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Abstract

Obesity has reached epidemic proportions and its prevalence is climbing. Obesity is characterized 

by hypertrophied adipocytes with a dysregulated adipokine secretion profile, increased recruitment 

of inflammatory cells, and impaired metabolic homeostasis that eventually results in the 

development of systemic insulin resistance, a phenotype of type 2 diabetes. Nitric oxide synthase 

(NOS) is an enzyme that converts L-arginine to nitric oxide (NO), which functions to maintain 

vascular and adipocyte homeostasis. Arginase is a ureohydrolase enzyme that competes with NOS 

for L-arginine. Arginase activity/expression is upregulated in obesity, which results in diminished 

bioavailability of NO, impairing both adipocyte and vascular endothelial cell function. Given the 

emerging role of NO in the regulation of adipocyte physiology and metabolic capacity, this review 

explores the interplay between arginase and NO, and their effect on the development of metabolic 

disorders, cardiovascular diseases, and mitochondrial dysfunction in obesity. A comprehensive 

understanding of the mechanisms involved in the development of obesity-induced metabolic and 

vascular dysfunction is necessary for the identification of more effective and tailored therapeutic 

avenues for their prevention and treatment.
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2. INTRODUCTION

Obesity, a condition characterized by the excessive accumulation and storage of fat in the 

body, is generally defined as a body mass index (BMI: weight-lbs/(height-inches)2 × 703) of 

30 or greater. Obesity is considered the core of metabolic disorders and an independent risk 
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factor for all-cause mortality in the general population, particularly from cardiovascular 

disease (1). The vast majority of patients with type 2 diabetes (T2D) exhibit obesity and 

insulin resistance (2, 3). According to the World Health Organization, obesity is now 

considered a serious health problem worldwide, with its prevalence nearly tripling over the 

past 40 years due to overnutrition and reduced physical activity (4). A key function of 

adipose, or fat, tissue is energy homeostasis. Adipose tissue stores excess nutrients (ie: 

glucose and fatty acids) through the process of lipogenesis. In conditions of nutrient 

deficiency, it ensures a stable supply of energy to all organs and tissues through lipolysis (5).

Adipose tissue is the largest endocrine organ in the body, consisting mainly of adipocytes 

which are capable of secreting a variety of cell signaling cytokines, known as adipokines (6). 

These adipokines, particularly those in visceral adipose tissue (VAT), can regulate local and 

systemic inflammation as well as energy homeostasis (7). Healthy adipocytes are insulin 

sensitive, a trait essential for adipocyte glucose uptake and for the prevention of hepatic 

gluconeogenesis, which allows for the maintenance of normal blood glucose levels (8). 

Insulin resistance is an important feature of metabolically unhealthy obesity, a condition 

which differs from healthy obesity in terms of fat distribution. Metabolically healthy obese 

individuals exhibit increased subcutaneous adipose tissue (SAT) mass with less 

inflammation, less VAT and ectopic (liver and skeletal muscle) fat accumulation, and a 

normal adipokine secretion profile compared to metabolically unhealthy obese individuals 

(9). Studies from many groups have led to our current understanding that vascular pathology 

and dysfunction of obesity-related metabolic dysfunction develops through a chronic and 

progressive inflammatory process (10–12).

The pathogenesis of obesity is far more complex than just lipid accumulation and involves 

interactions among many cell types (Figure 1). With expansion of the VAT, hypertrophy of 

adipocytes, and inadequate vascularity (impaired angiogenesis), hypoxia occurs, causing the 

release of inflammatory cytokines and chemokines. These factors ‘activate’ endothelial cells 

by enhancing leukocyte and monocyte adhesion to the endothelium and inducing tissue 

infiltration by pro-inflammatory macrophages. This further elevates levels of inflammatory 

factors, triggering a vicious cycle of inflammation (13, 14). Nitric oxide (NO) has been 

recognized as a key regulator of body composition, energy metabolism, and vascular 

function. NO is produced from L-arginine by three NO synthase (NOS) isoforms: 

endothelial NOS (eNOS/NOS3), inducible (iNOS/NOS2), and neuronal NOS (nNOS, 

NOS1) (15, 16). NO produced by eNOS (nanomolar range) relaxes vascular smooth muscle 

cells and prevents their excessive proliferation, increases blood flow, and suppresses platelet 

aggregation (17–19). This eNOS-produced NO also prevents ‘activation’ of endothelial cells 

by suppressing the release of factors that trigger migration and adhesion of leukocytes and 

monocytes to the endothelium, preventing infiltration of inflammatory macrophages. 

Endothelial NO concentration and production are suppressed in obesity (20, 21). Inducible 

NOS (iNOS), in contrast, produces much higher and toxic levels of NO (micromolar range) 

and is found in adipocytes and pro-inflammatory macrophages. NO production by iNOS is 

elevated in obesity (22).

With the exception of nNOS, the genes related to the NO system (eNOS, iNOS, subunits of 

the soluble guanylate cyclase (sGC), and both genes encoding cGMP-dependent protein 
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kinases) are expressed in subcutaneous human adipose tissue and isolated adipocytes. Under 

physiological conditions, eNOS appears to be the predominant NOS isoform in human 

adipocytes (23). Expression of eNOS has been reported in human, rat, and mouse adipose 

tissue (24). eNOS synthesizes NO through the oxidation of the semi-essential amino acid, L-

arginine (25, 26). NO signaling mechanisms involve either the activation of sGC, which 

increases the levels of the secondary messenger cGMP, or the posttranslational modification 

of the cysteine thiol group (S-nitrosylation) of various proteins to form nitrosothiols (SNO), 

directly affecting signal transduction (27, 28).

Reactive oxygen species (ROS) are often greatly elevated in obesity and hyperglycemia and 

can have serious pathological effects. ROS include hydrogen peroxide (H2O2), superoxide 

(O2−), hydroxyl radical (OH), high levels of nitric oxide (NO), and peroxynitrite (ONOO−). 

These ROS are products of numerous enzymatic reactions that occur within various 

subcellular compartments. Chronic hypernutrition induces the production of superoxide 

from NADPH oxidases, mitochondrial oxidative phosphorylation, and endothelial 

dysfunction/eNOS uncoupling (29–32). Chronic inflammation in adipose tissue can further 

perpetuate the vicious cycle of inflammation by promoting the infiltration of pro-

inflammatory, ROS-producing macrophages (33, 34). Obesity also is associated with the 

depletion or decreased activity of antioxidant defense enzymes such as superoxide 

dismutase, catalase, and glutathione peroxidase (33, 35). Acute changes in ROS 

concentration are important for cellular homeostasis and normal physiological processes 

where the ROS contribute to protective immune responses and act as intracellular signaling 

molecules that can induce insulin secretion and insulin sensitivity (36, 37). However, if not 

properly managed, ROS accumulation that exceeds the cellular antioxidant capacity may 

lead to maladaptive responses that result in metabolic dysfunction and inflammation (38, 

39).

3. OBESITY-INDUCED ADIPOSE TISSUE DYSFUNCTION AND METABOLIC 

DYSREGULATION

3.1. Impaired adipogenesis

Adipose tissue expansion occurs through enlargement of existing adipocytes (hypertrophy) 

and/or through increased number of adipocytes (hyperplasia/adipogenesis). Adipogenesis 

occurs in two consecutive phases: first, mesenchymal stem cells commit to the formation of 

preadipocytes, which is then followed by terminal differentiation (40). The signaling 

mechanisms driving adipogenesis are not clearly understood. What is known is that the 

commitment step involves repression of zinc-finger protein 521 (ZNF521) and bone 

morphogenetic protein 4 (BMP4), which ultimately leads to the activation of ZNF423 and its 

downstream target PPAR gamma. The process of adipogenesis also involves the sequential 

activation of several C/EBP transcription factors, C/EBP beta, sigma, and alpha. Activated 

PPAR gamma and C/EBP alpha then drive the terminal differentiation of preadipocytes (41–

43).

It has been suggested that a causal relationship exists between adipocyte size and the 

formation of new adipocytes. Individuals with large subcutaneous adipocytes have poor 
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differentiation capacity, either due to elevated dedifferentiation signals or downregulation of 

differentiation factors, both of which are associated with a high risk of T2D (44–46). 

Hypertrophied adipocytes showed reduced potential to recruit mesenchymal stem cells and 

promote their terminal differentiation into new adipocytes, secondary to impaired PPAR 

gamma activation and adipocyte differentiation (46, 47). Mature, healthy adipocytes secrete 

BMP4 during adipogenesis, causing mesenchymal stem cell commitment to an adipogenic 

phenotype. In an attempt to avoid dysregulation, hypertrophied adipocytes secrete higher 

levels of BMP4 to recruit preadipocytes. However, this process becomes futile due to 

increased secretion of endogenous BMP4 antagonist, Gremlin1. Inhibition of Gremlin1 has 

been shown to enhance the process of adipogenesis, restoring some of the buffering 

functionality of these adipocytes (48).

3.2. Enhanced inflammatory response and disrupted adipokine profile

Adipokines are cytokines secreted from adipose tissue that play an important role in 

maintaining energy homeostasis (49). Additionally, their immunomodulatory activities 

contribute to the chronic low-grade inflammation associated with obesity (50). During 

obesity, there is increased secretion of several pro-inflammatory adipokines that occurs in 

tandem with downregulation of anti-inflammatory adipokines (51). This adipokine 

imbalance is pivotal in the development of metabolic disorders and cardiovascular disease 

(52). Obesity disrupts adipose tissue homeostasis through deregulation of adipogenesis, 

reduced angiogenesis, and localized hypoxia, creating an environment of high cellular stress 

(53). Adipose tissue of obese subjects, primarily their VAT and to a lesser extent, their SAT, 

has been shown to sustain a state of chronic low-grade inflammation, which has been linked 

to the development of insulin resistance (54). The physiological response to this elevated 

adipocyte stress is the release of inflammatory cytokines and chemokines, chiefly, monocyte 

chemoattractant protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF-alpha), which 

recruit more inflammatory cells, thus further perpetuating the cycle of cellular stress, 

inflammation, and impaired macrophage emigration (55, 56). On the molecular level, 

hypertrophied adipocytes secrete saturated fatty acids which activate the toll-like receptor 

(TLR)-4 on macrophages. This TLR-4 activation results in increased activity of the 

transcription factor, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-

kappaB), which upregulates expression of TNF-alpha (57, 58). TNF-alpha increases 

adipocyte lipolysis, producing more free fatty acids, and also promotes adipocyte expression 

of intracellular adhesion molecule-1 (ICAM-1) and MCP-1. These proteins recruit 

circulating inflammatory monocytes and promote their differentiation into macrophages, 

exacerbating inflammation. Hypertrophied adipocytes also express lower levels of 

adiponectin, an anti-inflammatory adipokine that inhibits TLR-activated NF-kappaB, 

allowing the expression of TNF-alpha to proceed relatively unhindered (59–61).

Adipose tissue macrophages represent about 40% of all adipose tissue cells during metabolic 

stress (62, 63). In healthy adipose tissue, the resident macrophages are primarily polarized 

towards the anti-inflammatory, reparative M2 phenotype. These cells secrete anti-

inflammatory cytokines, like IL-10, and perform immune surveillance and lipid buffering 

functions to maintain a state of insulin sensitivity (64, 65). However, under obese conditions, 

hypoxic adipocytes secrete chemotactic molecules to recruit inflammatory monocytes, 
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activated T cells, and B cells. The presence of activated T cells coupled with the reduced 

number of regulatory T cells (Tregs), the immunosuppressive subpopulation of T cells that 

downregulate the activation and proliferation of effector T cells, leads to a phenotypic shift 

in the macrophage population towards the pro-inflammatory, M1 phenotype (66). The M1 

macrophages secrete mainly pro-inflammatory cytokines such as TNF-alpha and IL-6 (67). 

The degree of insulin resistance positively correlates with the amount of infiltrating M1-like 

macrophages in adipose tissue (68). It has been proposed that the key link between 

inflammatory stimuli and insulin resistance is the intracellular activation and nuclear 

translocation of NF-kappaB in response to increased pro-inflammatory stimuli (69). Anti-

inflammatory drugs, such as salicylates, have been shown to inhibit NF-kappaB and improve 

insulin sensitivity in obese rodents and diabetic patients (70). In adipose tissue of obese 

mice, the c-Jun N-terminal kinase (JNK)–activator protein-1 (AP-1) pathway is activated. 

Activation of the JNK/AP-1 pathway results in phosphorylation of insulin receptor 

substrate-1 (IRS-1) at its negative regulatory site, preventing interaction with the insulin 

receptor and inhibiting the insulin signaling pathway (71). Our recent studies showed that 

systemic administration of an arginase inhibitor or deletion of endothelial arginase 1, an 

isoform of arginase that competes with eNOS for available L-arginine, protected mice 

against obesity-induced inflammatory responses, indicating protective functions of NO (72, 

73). Another study showed that arginase 2 activity promoted a pro-inflammatory 

macrophage response through increased generation of mitochondrial oxidative stress. The 

formation of excess mitochondrial ROS contributed to the development of insulin resistance 

and atherosclerosis (74).

3.3 Adipokines

Adipokines are a group of proteins composed of cytokines, chemokines, and hormones that 

are secreted from adipose tissue. They play important roles in the maintenance of energy 

homeostasis, appetite, glucose and lipid metabolism, insulin sensitivity, angiogenesis, 

immunity and inflammation, hemostasis, and blood pressure (75). Adipokines are classified 

as either pro-inflammatory or anti-inflammatory. The former has been shown to be elevated 

at the expense of the latter in obesity. This adipokine imbalance is believed to be the link 

between obesity, metabolic disorders, and cardiovascular diseases. Pro-inflammatory 

adipokines include leptin, resistin, TNF-alpha, retinol binding protein 4, lipocalin 2, 

angiopoietin-like protein 2, and visfatin. Anti-inflammatory adipokines include adiponectin, 

omentin, and adipolin (51, 76).

3.3.1. Leptin—Leptin is considered a pro-inflammatory adipokine since it induces 

production of ROS, TNF-alpha, and IL-6 by macrophages and monocytes, which in turn 

initiate the production of more leptin (77). However, leptin has many beneficial roles outside 

of its inflammatory effects. Leptin is a 16 kDa adipokine produced primarily in adipocytes 

from the LEP gene, the human homologue of the murine obese (ob) gene (78). Leptin 

receptors are produced from the diabetes (db) gene (79). Leptin regulates appetite and food 

intake by communicating energy status to the central nervous system (80). Leptin enhances 

glucose utilization and insulin sensitivity under normal conditions and ameliorates 

hyperlipidemia as shown in both experimental and clinical studies (81, 82). In mouse 

models, severe obesity can be induced by mutations in either the ob or db genes (78, 83). 
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However, hyperleptinemia is common in clinical settings and administration of exogenous 

leptin does not result in weight loss, indicating that leptin resistance could be due to 

downregulation of its receptor or impairment of signal transduction (84, 85). The form of 

leptin resistance seen primarily in obesity occurs through inhibition of JAK2/STAT3 

signaling, which is normally activated once leptin binds its receptor (86). Increased activity 

of the protein suppressor of cytokine signaling 3 (SOCS3) inhibits activation of the JAK/

STAT3 pathway, reducing leptin signal transduction (87–89).

The cardiovascular effects of leptin are controversial. Elevated leptin levels are associated 

with hypertension caused by chronic activation of the sympathetic nervous system (90, 91). 

Additionally, studies that investigated the metabolic effects of insulin showed that prolonged 

exposure of rat adipocytes to high leptin concentrations (>1 nM), resulted in dose-dependent 

inhibition of insulin-stimulated glucose uptake, which was paralleled by decreased 

lipogenesis (92). Inhibition of insulin-stimulated glucose uptake and downregulation of 

lipogenesis are key events that can lead to the development of insulin resistance and 

cardiovascular dysfunction. Increased serum levels of leptin and arginase 1 have been found 

in obese patients (93). In contrast, leptin-mediated vasodilatory effects from increased NO 

production are impaired under pathological conditions, including obesity and metabolic 

syndrome (94). Leptin-deficient mice showed significant elevation in arginase activity in 

wounded skin, which correlated with impaired skin repair, likely due to decreases in 

endothelial cell-derived NO needed for angiogenic repair and unchecked inflammatory 

responses (95). The impaired tissue repair in leptin-deficient mice was abolished with 

administration of exogenous leptin (96).

3.3.2. Resistin—Resistin is a pro-inflammatory adipokine produced primarily from 

adipocytes in rodents, and monocytes and macrophages in humans (97). Elevated serum 

levels of resistin are associated with metabolic disorders and diabetic microvascular 

complications mediated by endothelial dysfunction (98). Interestingly, obesity is still seen in 

resistin-deficient mice, despite improved glucose tolerance and insulin sensitivity (99). Pro-

inflammatory cytokines such as IL-1, IL-6, and TNF-alpha induce transcription of the 

resistin gene (RETN) in human mononuclear cells, which leads to the expression of more 

pro-inflammatory cytokines, resulting in the precipitation of inflammation (100). Resistin 

activates SOCS3, an inhibitor of the insulin signaling pathway, thereby inducing insulin 

resistance (101). In vivo supplementation of eNOS substrate, L-arginine, to mice fed a high-

fat diet (HFD), enhanced insulin sensitivity without affecting resistin levels (102). Previous 

reports have shown that inflammatory stimuli produce high levels of iNOS-generated NO 

which promotes resistin expression, while iNOS inhibition reduces resistin expression, 

confirming the deleterious effect of high NO levels (103, 104).

3.3.3. Tumor necrosis factor-alpha—Tumor Necrosis Factor-alpha (TNF-alpha) is a 

pro-inflammatory cytokine, which in obesity, is heavily produced by monocytes and 

macrophages present in the stromal vascular fraction of adipose tissue. TNF-alpha levels 

have been found to positively correlate with obesity and T2D (54). TNF-alpha plays a 

central role in the development of insulin resistance and inflammation by inducing a 

repressive form of insulin receptor substrate-1 (IRS-1), effectively halting the insulin 
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signaling pathway (105). Interestingly, short-term treatment (~4 weeks) with TNF-alpha 

blockers in obese diabetic patients and patients with metabolic syndrome reduced 

inflammatory responses, but did not improve insulin signaling suppression (54, 106). 

However, patients with metabolic syndrome that were treated with TNF-alpha blockers for a 

prolonged period (~6 months), showed lower fasting glucose levels, indicating improvement 

in insulin resistance and glucose uptake (107). In addition to its non-vascular effects, TNF-

alpha has been shown to induce impairment of NO-mediated vasodilation in the small 

arteries found in the visceral fat of obese patients (108). It also has been shown that TNF-

alpha activity impairs NO-induced vascular endothelial vasorelaxation through upregulation 

of arginase 1 expression/activity in ischemia-reperfusion injuries (109). In addition, TNF-

alpha functions to reduce the levels of the anti-inflammatory adipokine, adiponectin, and 

increase the level of the pro-inflammatory adipokine, visfatin/NAMPT (110).

3.3.4. Retinol binding protein 4 (RBP4)—Retinol binding protein 4 (RBP4) is a 

blood transporter for retinol (vitamin A) secreted by the liver, adipose tissue, and 

macrophages (111). RBP4 serum level positively correlates with metabolic disorders, 

obesity, insulin resistance, and pro-atherogenic conditions (112). RBP4 induces insulin 

resistance by preventing insulin-initiated phosphorylation of insulin receptor substrate 1 

(IRS-1) (113). RBP4 levels can be used to determine the predisposition of patients to 

atherosclerosis due to its positive correlation with obesity and pro-atherogenic markers 

(112). Mice lacking RBP4 exhibit reduced systolic blood pressure through enhanced eNOS 

phosphorylation and NO-mediated vasodilation (114).

3.3.5. Lipocalin 2—Lipocalin 2 is a carrier of retinoids, arachidonic acid, steroids, 

leukotriene B4, and platelet activating factor. Lipocalin 2 is produced primarily by 

adipocytes and macrophages upon activation of NF-kappaB. Elevated serum levels of 

lipocalin 2 positively correlate with metabolic disorders and inflammation (115, 116). 

Lipocalin-2 has been shown to cause M1 macrophage polarization while suppressing 

formation of the M2 macrophage phenotype, thereby increasing expression of iNOS and 

decreasing arginase 1 activity in macrophages (117). Inhibition of iNOS, pharmacologically 

or via gene silencing, prevents IL-1beta and IFN-gamma-induced lipocalin 2 expression 

(118). Paradoxically, lipocalin 2 knockout mice showed increased body weight, adipose 

tissue weight, and insulin resistance compared to wild type mice (119). Also at odds with its 

association with metabolic disorders, lipocalin 2 was recently reported to interact 

synergistically with insulin and retinoic acid in the activation of beige adipocytes with a 

resultant thermogenesis (120). The mechanisms behind these apparent contrasting effects of 

lipocalin 2 have yet to be elucidated.

3.3.6. Angiopoietin-like protein 2 (ANGPTL2)—Angiopoietin-like protein 2 

(ANGPTL2) is an adipokine produced mainly from adipocytes, macrophages, and 

endothelial cells and is involved in the development of insulin resistance and inflammation 

(121). Serum and adipose tissue levels of ANGPTL2 positively correlate with metabolic 

disorders and inflammation (122). ANGPTL2 transgenic mice have been shown to have 

reduced eNOS expression, which is indicative of impaired NO-mediated vasorelaxation 

(123). This is in contrast to another study which showed that ANGPTL2 improves insulin 
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sensitivity and lipid profile in genetically diabetic mice (124). The reasons for these 

differing effects of ANGPTL2 activity have not been resolved.

3.3.7. Visfatin—Visfatin, also known as cytokine pre-B cell colony enhancing factor 

(PBEF), or nicotinamide phosphoribosyltransferase (NAMPT), is produced primarily in 

adipocytes and macrophages (125, 126). This adipokine was initially thought to have 

insulin-mimetic effects, but this response has not been observed in humans (125, 127). 

However, administration of visfatin has been shown to ameliorate glucose intolerance and 

improve hepatic insulin sensitivity (128). The controversy over visfatin function was highly 

debated but more recent data indicate that serum levels of visfatin are higher in obese and 

T2D patients. This study suggested that visfatin-induced the release of pro-inflammatory 

cytokines, like TNF-alpha, which contributed to the onset of insulin resistance (129, 130). 

This pro-inflammatory role is reported to involve activation of p38 mitogen-activated protein 

kinase (p38 MAPK) and extracellular signal-regulated kinase (ERK) pathways (131). It also 

has been reported that circulating levels of visfatin are markedly elevated during 

atherosclerosis and that this increase was closely associated with decreased levels of L-

arginine and NO, and increased levels of an endogenous inhibitor of NOS, asymmetric 

dimethylarginine (ADMA) (132).

The contrasting characterizations of visfatin as pro-inflammatory versus anti-inflammatory 

may be due to the differences between the extracellular and intracellular actions of visfatin, 

and whether its function is mediated by enzyme activity or by activation of the unknown 

visfatin receptor (126). Intracellular visfatin/NAMPT produces NAD+. NAD+ is essential for 

the activity of sirtuin1 (SIRT1), a protein and histone deacetylase, which exerts many 

beneficial effects on cellular metabolism and vascular function (133). SIRT1 induces eNOS 

activity and NO production and thus improves cardiovascular function (134).

3.3.8. Adiponectin—Adiponectin is an anti-inflammatory adipokine synthesized only 

by adipocytes. Compared to most other adipokines, the healthy plasma concentration of 

adiponectin is high (~3−30 μg/mL) (135–137). Adiponectin enhances insulin sensitivity by 

increasing glucose and fatty acid metabolism through the activation of AMP Kinase 

(AMPK) and PPAR alpha (138–140). Conditions that adversely affect adiponectin 

concentrations are hypoxia, pro-inflammatory cytokines, and oxidative stress (141). The 

plasma adiponectin levels in obese subjects negatively correlate with plasma lipid 

peroxidation, a marker of oxidative stress (33). Overexpression of adiponectin in ob/ob mice 

results in healthy adipogenesis with expansion of the subcutaneous adipose tissue and 

insulin sensitivity similar to that of lean mice (142).

The effects of adiponectin on cellular metabolism and insulin sensitivity are important for 

the maintenance of good health (52). Adiponectin exerts an anti-inflammatory effect by 

repressing TNF-alpha production and promoting eNOS activity (143). Moreover, 

adiponectin inhibits toll-like receptor-induced activation of NF-kappaB and limits 

macrophage polarization to pro-inflammatory M1 macrophages, while simultaneously 

increasing the number of anti-inflammatory M2 macrophages (144).
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Adequate adiponectin levels are associated with proper eNOS function. eNOS-deficient 

mice showed reduced adiponectin levels while mice overexpressing dimethylarginine 

dimethylaminohydrolase (DDAH), the enzyme responsible for the degradation of 

endogenous eNOS inhibitor, ADMA, showed higher adiponectin levels (145, 146). In turn, 

adiponectin can enhance NO levels by increasing eNOS mRNA stability and eNOS 

phosphorylation (147, 148). Adiponectin has also been shown to impede NO degradation 

through suppression of superoxide anion formation (149). Additionally, global deletion of 

the mitochondrial arginase isoform, arginase 2, induced a significant increase in adiponectin 

expression in epididymal adipose tissue with no significant effect on circulating adiponectin 

or hepatic levels, suggestive of a local autocrine effect (150).

3.3.9. Omentin—Omentin is an anti-inflammatory adipokine produced in adipose tissue 

that exhibits insulin-sensitizing properties through activation of the Akt signaling pathway 

(151). It has been shown that circulating levels of omentin are decreased in obese patients 

with insulin resistance (152). Omentin expression in both visceral and subcutaneous adipose 

tissue was found to correlate positively with the expression of neuropeptide Y (NPY), the 

most potent appetite stimulating peptide, suggesting that omentin may play a role in appetite 

modulation (153, 154).

In addition, omentin has been associated with reduced inflammation, improved lipid 

metabolism and vasodilation, and a reduction in the development of obesity-related 

cardiovascular disease and atherosclerosis. Omentin induces adiponectin expression, 

resulting in improved fatty acid breakdown and increased insulin-mediated glucose uptake 

(155). Omentin also stimulates endothelial-derived NO production, resulting in 

vasorelaxation, maintained endothelial barrier function, and reduced inflammation (156, 

157). In addition to its positive regulatory roles, omentin has been shown to suppress TNF-

alpha production (158). These various functions of omentin protect against atherosclerosis 

and obesity-related cardiovascular disorders.

3.3.10. Adipolin—Adipolin is an anti-inflammatory, insulin-sensitizing adipokine, 

primarily secreted from adipose tissue. Adipolin levels are reduced in obese mice and are 

negatively correlated with insulin resistance (159). Adipolin reduces inflammation through 

the inhibition of macrophage recruitment and secretion of pro-inflammatory cytokines (160).

3.4. Premature cellular senescence in adipose tissue

Cellular senescence is a state of irreversible replicative arrest that is associated with aging. It 

is initiated by a variety of factors including progressive telomere shortening through many 

cell cycles, buildup of reactive oxygen species (ROS), DNA damage, growth factors, and 

other metabolic and mitogenic stressors (161). This process is not only a stress response to 

severe cellular damage designed to protect against the proliferation of aberrant cells, but is 

also involved in development (162). The accumulation of these senescence-inducing factors 

triggers the upregulation of cyclin-dependent kinase inhibitors, p16INK4a and p53/p21, 

which arrest the cell cycle (163). However, premature senescence has been observed in the 

preadipocytes and adipocytes of the visceral adipose tissue (VAT) of young obese humans 
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and animals (164). This phenomenon is promoted by nutrient excess, which contributes to 

oxidative stress, adipose tissue metabolic dysregulation, and inflammation (33, 61, 65, 165).

The marked accumulation of senescent cells in the visceral adipose tissue of obese humans 

and animals, compared to their age-matched counterparts, is correlated with compromised 

adipose tissue and mitochondrial function (166). The effect of obesity-induced senescence is 

particularly evident in preadipocytes, where it contributes to the reduction of adipogenesis 

and lipogenesis, leading to lipotoxicity and inflammation (167). Although senescent cells 

cannot divide, they remain metabolically active. Especially in the VAT, senescent cells 

readily produce and release pro-inflammatory cytokines, chemokines, and growth factors. 

This process, which has been termed the senescence-associated secretory phenotype 

(SASP), enhances inflammation and adipose tissue dysfunction (166). The SASP release of 

MCP-1 further exacerbates the inflammatory state by promoting pro-inflammatory 

macrophage infiltration (168, 169). Additionally, the accumulation of senescent cells in the 

VAT can induce senescence in neighboring cells in a feed-forward mechanism (161).

In addition to the deleterious effects of obesity-induced preadipocyte and adipocyte 

senescence, senescence in VAT endothelial cells (EC) also plays a key role in VAT 

dysfunction (170). The process of transporting fatty acids (FAs) into adipocytes requires the 

microvascular endothelium. Senescence in these VAT EC has been reported to block fatty 

acid transport into adipocytes by a mechanism involving reduced PPAR gamma expression 

and activity (171, 172). The failure of adipocytes to take up free FAs results in their inability 

to store FAs in the VAT, leading to ectopic fat deposition and toxicity in the skeletal muscle 

and liver. Endothelial cells from the VAT of obese subjects also have been shown to exhibit 

the SASP, possessing inflammatory and angiogenic secretory profiles (170).

Another cell type found in VAT that can be forced into senescence by overnutrition are T 

cells. T cell senescence has also been noted in the VAT of diet-induced obese mice. These 

senescent CD4+-associated T cells appear to enhance the inflammatory environment in 

obese VAT by releasing large amounts of osteopontin (173). Osteopontin, an inflammatory 

cytokine, has been reported to be elevated in the blood of obese diabetic and insulin-resistant 

patients. This is correlated with the severity of coronary artery disease, and plays a causative 

role in VAT inflammation, macrophage infiltration, and insulin resistance (174, 175).

4. IMPAIRED GLUCOSE METABOLISM AND INSULIN SENSITIVITY

The metabolic effects of insulin are mediated through a signal cascade initiated by the 

binding of insulin to its receptor (INSR) (Figure 2). Insulin binding triggers a 

conformational change in the receptor, leading to activation of the tyrosine kinase domain 

through autophosphorylation (176). The activated receptor phosphorylates insulin receptor 

substrates (IRSs), which in turn, bind phosphoinositide 3’ kinase (PI3K). PI3K-IRS-1 

phosphorylates its plasma membrane-bound substrate, phosphatidylinositol (3,4)-

bisphosphate (PIP2) forming secondary messenger, phosphatidylinositol (3,4,5)-triphosphate 

(PIP3). PIP3 is required for the activation of protein kinase B (PBK or Akt), which once 

activated, mediates the translocation of glucose transporter 4 (GLUT4) to the plasma 

membrane (176). In addition to promoting cellular glucose uptake, insulin also increases the 
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expression of transcription factor adipocyte determination and differentiation-dependent 

factor 1 (ADD1). ADD1 upregulates expression of two genes: fatty acid synthase (FAS), an 

enzyme critical in lipogenesis, and leptin, which is responsible for appetite suppression 

(177).

Obesity is associated with a decrease in insulin-dependent GLUT4 expression and 

membrane translocation, which results in reduced glucose uptake and the subsequent 

development of hyperglycemia (178–180). The mechanism for the development of insulin 

resistance is not fully understood, but it is postulated that insulin resistance manifests as a 

defensive response from hypertrophied adipocytes (181). The onset of insulin resistance is 

an initial step in the development of T2D (181). Cell starvation from the lack of intracellular 

glucose results in an increase in pancreatic insulin secretion, triggered by increased fat 

metabolism and the production of ketones (182, 183). This increase in insulin results in 

hyperinsulinemia because the insulin receptors no longer respond properly to insulin levels. 

Sustained, elevated insulin release leads to dysfunction in its production and pancreatic beta-

cell failure, with ensuing hypoinsulinemia and hyperglycemia (184).

Many factors are associated with the development of insulin resistance in obesity including 

adipocyte dysfunction, elevated oxidative stress, and high levels of NO produced by iNOS. 

Adipocyte hypertrophy occurs as a buffering response to chronic overnutrition that protects 

other tissues from lipotoxicity (185). The development of adipocyte hypertrophy has 

systemic deleterious effects, in addition to promoting adipocyte dysfunction. In fact, genetic 

deletion of GLUT4 from adipose tissue resulted in systemic insulin resistance similar to that 

seen with the same deletion in skeletal muscle, tissue crucial for glucose uptake. In obese 

women, adipose tissue expression of GLUT4 and IRS-1 were found to be significantly 

reduced, indicating that obesity-induced adipocyte hypertrophy is linked to development of 

insulin resistance (186). This decrease in GLUT4 expression in subcutaneous adipocytes 

was also seen in patients who developed T2D (187). Obesity has also been shown to induce 

systemic and local oxidative stress, which is suggested to be critical in the pathogenesis of 

metabolic syndrome. Reactive oxygen species (ROS) are produced from many sources in 

response to the increase in fatty acids present in visceral adipose tissue under obese 

conditions (33, 188). A transient increase of intracellular ROS is essential for insulin 

signaling and glucose uptake. However, chronic elevation of intracellular ROS induces 

insulin resistance through suppression of the insulin signaling pathway (33, 178–180, 189). 

Another mechanism that contributes to the pathogenesis of insulin resistance is abnormal 

eNOS and iNOS activity. Insulinstimulated glucose uptake in adipose tissue and skeletal 

muscle is NO-dependent, and these physiological levels of NO are produced by 

constitutively active eNOS (190, 191). In obesity, proper eNOS function is compromised 

(192). Mice fed a high-fat diet (HFD) become obese, but supplementation with L-arginine, 

the substrate for eNOS, increased NO production and improved their insulin sensitivity 

(102). Inducible NOS (iNOS) has a pro-inflammatory role in the immune response and is 

upregulated in obesity, diminishing insulin sensitivity (193). Interestingly, inhibition of all 

NOS isoforms restored adipocyte insulin sensitivity, suggesting that inhibition of the 

detrimental iNOS activity is more important than the beneficial, constitutive activity of 

eNOS in regards to the maintenance of the homeostatic insulin response (103, 194, 195). 
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These compounding effects promoted in obesity contribute to the type 2 diabetic state 

consisting of impaired glucose metabolism and insulin resistance.

5. IMPAIRED PROTEIN AND MUSCLE METABOLISM

In contrast to the increased adiposity seen in obesity and T2D, muscle mass in these 

conditions decreases due to impaired protein synthesis and increased muscle degradation in 

a process known as sarcopenia. The process of sarcopenia is accelerated with aging. In 

healthy subjects, insulin stimulates protein anabolism by simultaneously promoting protein 

synthesis and reducing protein catabolism (196). A large survey reported an inverse 

relationship between the skeletal muscle (SM) index (ratio of SM mass to body weight) and 

insulin resistance, indicating that patients with insulin resistance were likely to have 

increased muscle atrophy (197). Furthermore, muscle from obese and/or T2D patients has 

been found to exhibit increased levels of myostatin, a hormone known to reduce skeletal 

muscle mass (198, 199). Additionally, obese women have been shown to display more 

resistance to insulin-stimulated protein anabolism than lean women (200). Ectopic fat 

deposition in the skeletal muscle, or myosteatosis, has been shown to contribute to impaired 

protein anabolism and muscle function (201, 202). Diets high in protein and essential 

branched-chain amino acids (BCAA - leucine, isoleucine and valine) are very important for 

promotion of protein anabolism and the maintenance of muscle mass (203). Activation of 

mammalian target of rapamycin complex 1 (mTORC1) is believed to be centrally involved 

in this process.

Adipocytes also catabolize BCAAs to produce precursors required for fatty acid and sterol 

biosynthesis. This catabolic process increases dramatically with adipogenesis indicating that 

homeostasis of protein metabolism is distorted in obesity (204). Mice deficient in the 

enzyme responsible for BCAA catabolism showed decreased adiposity despite higher food 

intake and enhanced energy expenditure (205). Mice fed a leucinedeficient diet showed 

reduced adipose tissue weight and lipogenesis, with enhanced lipolysis and energy 

expenditure (206).

6. IMPAIRED LIPID METABOLISM

One of the primary functions of adipocytes is the storage of lipids in the form of 

triacylglycerol (TAG), which constitutes about 90% of adipocyte volume. The effect of 

insulin on lipid metabolism is highly coordinated. It simultaneously stimulates fatty acid 

anabolism (lipogenesis) through upregulation of lipogenic enzymes like acetyl-CoA 

carboxylase (ACC) and fatty acid synthase (FAS), while preventing lipid catabolism 

(lipolysis) by inhibiting the phosphorylation and activation of hormone-sensitive lipase 

(HSL) (207–209). In obesity, adipocytes are abnormally enlarged and the usually, tightly 

regulated effects of insulin on lipid metabolism are lost. Basal lipolysis is increased in 

obesity, resulting in hyperlipidemia due to increased secretion of lipolytic adipokines, serum 

amyloid A (SAA), IL-6, and TNF-alpha, from the hypertrophied adipocytes (210, 211). 

Concurrently, these dysfunctional adipocytes exhibit lower rates of lipogenesis as the rates 

of lipolysis increase, a phenotype commonly seen in insulin resistance (212). During obesity, 

the increased levels of free fatty acids and cholesterol result in myosteatosis and 
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hepatosteatosis, or the build of ectopic lipid deposits in the skeletal muscle and liver (213–

215).

Lipoprotein lipase (LPL) is an enzyme critical for the hydrolysis of TAG in circulating 

chylomicrons and very low-density lipoproteins (VLDL). LPL hydrolyzes TAG into two free 

fatty acids and one monoacylglycerol (216). LPL is expressed in adipocytes and 

subsequently transported to the capillary endothelium (217, 218). In adipose tissue, LPL 

influences fatty acid (FA) uptake for lipid storage and in skeletal and cardiac muscle, LPL 

induces FA uptake to provide these energetically-active cells with fuel (219, 220). Previous 

studies in mice on a high-fat diet (HFD) have shown that the skeletal muscle-specific 

deletion of LPL reduced lipid deposition and increased insulin sensitivity in the muscles 

(221, 222). This result indicates that LPL-induced uptake of fatty acids in skeletal muscle is 

detrimental in obesity due to the extreme excess of circulating lipids. When transgenic mice, 

overexpressing LPL in their adipose tissue, were challenged with a HFD, they exhibited 

elevated adiponectin levels, improved glucose and insulin tolerance, and increased energy 

expenditure when compared to control mice on the same diet (223). The positive, anti-

inflammatory effect of LPL seen in adipocytes was suppressed in cultured adipocytes treated 

with TNF-alpha due to the activation of inducible nitric oxide synthase (iNOS), which 

produced toxic levels of nitric oxide (224). Other in vitro studies demonstrated that both a 

NO-releasing compound and the NOS substrate (hydroxylamine and L-arginine, 

respectively) increased LPL activity as seen by adipocyte differentiation and lipid 

accumulation (225). These data indicate that the toxic levels of NO from iNOS have a 

deleterious effect on LPL function, while moderate levels of NO promote LPL activity.

In addition to LPL dysfunction, mitochondrial lipid metabolism also is adversely affected by 

obesity. In lean conditions, fatty acids are internalized and transported into mitochondria, 

where they undergo beta-oxidation to produce acetyl-CoA. Acetyl-CoA is subsequently 

shuttled into the citric acid cycle to produce energy for the cell. In obesity, the mitochondria 

in white adipose tissue are inundated with excess lipids and incomplete beta-oxidation 

occurs. Incomplete beta-oxidation coupled with lipid overloading results in accumulation of 

toxic lipid intermediates and ROS, which promote insulin resistance (226, 227).

7. ROLE OF MITOCHONDRIAL DYSFUNCTION AND ER STRESS IN 

OBESITY

Mitochondria are dynamic organelles, critical for the maintenance of energy homeostasis. 

The mitochondria produce ATP, a form of cellular energy currency, through a sequence of 

processes that terminate with the electron transport chain (ETC): the citric acid cycle (CAC), 

pyruvate decarboxylation, fatty acid beta-oxidation, branched chain amino acid degradation, 

and oxidative phosphorylation (228). Mitochondria also internalize Ca2+, an important 

physiological process that influences mitochondria metabolism, intracellular Ca2+ signaling, 

and under conditions of oxidative stress, this uptake leads to initiation of apoptosis, or 

programmed cell death (229).
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7.1. Mitochondrial dysfunction

In response to increased energy expenditure, healthy cells undergo mitochondrial biogenesis, 

a process where cells increase their mitochondrial mass in order to increase their individual 

ATP production. Mitochondrial biogenesis is closely associated with the process of 

adipogenesis, indicating the importance of mitochondria to healthy adipocyte physiology 

and function (230–234). In adipose tissue, eNOS-produced NO plays an important role in 

mitochondrial biogenesis by increasing oxygen consumption and energy expenditure, 

inducing gene expression, and promoting protein kinase G (PKG)-dependent 

phosphorylation of AMP-activated protein kinase (AMPK) (20, 235). Activation of AMPK 

promotes expression of PPAR gamma coactivator 1 alpha (PGC-1 alpha), leading to 

increased expression of PPAR gamma, a protein that upregulates adipogenesis (236, 237).

Mitochondrial dysfunction, a process defined by poor ATP production, often occurs in 

obesity. There is still some debate on whether mitochondrial dysfunction is a cause or 

consequence of obesity and overnutrition. However, there have been data revealing that an 

excess of nutrients, as seen in obesity and type 2 diabetes, overwhelms the handling capacity 

of the mitochondrial metabolic processes, resulting in mitochondrial dysfunction (238). In 

the mouse preadipocyte cell line, 3T3-L1, mitochondrial dysfunction was manifested as 

reduced fatty acid oxidation, which resulted in TAG accumulation and increased glucose 

uptake, that latter of which is suggested to increase glycerol 3-phosphate synthesis, leading 

to further lipid accumulation. Increased lipid accumulation in adipocytes leads to the 

eventual loss of the lipotoxicity buffering capacity of these cells. The excess free fatty acids 

are released into the bloodstream resulting in ectopic fat deposition, which is believed to be 

the underlying cause of the development of insulin resistance in obesity (239).

In addition to the adverse effects seen from systemic lipid inundation and the subsequent 

steatosis, mitochondrial dysfunction also results in increased ROS production, as seen in 

both clinical and experimental studies (240, 241). The electron transport chain (ETC), 

primarily complexes I, II, and III, are considered to be major sources of ROS generation due 

to the capacity for electron leakage (242–244). Electron leakage directly correlates with 

mitochondrial membrane potential (245). Activation of the uncoupler protein (UCP) by ROS 

serves as a feedback mechanism to lower membrane potential (246). These detrimental by-

products of metabolism can induce metabolic dysfunction, inflammation (through 

upregulation of TNF-alpha), tissue damage, and the development of insulin resistance (38, 

39). ROS have also been shown to increase expression of activating transcription factor 3 

(ATF-3), a protein responsible for the downregulation of adiponectin expression (33). 

Though adipocytes, unlike other cell types, can endure high levels of ROS without 

sustaining substantial damage, chronic ROS elevation is detrimental and decreases 

adiponectin expression (247). In contrast, increased mitochondrial biogenesis has been 

correlated with increased adiponectin levels, reduced oxidative stress, improved 

mitochondrial function, and increased insulin sensitivity (33, 248).

These findings suggest an important link between oxidative stress, mitochondrial 

dysfunction, and metabolic dysregulation during obesity. Thus, further investigation is 

warranted to combat obesity and obesity-related dysregulations by targeting any or all of 

these disorders.
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Paradoxically, mild mitochondrial dysfunction, in the absence of oxidative stress, protects 

against obesity as seen in mice with a fat-specific deletion of the mitochondrial transcription 

factor A (TFAM). These mice exhibited decreased mitochondrial DNA (mtDNA) copy 

number and altered expression of ETC proteins, with decreased expression of complex I, the 

main site of superoxide formation in the ETC (249). These mice also exhibited a 

compensatory increase in complex II, which resulted in increased oxygen consumption, 

uncoupling, and decreased ROS production (250). The overall effect of the fat-specific 

deletion of TFAM in mice challenged with a HFD was higher energy expenditure and 

protection from diet-induced obesity, insulin resistance, and steatosis (250).

7.2. Compromised mitochondrial dynamics

Mitochondria are highly dynamic organelles, exhibiting fission, fusion, and mitophagy. 

Mitochondrial fusion is the process by which two mitochondria physically merge their inner 

and outer membranes to form a larger, mitochondrion (251). This process is controlled by 

several proteins, including the dynamin-related GTPases, mitofusin-1 and mitofusin-2 

(MFN-1 and MFN-2), and optic atrophy protein 1 (OPA-1), the former are responsible for 

the outer mitochondrial membrane fusion and the latter is required for the fusion of the inner 

mitochondrial membranes (252). Mitochondrial fission is the opposite of fusion, and is 

where a mitochondrion divides to form two mitochondria (251). Fission is controlled by 

dynamin-related protein 1 (DRP1), a protein recruited from the cytosol to the mitochondrion 

where it can then bind its receptors, fission 1 (FIS1) and mitochondrial fission factor (MFF) 

(253). The processes of fusion and fission occur cyclically. Fusion allows two mitochondria 

to mix their components and is typically followed within minutes by fission, which returns 

the fused mitochondria back into two distinct organelles (254). This dynamic process of 

mitochondrial fusion and fission in healthy cells is believed to be critical for cell health and 

aberrant function of this process is associated with several disease states (255, 256). 

Mitochondria with high membrane potential will continue the fission/fusion cycle while 

those with a low potential will remain depolarized until recovery (254). A continuous, but 

precisely controlled, cycle of fission and fusion is important for the proper distribution of 

mitochondria throughout the cell, repair of damaged mitochondria, and for mitochondrial 

quality control (256). Mitochondria that are damaged/depolarized and unable to recover, do 

not undergo fusion and are not incorporated into the healthy mitochondrial network (257). 

They form autophagosomes that eventually undergo mitophagy (258). Mitophagy is a 

catabolic process in which damaged mitochondria are degraded by lysosomes (258). This 

process is initiated by PARKIN and (PTEN)-induced putative kinase 1 (PINK1), which 

induce ubiquitination and degradation of fusion-promoting proteins MFN-1 and 2 (259).

Mitochondrial dynamics represent cellular adaptation to fluctuations in metabolic demand. 

Increased energy demand and decreased supply of nutrients are both associated with 

inhibition of mitochondrial fission and the promotion of fusion, or increased mitochondrial 

elongation, which allows respiration to be coupled to ATP synthesis (260). During 

conditions of increased energy expenditure, expression of MFN-2 is increased in skeletal 

muscles and brown adipose tissue (261, 262). Moreover, exercise improves insulin 

sensitivity in skeletal muscles of insulin resistant patients and is associated with decreased 

DRP1 and increased MFN-1 and MFN-2 expression (263). On the flipside, mitochondrial 
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fragmentation and uncoupled respiration predominate under conditions of excess nutrient 

supply, where the promotion of thermogenesis is necessary to dispose of the caloric excess 

(264). Increased DRP1 activity in brown adipocytes is associated with increased levels of 

uncoupling protein-1 (UCP-1) (265). In fact, brown/beige adipocytes rely greatly on fission 

to enhance the uncoupling process, allowing for increased oxygen consumption. Though 

mitochondrial fission is considered to be a physiological adaptation to bioenergetic stressors 

rather than a harmful process, excessive mitochondrial fission events can be deleterious for 

the cell (264).

Disruption of the tightly regulated mitochondrial dynamics is associated with metabolic 

disorders and insulin resistance seen in diabetic and obese patients (264). One study showed 

that mice lacking DRP1 or MFN-1 in the liver were resistant to high-fat diet-induced obesity 

and insulin resistance (266). Another study reported that increased hepatic levels of PINK1, 

a protein that promotes mitophagy, were positively correlated with increased insulin 

sensitivity. This effect is likely due to successful degradation of dysfunctional mitochondria, 

which can produce elevated levels of ROS (267–269). In pancreatic beta-cells, exposure to 

hyperglycemia and high levels of palmitate (obese conditions) resulted in reduced 

mitochondrial fusion (270). This environment also caused the same effect in leukocytes, 

which led to their enhanced adhesion to endothelial cells and subsequent inflammation 

(271). Skeletal muscle of Zucker obese rats showed decreased mitochondrial size, 

mitochondrial volume/unit of mitochondrial surface ratio, and MFN-2 expression (272). 

MFN-2 expression was found to be downregulated in human obese and type 2 diabetic 

patients (273, 274). MFN-2-deficient mice exhibited impaired insulin signaling in the liver 

and muscle, and increased ER stress through a mechanism involving increased ROS and 

JNK activation (272). Additionally, adipocyte-specific deletion of MFN-2, but not MFN-1, 

was associated with brown adipose tissue dysfunction and impaired lipid metabolism (275). 

Given the importance of proper mitochondrial dynamics in the maintenance of cell health 

and insulin sensitivity, the mitochondrial fission/fusion cycle is a promising therapeutic 

target for combating metabolic disorders (276).

7.3. Endoplasmic reticulum stress

The endoplasmic reticulum (ER) is the organelle where protein synthesis, folding, and 

maturation occurs (277, 278). Accumulation of misfolded proteins in the ER lumen is 

problematic and can eventually lead to cell death. During ER stress, mammalian cells trigger 

the unfolded protein response (UPR), a highly conservative response system intended to 

rectify the aggregation of misfolded proteins in the ER (279). The UPR begins with the 

activation of signaling pathways involved in either suppression of protein translation, to 

prevent more proteins from being misfolded, or the upregulation of chaperone protein 

expression, to coordinate and regulate proper protein folding (280–282). Hypoxia and ROS 

can increase the production of free fatty acids in adipocytes, oxidize proteins, and decrease 

calcium levels in ER lumen; all processes that impair ER protein folding in adipocytes and 

lead to ER stress (33, 283–286). Inflammatory cytokines also trigger ER stress by promoting 

ROS formation, or by increasing iNOS activity to pathological levels, which impedes the 

function of the ER Ca2+ pump (281, 287–289). Indicators of ER stress have been shown to 

be elevated in adipose tissue of obese mice and humans (290, 291). Administration of 
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chemical chaperones that block ER stress, like 4-PBA, to mice on a high-fat diet (HFD), 

reduced adipose tissue inflammation, increased insulin sensitivity, and suppressed HFD-

induced weight gain (292). Additionally, weight loss has been shown to be associated with 

reduced expression of ER stress markers (293).

In addition to triggering the unfolded protein response, ER stress has been shown to disrupt 

lipid metabolism. This mechanism involves activation of sterol regulatory element-binding 

protein (SREBP), which induces transcription of fatty acid synthase (FAS) and 3-hydroxy-3-

methylglutaryl-CoA reductase (HMG-COA), genes involved in lipid and cholesterol 

synthesis, respectively. Upregulation of these genes leads to excessive lipid production, 

resulting in fatty acid accumulation in the liver (294). Interestingly, deletion of ER stress 

sensor inositol-requiring enzyme 1 alpha (IRE1 alpha) in mouse adipose tissue macrophages 

halted the progression of obesity, insulin resistance, and hepatic steatosis when the mice 

were challenged with a HFD (295). This mutation also increased energy expenditure by 

inducing the browning of white adipose tissue, increased the metabolic activity of brown 

adipose tissue, and promoted macrophage polarization to the anti-inflammatory, M2 

phenotype (295). Prevention of ER stress activation may be an effective therapeutic strategy 

for the treatment of metabolic syndrome (294).

8. NITRIC OXIDE SYNTHASE (NOS) DYSFUNCTIONS

Nitric oxide (NO) is well known for its vasodilatory, anti-thrombotic, anti-proliferative, and 

anti-inflammatory effect in the vasculature (296–299). NO production and effects occur in a 

variety of cells and tissues. NO is produced from L-arginine by endothelial, neuronal, and 

inducible NO synthase (eNOS, nNOS, and iNOS). NO triggers a signal cascade by binding 

soluble guanylate cyclase (sGC), initiating the conversion of guanosine 5’-triphosphate 

(GTP) to the secondary messenger, cyclic 3’,5’-monophosphate (cGMP) (300). cGMP 

activates cGMP-dependent protein kinase (PKG) which then phosphorylates target proteins 

involved in mediating the vasodilatory response (301).

Adipose tissue (AT) from mice lacking eNOS (eNOS−/−) was reported to exhibit increased 

pro-inflammatory gene expression and macrophages, in addition to increased ROS and 

decreased mitochondrial biogenesis and adiponectin levels (146, 299). In contrast to these 

findings, another study reported that the lack of eNOS in mice did not promote AT 

inflammation (302). Use of a phosphodiesterase-5 (PDE5) inhibitor, such as sildenafil, 

blunted obesity-induced adipose tissue inflammation and macrophage infiltration, through 

the prevention of PDE5-mediated cGMP degradation (299). PDE5 inhibition resulted in 

enhanced NO-cGMP-PKG signaling, promotion of vasorelaxation, increased energy 

expenditure, and elevated insulin sensitivity (303). Other studies have demonstrated that 

eNOS expression and activity are tightly regulated in adipose tissue and muscle, and that 

eNOS is necessary for caloric restriction-induced upregulation of SIRT1, a protein involved 

in promotion of insulin sensitivity and amplification of eNOS activity (235, 304, 305). 

Further, eNOS−/− mice failed to exhibit the beneficial effects of swim training-induced 

increases in mitochondrial biogenesis, mtDNA copy number, and glucose uptake in the 

subcutaneous adipose tissue as compared with wild-type mice. In the same study, the NO 

donor, DETA-NO, was found to promote mitochondrial biogenesis, glucose uptake, and 
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increased GLUT4 membrane density in cultured murine and human adipocytes (306). These 

results indicate that physiological levels of NO play a pivotal role in maintaining healthy 

metabolic function of adipose tissue.

Data from both human and animal studies have shown reduced expression and activity of 

eNOS and NO production under obese conditions (307–310). Suggested mechanisms for 

decreased NO levels include upregulation of cell membrane caveolin1 (CAV1), a negative 

regulator of eNOS activity, and increased levels of ceramide, a disruptor of the eNOS/Akt/

HSP-90 complex (311, 312). However, a mechanism involved in the obesity-induced 

reduction of eNOS-produced NO supported by substantial evidence is the elevation of 

arginase expression/activity. Arginase is an enzyme that competes with NOS for their 

common substrate, L-arginine (313). Reduced availability of L-arginine leads to decreased 

NO production and NOS uncoupling. NOS uncoupling results in production of the ROS 

superoxide (O2
−), which can subsequently react with NO to form peroxynitrite (ONOO−), 

another toxic oxidative species (313). Several studies that used HFD and rodent models of 

obesity have shown prominent involvement of arginase in both visceral adipose 

inflammation and vascular dysfunction and inflammation through genetic deletion of 

arginase or use of arginase inhibitors (14, 73, 314). Our lab also found that mice specifically 

lacking arginase 1 in endothelial cells were protected from high-fat diet-induced systemic 

vascular dysfunction, hypertension, reduced vascular NO, elevated ROS levels, adipose 

tissue inflammation, fibrosis, and reduced vascularity (73, 313).

NO from endothelial or neuronal NOS at low to moderate concentrations stimulates glucose 

and fatty acid oxidation and inhibits synthesis of glucose, triacylglycerol, and low-density 

lipoproteins. These beneficial effects are linked to increased mitochondrial biogenesis and 

oxidative phosphorylation, as well as development and activity of brown adipose tissue (16). 

NOS function in mitochondria, along with cytoplasmic NO production, have been shown to 

induce mitochondrial biogenesis (235, 315). An in vitro study showed that NO acutely 

inhibits brown adipocyte proliferation but stimulates adipogenesis as shown by increased 

expression of peroxisome proliferator-activated receptor gamma (PPAR gamma) and 

uncoupling protein 1 (UCP 1) (316). In spite of the multitude of beneficial effects of NO at 

low to moderate concentrations, high concentrations of NO produced by iNOS is cytotoxic 

and can generate detrimental peroxynitrite and hydroxyl radicals (317). Under conditions of 

low L-arginine bioavailability, such as increased arginase activity, providing supplemental L-

arginine restored NO production (318). In Zucker obese/diabetic rats, dietary 

supplementation with L-arginine suppressed weight gain and other features of metabolic 

syndrome, while elevating the respiratory exchange ratio (RER) and heat production (319, 

320). L-arginine supplementation also improved metabolic disturbances by increasing 

insulin sensitivity in mice challenged with a low protein diet (321). Human studies also 

reported the effectiveness of supplemental L-arginine in the improvement of insulin 

sensitivity in patients with metabolic syndrome (165, 322).

Summaries of studies that have investigated means of enhancing constitutive NO production 

from NOS to prevent or reduce obesity-induced metabolic and vascular dysfunctions are 

provided in Table 1.
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9. PERSPECTIVE/SUMMARY

Historically, adipocytes were considered to be inert lipid reservoirs, however, recent studies 

have shown the important, systemic endocrine function of adipocytes, which is intimately 

involved in the regulation of insulin sensitivity, energy homeostasis, and cardiovascular 

function. The rapidly growing prevalence of obesity worldwide affects individuals of all 

genders, ages, ethnic groups, and socioeconomic levels. Obesity greatly increases the risk of 

developing various comorbidities, indicating the dire need to better understand the intricate 

mechanisms behind obesity-induced metabolic and cardiovascular dysfunctions. At 

physiological levels, the vasoprotective molecule, NO, plays a prominent role in maintaining 

adipocyte and vascular function. However, expression of inducible NOS leads to high levels 

of NO, which are detrimental to metabolic and cardiovascular function. In obesity, arginase 

and NOS and are dysregulated. Given the deleterious effects of elevated arginase activity/

expression seen in obesity-related metabolic and cardiovascular disorders, targeting this 

enzyme could be a possible therapeutic strategy in the treatment of obesity-induced diseases. 

Complicating this potential strategy is the fact that arginase has two isoforms, A1 and A2, 

and not enough is known about the ability and effect of preferentially targeting them. 

Additionally, the effect of systemic arginase inhibition in the presence of comorbidities or on 

other organ systems is not well known. Currently, there are only a few clinical trials testing 

the efficacy of arginase inhibition in different pathologies. Exploring tissue-specific, cell-

specific or isoform-specific arginase inhibitors or modulators may prove to be an effective 

therapeutic strategy for combating obesity-related disorders. However, further studies of the 

complex mechanisms behind the development of metabolic and cardiovascular disease 

induced by obesity are required to address future treatment strategies for this ever-growing 

health problem.
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mTORC1 mammalian target of rapamycin complex 1

NAD+ nicotinamide adenine dinucleotide
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NF-kappaB nuclear factor kappa-light-chain-enhancer of activated B 

cells

nNOS neuronal nitric oxide synthase

NO nitric oxide

NOS nitric oxide synthase

NPY neuropeptide Y

OPA-1 optic atrophy protein 1

PDE5 phosphodiesterase-5

PI3K phosophinositide 3’ kinase

PINK1 PTEN-induced putative kinase 1

PIP2 phosphatidylinositol (3,4)-bisphosphate

PIP3 phosphatidylinositol (3,4,5)-triphosphate (PIP3)

PKG protein kinase G

PPARgamma peroxisome proliferator-activated receptor gamma

RBP4 retinol binding protein 4

ROS reactive oxygen species

SAA serum amyloid A

SAT subcutaneous adipose tissue

sGC soluble guanylate cyclase

SIRT1 sirtuin 1

SOCS3 suppressor of cytokine signaling 3

SREBP sterol regulatory element-binding protein

T2D type II diabetes

TAG triacylglycerol

TFAM transcription factor A, mitochondrial

TLR-4 toll-like receptor 4

TNF-alpha tumor necrosis factor alpha

Treg regulatory T cell

UCP-1 uncoupling protein 1
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VAT visceral adipose tissue

VLDL very low density lipoprotein

ZNF zinc-finger protein
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Figure 1. 
Schematic illustrating the development of metabolic and cardiovascular dysfunctions in 

obesity.
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Figure 2. 
Insulin signaling pathway. Insulin binds to the inactive insulin receptor (INSR) and elicits a 

conformational change. This allows IRS-1 to bind to the intracellular domain of the INSR, 

where it is phosphorylated and subsequently able to bind to p85, the regulatory domain of 

PI3K. The binding of the p85 domain in PI3K activates its kinase domain, p110, which 

phosphorylates PIP2, producing PIP3. PIP3 is bound by phosphoinositide-dependent 

kinase-1 (PDPK1), which activates Akt through phosphorylation. Activated Akt acts through 

a signaling cascade to promote GLUT4 translocation to the plasma membrane to facilitate 

glucose uptake.
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