole
genome transcriptomic profiling and metabolomic
data were available on blood samples from 207
participants from the CAMP cohort (e-Appendix 1,
e-Table 6).29

A summary score based on the first principal
component was generated using the expression levels in
CAMP of 3,926 hub genes from the Costa Rican asthma
microRNAs module. A significant association was
observed between this score and FEV1 BDR in a
regression model adjusting for age, sex, height, weight,
and treatment group (P ¼ .027). Metabolomic profiling
TABLE 4 ] Association Between Metabolite Modules and Lu

Metabolite Module Trait

Red Baseline FEV1/FVC ratio

Post-BD FEV1/FVC ratio

Purple Baseline FEV1/FVC ratio

Medium purple, lipid Baseline FEV1

Dark red Baseline FEV1/FVC ratio

FEV1 BD response

Light cyan Baseline FEV1/FVC ratio

FEV1 BD response

Tan, purine PD20

Baseline FEV1/FVC ratio

Post-BD FEV1/FVC ratio

Adjusted for age, weight, height, sex, and treatment regimen. Only three of t
functional names. See Table 1 and 2 legends for expansion of abbreviations
aSignificant at the 95% significance level.

chestjournal.org
information was available for 564 named metabolites,
including 30 of the named metabolites identified in the
lipid metabolomic module. A score based on the first
principal component of these 30 metabolites had a
borderline significant association with baseline FEV1

(P ¼ .073). Furthermore, there was evidence of a
correlation between the transcriptomic and
metabolomic modules (r ¼ 0.13, P ¼ .065). Finally, it
was again shown that the C allele of the ORMDL3 SNP
rs8079416 was strongly associated with increased
expression of ORMDL3 (P ¼ 5.2 � 10�10), and with
four of the investigated lipids, thereby providing a
measure of replication of the Costa Rican
metabolomics, transcriptomic, and integrative omic
findings.
ng Function Traits After Adjustment for Confounders

b (95% CI) P Value

�0.001 (�0.0018 to �0.0002) .019a

�0.0014 (�0.0023 to �0.0004) .004a

0.0009 (0.0001 to 0.0017) .028a

�0.1386 (�0.2808 to 0.0036) .057

0.0009 (0.0001 to 0.0017) .029a

�0.0007 (�0.0014 to 1.75 � 10�5) .057

�0.0008 (�0.0016 to 3.45 � 10�5) .062

0.0007 (1.65 � 10�5 to 0.0014) .046a

�0.0065 (�0.0103 to �0.0027) .001a

0.0009 (0.0001 to 0.0017) .028a

0.0017 (0.0007 to 0.0026) .001a

he significant modules (red, medium purple, and tan) could be assigned
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TABLE 5 ] Enriched Biologic Pathways and Processes in Six Metabolomic Modules Correlated With Lung Function
Traits

Module Trait Association
No. of Metabolite

Features
No. of Hub
Features

Enriched Pathways
Among Known Metabolites

Red, ubiquinone Baseline FEV1/FVC ratioa;
post-BD FEV1/FVC ratioa

449 412 No enriched pathways: known
metabolites— Ubiquinone-2;
C18:0 Mono Acyl Glycerol;
(S)-2-Propylpiperidine;
Polyoxyethylene (600)
monoricinoleate

Medium purple, lipid Baseline FEV1 537 518 GPI-anchor biosynthesis
(P ¼ .034); sphingolipid
metabolism (P ¼ .061);
glycerolipid metabolism
(P ¼ .077); glycerophopholipid
metabolism (P ¼ .093)

Tan, purine PD20; baseline FEV1/FVC
ratio; post-BD FEV1/FVC
ratio

147 141 Caffeine metabolism (P ¼ .017);
purine metabolism (P ¼ .075)

Dark red Baseline FEV1/FVC ratioa;
baseline FEV1

93 85 No enriched pathways; no known
metabolites

Light cyan Baseline FEV1/FVC ratio;
baseline FEV1

a
111 98 No enriched pathways: known

metabolites—methyl
dihydrojasmonate

Purple Baseline FEV1/FVC ratioa 411 330 No enriched pathways: known
metabolites—tetradecyl sulfate

GPI ¼ glycosylphosphatidylinositol. See Table 1 and 2 legends for expansion of other abbreviations.
aTrait retained significance in multivariate regression model.
Discussion
This study represents one of the first integrative omics
studies of children with asthma. A network approach
was taken to identify and integrate modules of highly
coregulated genes and metabolites that correlate with
lung function metrics. Specifically, this included metrics
related to FEV1 and the FEV1/FVC ratio, which
associate with childhood asthma severity and have been
shown to be predictive of future lung function.15

Interrogation of the biologic pathways and processes
underlying these modules allowed the exploration of
asthmatic lung function mechanisms. These findings
strengthen the evidence for the role of sphingolipids,
lipids, and fatty acids and provide novel evidence
suggesting these effects may be partly driven by an SNP
that influences ORMDL3 expression, rs8079416. In sum,
these results demonstrate the potential of network-based
methods for integrating large-scale omic datasets in a
biologically meaningful way. Network-based approaches
may be particularly useful as a screening step to identify
the most important components of these highly
dimensional omic datasets and how they work together
across hierarchical levels. Such knowledge could
underlie the development of improved biomarkers and
precision medicine initiatives.
342 Original Research
The transcriptomic network analysis revealed six gene
modules that associated with lung function measures:
airway obstruction, airway responsiveness to
methacholine, and BDR. Pathway analysis determined
these modules were enriched for distinct processes with
biologically plausible relationships with lung function,
including adaptive and innate immunity.

Mitosis and processes relating to cell division
characterized the cell cycle transcriptomic module.
Interestingly, a previous WGCNA study of gene
expression data from asthmatic airway epithelial cells
also identified a mitosis module characterized by
PTTG1, BIRC5, NCAPG, CDCA2, and FANCI.30 All
these genes were hubs within our cell cycle module.
Dysregulation of cell division can alter the composition
of the airway epithelium, initiate airway remodeling, and
lead to chronic airway obstruction and more severe
asthma.31 Intriguingly, the cell cycle module was
significantly associated with the FEV1/FVC ratio pre-
and postbronchodilator, but not with FEV1. It has been
shown that children with asthma can have an abnormal
FEV1/FVC ratio despite a normal FEV1 and FVC; this
condition, known as dysanapsis, occurs when growth in
lung volume and airway length outpaces the increase in
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Figure 1 – Correlation between the eigenvectors of the transcriptomic and metabolomics modules. Correlation coefficients are shown for each module-
trait pair with the associated P value in parenthesis; colors indicate direction of association and darker colors indicate more significant associations.
airway caliber.32 This may explain the association with a
module enriched for dysregulated cell cycle processes in
children.

The asthma microRNAs gene module, based on
microRNA target sites, was enriched for seven
microRNA regulatory motifs, which have previously
been implicated in lung function and asthma severity:
hsa-miRNA-339-5p has been shown to be differentially
expressed in the blood of asthmatics,33 and serum miR-
331-3p has been associated with the FEV1/FVC ratio in
childhood asthma.34 Additionally, expression of miR-
874 has been shown to be upregulated in patients with
allergic rhinitis,35 whereas miR-874 and miR-423 have
both been demonstrated to be upregulated in response
to antigens in mouse models.36 Crucially, in an
independent population, a summary score based on the
expression levels of the genes of this module was again
associated with FEV1 BDR.

Analysis of the metabolomic profiles from the same
children at the same time point also identified sixmodules
associated with the metrics of FEV1 and the FEV1/FVC
ratio. The lipid metabolite module is of particular interest
chestjournal.org
because lipid mediators influence asthmatic airway
inflammation, inwhich the conversion of arachidonic acid
in membrane phospholipids to eicosanoids, leukotrienes,
and prostaglandins results in bronchoconstriction and
inflammation.37 It has also been shown that essential
omega n-3 fatty acids in foods and oily fish, such as
eicosapentanoic acid and docosahexaenoic acid, are
capable of displacing arachidonic acid from the cell
membrane, promoting resolution of inflammation and
dampening of airway hyperresponsiveness.38,39 Both
glycosylphosphatidylinositol and glycerophospholipids
are key constituents of cell membranes, and the
identification of these pathways in a metabolite
module associated with FEV1 further highlights the
importance of fatty acids and lipid mediators in the
obstructive, reduced lung function characterizing
asthma pathology.

Sphingolipids have also been implicated in asthma
pathogenesis.40 ORMDL3, one of the most replicated
genes for childhood asthma,41 is thought to exert its
effect through the sphingolipid metabolism pathway via
negative regulation of serine palmitoyltransferase, which
catalyzes the initial step of sphingolipid biosynthesis.41
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TABLE 6 ] Results of the Integrated Pathway Enrichment Analysis Based on the Genes and Metabolites of
Correlated Lung Function-Associated Transcriptomic and Metabolomics Modules

Gene Module
Metabolite
Module Pathway Name

No. of
Overlapping

Genes

No. of
Overlapping
Metabolites Joint P Value

Dark olive green,
asthma
microRNAs

Medium
purple, lipid

Immune System 409 4 9.38 � 10�11,a

Membrane Trafficking 152 1 1.46 � 10�8,a

B cell receptor signaling pathway -
Homo sapiens (human)

31 1 5.12 � 10�8,a

Adipocytokine signaling pathway -
Homo sapiens (human)

23 2 6.64 � 10�7,a

Signalling by NGF 106 2 1.03 � 10�6,a

Adaptive Immune System 168 3 1.42 � 10�6,a

TNF alpha Signaling Pathway 33 1 1.47 � 10�6,a

Neurotrophin signaling pathway -
Homo sapiens (human)

34 2 1.84 � 10�6,a

Insulin resistance - Homo sapiens
(human)

27 3 2.23 � 10�6,a

Innate Immune System 276 2 3.88 � 10�6,a

Dark olive green,
asthma
microRNAs

Red,
ubiquinone

TCA cycle 12 1 4.53 � 10�4

Citrate cycle 12 1 7.98 � 10�4

The citric acid (TCA) cycle and
respiratory electron transport

40 1 3.74 � 10�3

Respiratory electron transport_
ATP synthesis by chemiosmotic
coupling_ and heat production by
uncoupling proteins

27 1 7.12 � 10�3

Sulfide oxidation to sulfate 2 1 9.24 � 10�3

Oxidative phosphorylation - Homo
sapiens (human)

27 1 .010

Respiratory electron transport 20 1 .012

Electron Transport Chain 19 1 .013

Degradation of cysteine and
homocysteine

2 1 .035

Pyrimidine metabolism 6 1 .043

Pink, translational Red,
ubiquinone

Respiratory electron transport 17 1 5.06 � 10�4,a

The citric acid (TCA) cycle and
respiratory electron transport

26 1 9.86 � 10�4

Respiratory electron transport_
ATP synthesis by chemiosmotic
coupling_ and heat production by
uncoupling proteins

18 1 2.06 � 10�3

Citrate cycle 7 1 2.91 � 10�3

Oxidative phosphorylation - Homo
sapiens (human)

18 1 2.96 � 10�3

Electron Transport Chain 14 1 2.97 � 10�3

TCA cycle 6 1 5.96 � 10�3

Arginine Proline metabolism 8 1 .020

(Continued)
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TABLE 6 ] (Continued)

Gene Module
Metabolite
Module Pathway Name

No. of
Overlapping

Genes

No. of
Overlapping
Metabolites Joint P Value

Ubiquinone and other terpenoid-
quinone biosynthesis - Homo
sapiens (human)

2 1 .027

Sulfur amino acid metabolism 4 1 .029

Top ten pathways/processes enriched for both genes and metabolites are shown. Dark red metabolite module contained no known metabolites and so could
not be included in the analyses.
aRetains significance when applying the Benjamini-Hochberg false discovery rate.
In mouse models, knockout of serine
palmitoyltransferase has been shown to result in
alterations in de novo lung epithelial tissue sphingolipid
biosynthesis and an increase in inflammation and airway
hyperresponsiveness.42 However, direct evidence of an
association in human studies is lacking.

In the integrated omics analysis, the lipid metabolite
module correlated with the asthma microRNAs
transcriptomic module that included ORMDL3,
providing evidence for a mechanistic connection
between ORMDL3, microRNA regulatory motifs, and
sphingolipid metabolism in asthma. Furthermore, we
were able to demonstrate an SNP within the 17q21
locus, rs8079416, which has previously been associated
with asthma,43 was significantly associated with both the
expression of ORMDL3 and with the lipid metabolomic
module and its constituent metabolites. This highlights
the potential of multilevel integrative omics to elaborate
how SNPs can impact metabolite levels though
transcriptomic regulation. The asthma microRNAs
module also encompassed several other asthma genes
which, like ORMDL3, map to the 17q21 locus, including
CCL21 and GSDMB. This suggests variants in this region
systematically contribute to the pathogenesis of asthma
through a dysregulation of sphingolipid metabolism,
potentially because of the binding of these genes to the
regulatory microRNAs. Intriguingly, the asthma
microRNAs module also included CRISPLD2, previously
identified as an asthma candidate gene because of its role
as a regulator of the antiinflammatory effects of
glucocorticoids in the airway smooth muscle.44

Sphingolipids have been shown to mediate the effects of
glucocorticoids,45 further supporting the observed link
between the asthma microRNAs and the lipid modules
and suggesting a possible connection between
CRISPLD2 and sphingolipid metabolism. Full
replication and validation of these findings was not
possible because there was incomplete crossover
chestjournal.org
between the known metabolites measured in Costa Rica
and CAMP, and the crossover between the unknown
metabolites cannot be computed. However, in the
independent CAMP population, there was evidence that
a lung function-associated lipid module correlated with
this module in blood samples taken at the same time
point. Furthermore, there was evidence that rs8079416
was again associated with increased expression of
ORMDL3 and a number of pertinent lipids. This adds
weight to the theory that the genes enriched for
microRNA targets may be acting on lung function
through the dysregulation of lipid metabolism.

To date, relatively few studies have attempted to
combine metabolomic and transcriptomic data in any
human disease, and no analytic gold standards exist.
However, statistical integration using pathway and
network-based approaches has shown promising
results.46 This study demonstrated relationships between
transcriptomic and metabolomic modules, which were
generated independently and which were independently
associated with lung function. The integrative analysis
enhanced single omics analysis and improved pathway
recovery, capturing associations that may be missed
based on a significance threshold when a single omics
data type is analyzed. The downstream metabolites
anchored the transcriptome,46 providing a functional
readout of the changes taking place at a transcriptional
level. Furthermore, we were able to identify an upstream
SNP which may be driving these results. This makes
these transcriptomic changes more biologically
interpretable and provide mechanistic evidence to
support the role of common asthma genes such as
ORMDL3.

A major strength of this study included the innovative
use of validated30 network methods to perform, for the
first time, integrative omics in a large, well-characterized
cohort of children with asthma, allowing the
simultaneous exploration of multiple clinically relevant
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http://chestjournal.org


phenotypic characteristics of lung function. Blood is well
suited for future clinical translation because mounting
research suggests that plasma is an excellent resource for
metabolic profiling in asthma, and it is known that gene
expression patterns in peripheral blood show systematic
changes when asthma exacerbations occur.47 However, it
is difficult to determine how the mixture of different cell
types in whole blood may affect gene expression.

There are some limitations to this study. Both known
and unknown metabolites are required to build a
complete metabolomic network. In this study, only
7% of metabolite features could be annotated to known
metabolites. Subsequent pathway enrichment analysis
was therefore limited; therefore, additional dysregulated
metabolomic pathways within the modules could not be
identified. Although there is likely some redundancy in
the metabolite features, we consider the inclusion of all
features necessary to generate the truest metabolic
network possible. If only named metabolites were
included in an unsupervised clustering approach, such
as WGCNA, multiple connections would be missed,
leading to metabolites not being assigned to their
optimal module. Although nominal significance
thresholds were used to consider module relationships,
reflecting the exploratory nature of the analysis, the
biologic plausibility of the reported results renders them
worthy of further exploration.

The samples were not originally collected for
metabolomic and transcriptomic profiling; therefore,
there is the potential that some of the methods used may
have impacted on the omic profiles and subsequently the
results. However, most samples were processed within
4 h of collection; additionally, both the metabolomic and
transcriptomic data underwent rigorous QC and
processing, which aimed to reduce noise, identify
346 Original Research
outliers, and eliminate systematic bias. There was a lack
of extreme phenotypes in this population; nevertheless, a
variety of studies have demonstrated that omics profiling
can capture phenotypic differences within patients with
nonsevere asthma.10,11,19,30,47 Children from the Central
Valley of Costa Rica represent a genetically homogenous
population, which may limit generalizability; however,
there is abundant evidence that the results of previous
genetic analyses in this population can be replicated in
outbred populations from different geographic
locations.29,48,49 Crucially, some of the most intriguing
findings of this study could be replicated in the
independent CAMP cohort. The ability to replicate
between studies remains an ongoing issue in
metabolomics because of heterogeneity in approach,
technology, and the fact that no one method is capable
of capturing the complete metabolome. Accordingly, the
current replication is limited by the fact that not all the
relevant metabolites were available in CAMP and
therefore should be interpreted with caution.
Furthermore, the differing biologic media used for
metabolomic profiling in the two studies may have
dampened the ability to replicate.50 Further replication
and functional validation is still necessary and should
consider targeted profiling of the most interesting
findings to obtain absolute metabolite quantification.
Such work is necessary before potential clinical
translation of these findings into biomarkers for asthma
prognosis or endotyping can be considered.

In conclusion, this hypothesis-generating study
demonstrates how integrating multiple omics
technologies provides a more informative picture of
asthmatic lung function biology than a single omics
approach and suggests that network-based methods
represent viable integrative strategies.
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