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Transition metal-free phosphonocarboxylation of
alkenes with carbon dioxide via visible-light
photoredox catalysis
Qiang Fu 1,2, Zhi-Yu Bo1, Jian-Heng Ye1, Tao Ju1, He Huang1, Li-Li Liao1 & Da-Gang Yu 1,3

Catalytic difunctionalization of alkenes has been an ideal strategy to generate structurally

complex molecules with diverse substitution patterns. Although both phosphonyl and car-

boxyl groups are valuable functional groups, the simultaneous incorporation of them via

catalytic difunctionalization of alkenes, ideally from abundant, inexpensive and easy-to-

handle raw materials, has not been realized. Herein, we report the phosphonocarboxylation of

alkenes with CO2 via visible-light photoredox catalysis. This strategy is sustainable, general

and practical, providing facile access to important β-phosphono carboxylic acids, including

structurally complex unnatural α-amino acids. Diverse alkenes, including enamides, styrenes,

enolsilanes and acrylates, undergo such reactions efficiently under mild reaction conditions.

Moreover, this method represents a rare example of redox-neutral difunctionalization of

alkenes with H-P(O) compounds, including diaryl- and dialkyl- phosphine oxides and phos-

phites. Importantly, these transition-metal-free reactions also feature low catalyst loading,

high regio- and chemo-selectivities, good functional group tolerance, easy scalability and

potential for product derivatization.
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D ifunctionalization of alkenes has developed into a pow-
erful tool in organic synthesis for generation of highly
functionalized skeletons due to the easy availability of

alkenes with different functional groups and diverse substitution
modes1–4. Catalytic difunctionalization of alkenes with H-P(O)
compounds is an important and ideal method to generate valu-
able organophosphine derivatives5–11, which are of great impor-
tance in agrochemicals12, functional materials13,14, synthetic15,
and medicinal16,17 chemistry. Huge progress has been achieved in
oxidative transformations (Fig. 1a)18–21, in which the electron-
rich alkyl radicals, in situ generated through addition of phos-
phonyl radicals to alkenes, are oxidized to alkyl cations and then
trapped by the nucleophilic components. However, the redox-
neutral difunctionalization of alkenes with H-P(O) compounds
remains very rare22.

Phosphorus-containing carboxylic acids are highly valuable
compounds and widely exist in natural products23, materials24,
and pharmaceuticals, which exhibit a diverse range of biological
activities, acting as inhibitors of urease, glutamate carbox-
ypeptidase II, neuropeptidase N-acetylated α-linked acidic
dipeptidase (NAALADase), and so on25–28. Notably, the β-
phosphono α-amino acids are important motifs in peptidic drugs,
supramolecular catalysis (artificial metalloenzymes), and organic
synthesis29–31. However, synthetic methods for such important
compounds are extremely limited to de novo synthesis, which
suffers from poor diversity, multiple steps, limited substrate
scope, and/or harsh reaction conditions. We envisioned that the
simultaneous incorporation of both phosphonyl and carboxyl
groups via selective difunctionalization of enamides and other
alkenes would serve as an ideal route to deliver important β-
phosphono carboxylic acids, including β-phosphono α-amino
acids. Different from the above mentioned oxidative functiona-
lization of the generated alkyl radicals18–21, we hypothesized that
reduction of such key alkyl radicals to anions, which might

undergo nucleophilic attack to CO2, could realize redox-neutral
difunctionalization of alkenes with H-P(O) compounds. To the
best of our knowledge, this strategy has never been realized to
generate such valuable targets.

Carbon dioxide (CO2) has been regarded as a ubiquitous, green
and recyclable one carbon (C1) building block in organic synth-
esis32–38. Although the thermodynamic stability and kinetic inert-
ness of CO2 introduces daunting challenges, a wide range of
transformation using this gaseous reagent have been developed to
construct important carboxylic acids, which are found in myriad
natural products, agrochemicals, and pharmaceuticals39. Notably,
catalytic carboxylation of unsaturated compounds with CO2 has
attracted much attention of chemists38,40–49. Compared with widely
investigated hydrocarboxylation of alkenes, however, catalytic
difunctionalization of alkenes with CO2, which is obviously more
attractive and cost-effective to obtain structurally complex mole-
cules with diverse substitution patterns, is more challenging and
much less investigated38. Although chemists have been mimicking
Nature’s ability for long time to harness light in organic transfor-
mations50–54 and transform CO2 to value-added products55,56, the
visible-light-mediated difunctionalization of alkenes with CO2 is
still scarce and yet underdeveloped with limited examples reported
by Martin, Wu and our group, independently (Fig. 1b)57–59.
Moreover, photocatalytic difucnctionlization of the electron-rich
alkenes, such as enamine and enol derivatives, with CO2 has not
been reported yet, thus calling for a strategy to generate structurally
more diverse α-amino acids60–62 and α-hydroxy acids63.

Herein, we report the catalytic phosphonocarboxylation of
diverse alkenes, including enamides, styrenes, enolsilanes, and
acrylates, with CO2 (Fig. 1c). This strategy is sustainable, general,
and practical, representing a rare example of redox-neutral
difunctionalization of alkenes with H-P(O) compounds to gen-
erate important β-phosphono carboxylic acids with high effi-
ciency and selectivity under mild reaction conditions.
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Results
Reaction design. At the beginning of this project, we challenged
ourselves with realization of selective phosphonocarboxylation of
enamides with CO2 via visible-light photoredox catalysis to
generate valuable β-phosphono α-amino acids. As proposed in
Fig. 2, the phosphonyl radicals A, generated via single-electron
transfer (SET) between H-P(O) compounds 2 and a photo-
excited photocatalyst in the presence of a base, might undergo
facile addition to the C=C double bonds of enamides 1 to
selectively generate the α-amido radicals B, which was stabilized
by phenyl and amide groups. A subsequent SET between B and
the reduced photocatalyst might give rise to the α-amido carba-
nions C, which then could react with CO2 to deliver the desired
β-phosphono α-amino acids 3. However, the possible hydro-
carboxylation62, C-H bond carboxylation64 of enamides as well as
hydrophosphinylation (Pudovik reaction)65 via hydrogen atom
transfer (HAT)66 between B and 2 could be competitive side
reactions and generate 4, 5, and 6, respectively. The tautomer-
ization between enamides 1 with imines 1′ also should be con-
sidered, given that the latter species could be attacked by 2 to give
α-amidophosphonate 767.

Investigations of reaction conditions. We began our investiga-
tions using N-(1-phenylvinyl)benzamide 1a and diphenylpho-
sphine oxide 2a as model substrates with atmospheric CO2 under
visible light irradiation at room temperature (Table 1). To our
delight, we detected the formation of β-phosphono α-amino acid
3aa using Ru(bpy)3Cl2 as the catalyst and Cs2CO3 as the base,
albeit in trace amounts (Table 1, entry 1). When we tested other
photocatalysts, we found that an Ir-based photocatalyst sig-
nificantly improved the efficiency for generation of 3aa (70%,
Table 1, entry 2) and the organic photocatalyst 1,2,3,5-tetrakis
(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) provided the best
result (75%, Table 1, entry 3). Importantly, in the absence of such
photocatalysts, 4a (19%)64 and 7a (41%)67 were generated instead
of 3aa (Table 1, entry 4). Further screening of various bases
(Table 1, entries 5–7) showed that K2CO3 was the best choice
(Table 1, entry 6), while the use of triethylamine as the base
(Table 1, entry 7) would generate 5a (29%)62 and 6a (24%)65,66

along with 3aa (32%). Intriguingly, the amount of photocatalyst
could be even reduced to 0.1% without interfering the reaction
(89%, Table 1, entry 8), illustrating the high efficiency of the
reaction. Control experiments revealed that CO2, light, photo-
catalyst, and base were all crucial for this transformation (Table 1,
entries 9–12).

Substrate scope of enamides. With the acceptable reaction con-
ditions in hand, a variety of β-phosphono α-amino acids bearing a
quaternary carbon center were obtained in moderate to excellent
yields. As illustrated in Fig. 3, a diverse array of protecting groups for
the enamines (3aa-3ca), including the readily removed Ac (3ba) and
Cbz (3ca) carbamate, proved to be compatible with the light-driven
phosphocarboxylation reaction. Notably, the enamides bearing
electron-donating (methoxyl, 3ea) or electron-withdrawing groups
(trifluoromethyl, 3ga) as well as heteroarenes, such as thiophene
(3ha) and furan (3ia), all reacted well. We next turned our attention
to the substituents on arenes. As also shown in Fig. 3, a broad range
of aryl enamides bearing different functional groups, including
methyl (3ja), methoxyl (3ka), phenyl (3la), halogens (3ma-3oa), and
trifluoromethoxyl (3pa) at the para-position, afforded the desired
products in moderate to excellent yields. The enamides with meta-
(3qa-3ta) and ortho-substituted arenes (3ua-3wa) also underwent
such a transformation with high efficiency. The current protocol
could also be applied to the substrates bearing di-substitution (3xa),
internal enamides (3ya) and naphthalene (3za). Enamides containing
pyridine (3aaa and 3aba) could also be tolerated in the reaction.
Unfortunately, when alkyl enamide (1ac) was used as substrate in the
reaction, we did not detected the desired carboxylative product 3aca
while the hydrophosphinylation product 6ac was obtained.

Substrate scope of H-P(O) compounds. Having demonstrated
the good functional group compatibility in the enamide substrates,
we next investigated the scope of the H-P(O) compounds 2. As
illustrated in Fig. 4, a broad range of phosphorus-containing α-
amino acids were obtained. Both electron-donating (3ab-3ad) and
mildly electron-withdrawing substituents (3ae-3af) on the aryl
groups were well tolerated, leading to the desired products in good
yields (62–90%). It is important to note that this transformation is
not restricted to diarylphosphine oxides, various phosphites (3ag-
3ak), which usually did not work well in the photochemical reac-
tions, also could deliver the corresponding products smoothly,
illustrating the synthetic utility and flexibility of this approach.
Notably, dialkyl phosphine oxide, such as 3al, also took part in the
reaction to provide the desired product in moderate yield (56%),
which demonstrates the generality of our transformation.

Substrate scope of styrenes. Considering the importance of β-
phosphono carboxylic acids23, we wondered whether styrenes 8
could be utilized in this phosphonocarboxylation process. To our
delight, this protocol was easily applicable to a range of electro-
nically diverse styrenes (Fig. 5). Diverse functional groups,
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Table 1 Screening the reaction conditionsa
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Entry [PC] Base Yield (%)

1 Ru(bpy)3Cl2 Cs2CO3 <5
2 Ir[(ppy)2(dtbpy)]PF6 Cs2CO3 70
3 4CzIPN Cs2CO3 75
4 — Cs2CO3 N.D.
5 4CzIPN Na2CO3 83
6 4CzIPN K2CO3 89
7 4CzIPN Et3N 32
8b 4CzIPN K2CO3 89
9b, c 4CzIPN K2CO3 <5
10 — K2CO3 N.D.
11b, d 4CzIPN K2CO3 N.D.
12b 4CzIPN — 21

LED light-emitting diode, DMF N, N-dimethylformamide, N.D. not detected
aReaction conditions: 1a (0.2 mmol), 2a (1.2 eq.), [PC] (2 mol%), Base (1.5 eq.), DMF (2mL), RT. The yields are of isolated products
b0.1 mol% of [PC]
cWithout CO2
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including halogens (9da-9fa, 9ma-9oa, 9ra, 9ta), trifluoromethyl
(9ga), nitrile (9pa), and heteroarenes (9ka, 9va) were tolerated
well under the mild reaction conditions. The styrenes bearing
disubstituted (9sa) and sterically hindered (2,4,6-trimethyl, 9ta)
benzenes also delivered the desired products smoothly. Notably,
the reaction also worked well for α-methyl or aminomethyl
substituted styrenes (9ua, 9va), generating the products bearing
quaternary carbon centers in good yields (74% and 73%,
respectively). Other challenging alkenes, such as internal styrene
(9wa) and heteroaryl-substituted styrenes (9xa-9aba), proved to
be competent substrates in the reaction. Importantly, enolsilanes
could also deliver the α-hydroxy acids (9aca-9ada) in moderate
yields. In addition, we did not detect the desired product when
alkyl olefin, such as dec-1-ene, was subjected to the reaction.

Substrate scope of acrylates. To further demonstrate the gen-
erality of the phosphonocarboxylation reaction, we also explored
electron-deficient acrylates (Fig. 6). Although the hydropho-
sphinylation of electron-deficient alkenes with 2 via nucleophilic
addition has been well documented68, we were pleased to find
that a broad range of acrylates 10 smoothly underwent our
photocatalyzed phosphonocarboxylation transformation with
diphenylphosphine oxide 2a. It is worth noting that when 3-
chloropropylacrylate was used as substrate, a multi-substituted
six-membered ring lactone 11fa was obtained in good yield via
intramolecular cyclization.

Synthetic applications. To demonstrate the potential application
of the protocol, a gram-scale reaction was carried out to afford
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3aa in 74% isolated yield without need of column chromato-
graphy (Fig. 7a). Moreover, the utility of the method was vali-
dated by facile derivatization of the products (Fig. 7b). For
example, the benzoyl group could be removed easily to generate
free β-phosphono α-amino acid 12 in good yield (85%). Hydro-
lysis of the benzamide and phosphite ester moieties in 3ag (R=
OEt) quantitatively generated 13, an analogs of bioacitve AP369.
Importantly, amino acids condensation between 3aa and methyl
glycinate hydrochloride provided the phosphorus-containing
dipeptide 14 (92%) and intramolecular condensation of 3aa
with the assistance of TFFA easily afforded cyclic oxazolinone 15.
Furthermore, since reactions of chiral phosphorus-centered
radicals could proceed stereoselectively with retention of config-
uration70, a chiral H-P(O) compound derived from (4R, 5R)-
Taddol derivative was used to achieve an enantioselective pho-
tocatalytic method with CO2 (Fig. 7c). Although the current

protocol provides poor diasteroselectivity ratio, the diastereoi-
somers could be completely separated by column chromato-
graphy with good yields, which provides an alternative method
for obtaining phosphonic acids-containing chiral α-amino acids
upon hydrolysis (For more information regarding other types of
chiral H-P(O) compounds, see Supplementary Figs. 2 and 3). The
success of these experiments indicates the great potential appli-
cation of the method in designing and synthesis of peptide drugs
and ligands.

Preliminary investigation of reaction mechanism. To gain more
insight to the reaction mechanism, several control experiments
were conducted. As illustrated in Fig. 8a, the reaction was sup-
pressed when the radical scavenger 2,2,6,6-tetramethyl-piper-
idinyloxyl (TEMPO) was employed. Moreover, the radical clock
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cyclization
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test (Fig. 8b) also suggested that this transformation might rely on
a radical process. Additionally, isotope-labeling studies provided a
strong support for α-amino benzylic anionic species acted as key
intermediates (Fig. 8c). Besides, Stern-Volmer luminescence
studies demonstrated that the excited state of 4CzIPN was
quenched by 2a in the presence of base (see Supplementary Page
36) instead of 1a. These results indicate the involvement of a
reductive quenching photocatalytic cycle in the reaction.

Discussion
In summary, we have described a general and practical strategy to
realize the phosphonocarboxylation of alkenes with CO2 via
visible-light photoredox catalysis. This method is suitable for
diverse alkenes (enamides, styrenes, enolsilanes, and acrylates)
and H-P(O) compounds (diaryl- and dialkyl- phosphine oxides
and phosphites), all of which undergo such reactions efficiently to
access important and potentially bioactive β-phosphono car-
boxylic acids, including β-phosphono α-amino acids. Notably,
these redox-neutral and transition-metal-free reactions feature
low catalyst loading, mild reaction conditions, high regio- and
chemo-selectivities, good functional group tolerance, facile scal-
ability, and easy product derivatization. Further application of
this strategy is underway in our laboratory.

Methods
General procedure. An oven-dried Schlenk tube (10 mL) containing a stirring bar
was charged with the substrates (0.2 mmol). The Schlenk tube was then introduced
in a glovebox, where it was charged with H-P(O) compound (49 mg, 0.24 mmol,
1.2 eq.) and K2CO3 (41 mg, 0.3 mmol, 1.5 eq.). The tube was taken out of the
glovebox and connected to a vacuum line where it was evacuated and back-filled
with CO2 for 3 times. Then DMF (2 mL) and 4CzIPN (32 μL, 0.1 mol%, 5 mg
dissolved in 1 mL DMF) were added under CO2 flow. Finally, the reaction mixture
in sealed tube was placed at a distance of 2–3 cm from a 30W blue LED and stirred
at room temperature (25 °C) for 12 h. Then, the mixture was quenched with 4.5 mL
of H2O and 0.5 mL of 2 N HCl (aq.), extracted with ethyl acetate (EA) for at least 5
times, then concentrated in vacuo. The residue was purified by silica gel flash
chromatography (0.2% AcOH in CH2Cl2/MeOH 100/1 ~ 20/1) to give the pure
desired product. Note: (1) for styrenes (0.5 mol% 4CzIPN and Cs2CO3 was used),
flashed with petroleum ether/AcOEt 1/1 to 0.67% AcOH in petroleum ether/AcOEt
1/1; (2) For acrylates (2 mol% 4CzIPN and Cs2CO3 was used), flashed with pet-
roleum ether/AcOEt 1/1 to 0.67% AcOH in petroleum ether/AcOEt 1/1; (3) for
phosphites (2 mol% 4CzIPN and Cs2CO3 was used), before the addition of 0.5 mL
2N HCl (aq.), the quenched reaction mixture was extract three times for removing
the inpurity, then 0.5 mL of 2N HCl (aq.) was added, the reaction mixture was
extracted for 4 times, then the combined organic phase was concentrated in
vacuum to obtain the pure product without chromatography.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and its Supplemental Information files. Extra data are available from
the author upon request. The crystallography data have been deposited at the Cambridge
Crystallographic Data Center (CCDC) under accession number CCDC: 1885892 (methyl
ester of 3aa) and can be obtained free of charge from www.ccdc.cam.ac.uk/getstructures.
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