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Abstract

Deep learning has shown remarkable improvements in the analysis of medical images without the 

need for engineered features. In this work, we hypothesize that deep learning is complementary to 

traditional feature estimation. We propose a network design to include traditional structural 

imaging features alongside deep convolutional ones and illustrate this approach on the task of 

imaging-based age prediction in two separate contexts: Tl-weighted brain magnetic resonance 

imaging (MRI) (N = 5,121, ages 4-96, healthy controls) and computed tomography (CT) of the 

head (N = 1,313, ages 1 – 97, healthy controls). In brain MRI, we can predict age with a mean 

absolute error of 4.08 years by combining raw images along with engineered structural features, 

compared to 5.00 years using image-derived features alone and 8.23 years using structural features 

alone. In head CT, we can predict age with a median absolute error of 9.99 years combining 

features, compared to 11.02 years with image-derived features alone and 13.28 years with 

structural features alone. These results show that we can complement traditional feature estimation 

using deep learning to improve prediction tasks. As the field of medical image processing 

continues to integrate deep learning, it will be important to use the new techniques to complement 

traditional imaging features instead of fully displacing them.
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1. Introduction

In a recent special issue, Greenspan et al. reviewed the role of deep learning in medical 

image analysis, concluding that “In the majority of works presented, use of a deep network 

is shown to improve over the state-of-the-art. As these improvements seem to be consistent 

across a large variety of domains, and as is usually the case, development of a deep learning 

solution is found to be relatively straight-forward, we can view this as a major step forward 

in the medical computing field.” (1) The authors state that networks excel at tasks of lesion 

detection, segmentation, registration, and predictive models. A key challenge of deep 

learning applied to medical imaging in a supervised learning framework, is the need for 

large training sets with high-quality, expertly labelled features. Generating high-quality 

labels for medical images, in tasks such as detection, diagnosis, or segmentation, requires 

expert knowledge which does not scale well to the large number of training examples needed 

for a robust deep learning algorithm. The authors identify a second key issue with the 

shifting paradigm towards deep learning: “Can we rely on learned features alone or may we 

combine them with handcrafted features for the task?”(1).

Advances in deep learning have provided an approach for learning a highly non-linear 

function of a dataset when an appropriate kernel or feature manifold is not known. 

Historically, feature extraction in the field of computer vision has relied on automatically 

detecting intensity patterns or textures in an image. However, recent work on deep 

convolutional neural networks has shown that an adaptive learning of image features through 

convolutional filters can results in more accurate results. Unlike many datasets used in 

computer vision, medical imaging is unique in that there is already extensive a priori expert 

human knowledge associated with the image, such parcellation of tissues into anatomical or 

functional units. This knowledge can be formulated as imaging features grounded in 

medicine and physiology, which can direct computer vision tasks to find better relationships 

in the data. Decades of work on medical image processing have focused on engineering and 

refining meaningful features to capture the dimensionality of a small imaging dataset. While 

deep learning has shown remarkable improvements, it has not been shown whether 

engineered features are redundant. For example, age prediction from medical imaging is a 

task that has relied heavily on pre-processed regions of interest (ROIs) from T1w structural 

brain MRI using the volumes of ROIs such as the white matter, ventricles, and the cortex 

(2-4). Recently, these measures have become efficiently extractable from a standard T1-

weighted (Tlw) brain MRI using a multi-atlas segmentation approach (2).

Recently, Cole and Franke evaluated the clinical utility of predicting brain age from 

handcrafted imaging features and showed that predicted brain age can be used to better 

understand differences between individuals during the aging process, understand disease 

processes, and design treatment strategies (3, 5). The authors pose that the absolute 

difference between predicted age and chronological age, herein called Brain Age Gap (BAG) 
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biomarker, is a valuable imaging metric, since it has been shown to correlate with aging as 

well as neurodegenerative diseases (5). A recent study showed a correlation between BAG 

and mortality in subjects over 73 years old, attributing an increase of 6% to mortality risk for 

every year predicted older (6). BAG also correlated with common metrics of age such as 

decreased grip strength, decreased expiratory volume, and slower walking time (6). 

Moreover, an increased BAG has been shown to correlate with several neurodegenerative 

diseases like Alzheimer’s disease, bipolar disorder, diabetes, Down syndrome, epilepsy, 

major depression, mild cognitive impairment, traumatic brain injury, and schizophrenia (3, 

5). These clinical correlations suggest common secondary effects on the brain, such as 

inflammation or oxidative stress (5). Some of the challenges with this technology moving 

forward include incorporating multimodal data, such as orbital computed tomography (CT) 

to produce new biomarkers like orbital brain age gap (OrbitBAG), and the use of deep 

learning, which the authors identify as beneficial due to the “removal [of] the reliance on 

data pre-processing to extract meaningful features.” (5) Predicting age from neuroimaging 

may provide a new, noninvasive biomarker of aging as well as a discovery tool for positive 

and negative effectors on aging.

Some of the best results that predict age report a BAG between 4-5 years (7), but these 

models have been difficult to generalize due to small sample size (7-9), limited age-range 

(10, 11), or extensive multimodal data requirements (3, 10, 12). Cole et. al proposed a 

convolutional deep neural network technique on raw T1w MRI images which showed an 

mean absolute error of 4.65 years in 2,001 healthy adults ages 18 to 90 years (13). This 

method showed competitive results in age prediction without any a priori feature extraction 

or image preprocessing. The work by Cole (13) exemplifies the improved performance of 

deep networks over handcrafted features. However, it does not explore how using both types 

of features affect prediction accuracy. Understanding the functional difference between 

engineered features and machine learning tasks can provide insight into structural and 

functional changes seen in medical imaging.

Deep learning has shown a remarkable improvement over hand-crafted feature-based 

learning, but it is still unclear whether deep neural networks capture all the information 

available from expert features. Deep neural networks learn convolutional filters that 

minimize an objective loss function, such as mean squared error, but do not enforce specific 

anatomic of physiological principles present in the image. Conversely, using engineered 

features based on anatomy or function requires a priori expertise and will necessarily limit 

the information available in the image to the chosen features. The rationale for merging 

expert features with deep learning is to leverage the existing knowledge present in expert 

features to direct learning of the convolutional network towards intensity patterns predictive 

of age that are not captured in the engineered features. The principal contribution of this 

method is to show that deep learning can be used to enhance prediction along with 

engineered features. A strength of deep convolutional networks is the ability to find patterns 

in the data that are not immediately obvious. Therefore, it is best to leverage this powerful 

tool to find new patterns instead of enforcing the learning of features that we can already 

obtain through classical methods.
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Herein, we hypothesize that deep learning is complementary to traditional feature 

estimation. We propose to build upon previously validated network designs to include 

traditional structural imaging features alongside deep convolutional ones and illustrate this 

approach on the task of imaging-based age prediction on two separate datasets: T1-weighted 

brain MRI and CT of the head. We show that deep learning can enhance tasks in medical 

image processing when learned features are combined with handcrafted features. As the 

field of medical image processing continues to adopt techniques in deep learning, it will be 

important to preserve hand-crafted features that enhance the task at hand, instead of 

replacing the features altogether.

2. Methods

2.1 Imaging Datasets & Preprocessing

The complete MRI cohort aggregates 9 datasets with a total 5,048 T1w 3D images from 

normal healthy subjects, as curated by (14). This cohort includes subjects marked as controls 

from nine studies (Table 1). The data include subjects with ages ranging between 4 and 94 

years old, with a mean age and standard deviation of 29.1 ± 22.6 years. Of 5,048 subjects, 

52.4% were male and 47.6% were female. Data were also acquired from different sites so 

there is a difference in field strength, of which 77% of scans were acquired at 3 Tesla and 

23% were acquired at 1.5 Tesla. ROI volumes, sex, and field strength were all used as input 

features for age prediction.

For feature extraction, 45 atlases are non-rigidly registered (15) to a target image and non-

local spatial staple (NLSS) label fusion (16) is used to fuse the labels from each atlas to the 

target image using the BrainCOLOR protocol (17). A total of 132 regional volumes were 

calculated by multiplying the volume of a single voxel by the number of labeled voxels in 

original image space. Total intracranial volume (TICV) was calculated using SIENAX (18) 

and used for volume normalization for a total of 132 raw volumes and 132 normalized 

volumes.

The cohort of head CT images consists of 1,313 clinically acquired scans as part of a larger 

study on eye disease. All images were acquired at Vanderbilt University Medical Center 

(VUMC) with variable imaging protocols and scanners (Table 2). Images were retrieved and 

deidentified for retrospective study under Institutional Review Board (IRB) approval. Since 

these subjects were undergoing CT imaging for regular clinical care, it includes patients with 

eye diseases such as glaucoma, intrinsic optic nerve disease (IOND), optic nerve edema, 

orbital inflammation, or thyroid eye disease (TED), as well as healthy controls who received 

imaging but were not clinically diagnosed with these diseases. CT images were normalized 

to a range between −100 and 200 Hounsfield Units (HU) for optimal visualization of orbital 

structures. The CT images were processed for structural features of the orbit using the 

protocol described in (19). The data includes subjects of ages ranging between 1 and 97 

years old, with a mean age and standard deviation of 52.1 +/− 20.7 years. This dataset 

includes healthy control subjects (70.0%) as well as subjects with glaucoma (7.7%), IOND 

(15.2%), optic nerve edema (14.7%), orbital inflammation (2.5%), or TED (5.0%). Seventy-

five structural metrics were extracted using multi-atlas segmentation and used as input 
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variables along with disease classes for each subject, using the method proposed by Harrigan 

et. al. (19).

2.2 Model Architecture

In this work, we adopt the network developed and validated by Cole et. al and extend it to 

include anatomical features derived from multi-atlas segmentation (13). In Cole’s work, a 

series of convolutional operations result in a high-dimensional convolutional representation 

of imaging data, which is then used to directly predict age. In this work, we concatenate the 

anatomic representation, which consists of volumetric estimates of key ROI’s identified with 

multi-atlas segmentation. Figure 1 shows the convolutional representation obtained using a 

3D convolutional neural network. This consists of 5 layers each with two, 3D convolution 

operations, ReLU activation, and max pooling; resulting in a representation of the brain 

imaging with 15,360 features or 3,584 features in the case of orbital CT.

After concatenation of the convolutional and volumetric features these features undergo 

ReLU activation and densely connected layer to a single node with linear activation to 

directly predict age (Figure 1). In addition, we trained two more baseline models for a 

comparison: 1) the baseline Cole et. al model using our data, and 2) a volumetric features 

only model, which consisted of two densely-connected layers of 128 nodes. As with 

previous work, the learning rate was initiated at 0.01 with a 3% decay each epoch. All 

models were trained using stochastic gradient descent optimization with momentum of 0.9. 

The loss function was mean absolute error. Training was allowed to continue until the loss 

function on the validation set did not change by more than 0.1 in 20 epochs. All models 

were developed using Keras version 2.2.4 with Tensorflow 1.5 and trained on an NVIDIA 

Titan Graphics Processing Unit (GPU).

2.3 Statistical Analysis

We performed a five-fold cross-validation scheme by withholding 20% of the data for testing 

while using the remaining 80% for training and validation (70% and 10% respectively). This 

process was repeated five times until the entire dataset was used for testing only once. 

Therefore, a total of five networks were trained for each method (ie. volumetric features 

only, raw image only, or combined) and evaluated on the testing set for each fold. This way, 

every subject in the data is used as a testing subject only once. All results shown below 

represent the evaluation of the testing set in each fold grouped together. The BAG biomarker 

was calculated for all models and compared using a Wilcox signed rank test. We corrected 

for multiple comparisons using Bonferroni corrections.

Additionally, we test the hypothesis that the BAG biomarker is increased in subjects with 

existing eye disease compared to healthy controls in the testing set. We tested for 

significance of the BAG biomarker between each disease group and healthy controls using a 

linear regression model with disease state as a dummy variable and true age as a covariate. 

Significance between groups was set to p < 0.05 in the dummy variable.
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2.4 Network Visualization with Grad CAM

We use the Gradient Class Activation Maps (Grad CAM) method described by (20) and 

implemented by the publicly available library keras-vis (21) to visualize the areas of the raw 

MRI with higher attention in the combined model. We created nine categories based on three 

age cutoffs for true age and predicted age: young (< 30 years old), middle aged (30 – 50 

years old), and older adult (> 50 years old). The nine categories consist of young predicted 

young, young predicted middle aged, young predicted older adult, middle aged predicted 

young, middle aged predicted middle aged, middle aged predicted older adult, older adult 

predicted young, older adult predicted middle aged, and older adult predicted older adult. 

We randomly selected 10 subjects from each category, calculated the Grad CAM for each 

and showed the resulting average for each category overlaid on a subject from that sample.

3. Results

In this work, we show that intensity-derived features from a deep convolutional network can 

enhance learning from structural features by improving the accuracy of age prediction in 

both brain MRI and head CT datasets.

3.1 Context-Aware Deep Neural Network Best Predicts Age in T1-weighted MRI

This study investigates the ability to predict age from brain MRI in healthy individuals. We 

use two sets of inputs to train and validate a fully-connected network: 1) intensity features 

derived from a convolutional neural network representation, and 2) context features 

including volumetric estimates for known regions of interest in the brain obtained via atlas-

based segmentation. We also introduce sex and scanner field strength with structural features 

as additional contextual features. Figure 2A shows that intensity-derived features outperform 

structural features with a mean absolute error of 5.00 vs 8.26 years (p<0.001). However, age 

prediction improves when both feature sets are used as inputs, resulting in a median absolute 

of 4.08 years (p<0.001).

Figure 2B shows the cumulative probability of accurate prediction within an acceptable error 

range. This shows that 73.2% of subjects fall within an absolute error of 5 years in the 

combined model. This is an improvement from the intensity features model, which can only 

predict 64.6% of the subjects within 5 years while the features only can predict 54.9% 

within 5 years. Figure 2C presents a representative 3-by-3 matrix of subjects where the 

vertical axis represents true age of a young individual, a middle-aged adult, and an older 

adult. Some of the canonical features of old age, such as enlarged ventricles are seen in 

young patients predicted as old. Conversely, anatomical features of young age such as small 

cortical sulci are apparent in the older subjects.

3.2 Context-Aware Age Prediction Generalizes to Orbital CT

We applied the same network architecture to predict age on a dataset of head CT used in 

(22), which includes healthy and eye disease populations. Again, we use two inputs: 1) 

intensity features derived from a convolutional neural network representation, and 2) 

volumetric estimates of important orbital structures proposed by (19) as well as structural 

features. Figure 3A shows that intensity-derived features alone outperform hand-crafted 
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features, resulting in a mean absolute error of 11.02 years and 13.28 years respectively 

(p<0.001). However, using both feature datasets as inputs allows for a significant 

improvement in prediction, resulting in a median absolute error of 9.99 (p<0.001).

In the CT dataset, 60.3% of subjects predicted within 10 years (Figure 3B) using the 

combined model, whereas the 10-year limit only covers 53.2% and 52.5% of the intensity-

only or feature-only models, respectively. Representative images are shown in the 3-by-3 

matrix in Figure 3C, where the vertical axis represents true age of a teenager, a middle-age 

adult, and an older adult.

3.3 OrbitBAG as a marker of disease

We further extend the development of a new imaging biomarker and validate it against 5 

different diagnoses of eye disease. We estimate OrbitBAG for healthy controls in the testing 

set as well as unseen subjects with glaucoma, intrinsic optic nerve disease, orbit nerve 

edema, orbital inflammation, or thyroid eye disease. Figure 4 shows that the OrbitBAG 

biomarker is significantly elevated in patients with intrinsic optic nerve disease (p < 0.001) 

and orbital edema (p < 0.001) when controlling for true age. A trend of increased OrbitBAG 

is observed with glaucoma, orbital inflammation, and thyroid eye disease, albeit not 

significant (p = 0.48, p = 0.51, p=10, respectively). In the case of orbital edema and thyroid 

eye disease, OrbitBAG biomarker was not markedly elevated. OrbitBAG values for each 

condition are shown in Table 2.

4. Discussion

In the task of age prediction, deep learning performance can be enhanced by providing 

context features, such as volumetric estimates of important anatomical structures. We 

provide a more accurate method of age prediction compared to the literature. Additionally, 

we show that the proposed method of integrating deep learning with anatomical, hand-

crafted features is not unique to brain MRI, but generalizes to orbital CT. We provide a new 

biomarker OrbitBAG based on orbital CT to estimate age and show it is elevated in patients 

with intrinsic optic nerve disease. Together, these results provide an accurate biomarker of 

aging in two different imaging modalities and demonstrate that there is still valuable 

information in classical image processing that is not being captured by deep learning.

4.1 Image Processing Features Enhance Deep Learning

Several studies have shown that deep neural networks are highly susceptible to changes in 

output to small adversarial perturbations or irregularities in the data (23-28). For example, 

scene recognition, a task mastered by deep learning, has been shown to be disrupted by 

single pixel changes (23, 25). Similarly, Nguyen et. al were able to produce images that are 

unrecognizable to humans but deemed recognizable by a convolutional neural network with 

99.99% confidence (26).In this regard, anatomical features provide a robust representation of 

the image, compared to the learned convolutional filters. By providing contextual 

information, the model proposed here can help stabilize the network and capture information 

not available in the known features. Moreover, the large spatial extent of deep convolutional 

networks can learn to ignore unnecessary information such as background noise or artifacts. 
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Together, features derived from a convolutional representation as well as features derived 

from classical image processing can enhance prediction tasks. Here, we see a significant 

improvement in age prediction accuracy in both brain MRI and head CT, suggesting that the 

improvement achieved by incorporating anatomical features is not specific to one modality.

Besides a general improvement in accuracy in computer vision tasks like object recognition 

and segmentation, deep learning has also shown improvements in computational time 

required for evaluating new images. Although training a deep neural network may take hours 

to days, evaluating a new image for segmentation or age prediction takes a matter of 

seconds. This shows a dramatic improvement over common image processing techniques 

such as multi-atlas segmentation, which can take hours to days to evaluate a single subject. 

In the work presented here, we propose the incorporation of deep learning with expert 

features. One limitation of our method is that producing an estimate of age will be 

dependent on the time needed to craft expert features for a test subject. If these are generated 

using multi-atlas segmentation, it may take hours. However, new techniques in deep learning 

are emerging that can replicate common deep learning tasks in a fraction of the time. For 

instance, Huo et. al. were able to generate a wholebrain volumetric segmentation using deep 

learning with similar accuracy to multi-atlas segmentation (29). We believe that 

incorporating anatomical context via hand-crafted features in deep learning pipelines can 

boost performance and generalizability while still being time-efficient.

Decades of work in image processing before deep learning have developed contextual 

features such as functional and anatomic regions of interest, surface parcellation, regional 

connectivity, and deformation models. Unlike the feature maps used in deep learning, these 

hand-crafted features are often built on underlying principles of anatomy and physiology. A 

large sample size of these features can possibly capture the entire manifold of possible 

human values. However, such restrictions do not exist in deep learning and extensive 

datasets are needed to arrive at plausible solutions. Contextual features could be used to limit 

the search-space of deep neural networks, diminish the number of parameters needed and 

avoid overfitting. This work also raises the question of robustness against adversarial attacks 

when a neural network is grounded by contextual features. Future work may benefit of 

exploring the role of such features in preventing adversarial attacks in medical imaging.

An alternative method to enhance image processing techniques is to iterate between deep 

learning and traditional feature engineering. New attention networks like the one used by 

Huo et. al (30) could help identify key regions of valuable anatomical information for the 

specified task. These maps can be used along with anatomic and physiological context to 

craft better manual features. These hand-crafted features can then inform a future network to 

improve algorithm accuracy and refine feature maps. It is possible that with more data and 

more complex deep learning models, similar accuracy can be achieved with imaging alone. 

In this work, we propose a method to guide training with imaging features that are already 

available. Instead of focusing on improving prediction accuracy, a stable model that 

integrates clinical and imaging context can be a fruitful ground for inference on key 

anatomical features preferentially affected by ageing
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4.2 Brain Age Gap Used as an Imaging Biomarker of Aging

Previous studies have shown that BAG correlates with aging in a healthy population as well 

as neurodegenerative diseases in brain MRI (5). In this study, we show that an age prediction 

biomarker can be developed on a new imaging modality, Orbital CT, and validated against 

diseased populations. We show that the OrbitBAG biomarker is generally increased in 

populations that show structural changes such as glaucoma, edema, and orbital 

inflammation. We also observe a wide distribution of error in age prediction (Figure 2 and 4) 

in a healthy population. It is possible that these changes are a result of normal anatomical 

variability or susceptibility of disease. A longitudinal study of these subjects, along with 

clinical data, would show whether having an outlier BAG is predictive of future disease.

Here, we have demonstrated that while much attention has been dedicated to predicting 

chronological age from brain MRI, it is also possible to predict age from different imaging 

modalities obtained from different parts of the human body. With the increase in usage of 

medical imaging and processing capabilities, it may be possible to predict age from multiple 

body parts and multiple imaging modalities at once. A whole-body age prediction algorithm 

may better reflect the state of the entire body and find interesting associations in the aging 

process of different human organs.

4.3 Network Visualization on Raw MRI Input using Grad CAM

We proposed the integration of contextual anatomical figures along with raw imaging to 

inform the task of age prediction. A key open question in the field of medical image 

processing with deep learning is whether deep neural networks capture all available 

information in an image, or if these algorithms can be better trained by enforcing high-

quality a priori information, such as volumetric estimates in regions of interest. It is often 

difficult to interpret the meaning of each convolutional layer in a deep convolutional 

network. However, a common tool for data visualization in deep learning are Gradient Class 

Activation Maps (Grad CAMs), which highlight areas of attention in the input image. Here, 

we have generated Grad CAMs for the subjects in the testing set for both the MRI and CT 

task (Figure 5). In the case of MRI, we see wide activation throughout the brain, but 

particularly centered around head size, the cerebral cortex, and the size of the ventricles. 

Although volume measurements of the ventricles are included as features in the combined 

model, the attention maps simultaneously encompass other areas of the brain, suggesting a 

complex interaction between areas of the brain. Importantly, we do not observe a clear and 

consistent segmentation of the brain structures which were included as volumes. 

Interestingly, the subjects off the diagonal, which show the worst prediction of age, have the 

least activation compared to the other subgroups. In the case of Orbital CT, there is a focus 

on the skull bones and the nose, which were not included as features, but may be indicative 

of aging. Interestingly, the activation in younger subjects was more wide-spread than in 

older subjects, suggesting higher variation across younger subjects, while bone structures 

may be a stronger indicator of age in older subjects.

Overall, Grad CAMs offer an interesting heuristic for visualization of attention from 

convolutional neural networks. In both CT and MRI, the attention maps seem to reiterate 

common changes associated with age such as head size or bone structures. It is reassuring 
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that none of the activation maps uniquely highlight a segmentation corresponding to the 

volumetric features. However, it is still an open research question on how to interpret these 

maps and a deeper study is needed.

5. Conclusion

Applications in deep learning have focused on raw images due to the power in automatic 

feature recognition. However, we show that there remains valuable information in the 

features derived from image processing. These features with anatomical context can be used 

to complement deep learning tasks, especially, when there is finite training data. This work 

has significant implications in the field of medical image processing, as decades of work on 

feature optimization can be used to improve on already groundbreaking deep learning 

breakthroughs.
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Fig 1. 
Pipeline for age prediction. Two sets of features are used: intensity-derived features (red) 

derived from a convolutional neural network of increasing filter size (red boxes), and 

structural features (blue) using multiatlas segmentation (bottom). These features are 

concatenated and used as inputs to directly predict age. BN: Batch Normalization; ReLU: 

Rectified Linear Unit Activation; Max Pool: Max Pooling Layer.
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Fig2. 
Deep Learning improves Age prediction in Brain MRI. Age can be predicted more 

accurately when using convolutional and structural features on a fully connected network 

model (A). Most subjects can be predicted within 2.81 years using the combined model (B). 

Subjects who are predicted old have features of young patients and vice versa (C).
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Fig3. 
Deep Learning Improves Age Prediction in head CT. Age can be predicted more accurately 

when using convolutional and structural features on a fully connected network model (A). 

Most subjects can be predicted within 7.90 years using the combined model (B). Accuracy 

of prediction does not show characteristic features of aging with our model (C). Note that 

while the older adult predicted young is 48 years old and technically in the middle aged bin, 

this was the oldest subject predicted within the young category, so we include it as a proxy.
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Fig 4. 
OrbitBAG biomarker for respective cohorts within the Orbital CT dataset. Intrinsic optic 

nerve disease (IOND) shows a significant increase in OrbitBAG. A similar trend is observed 

in glaucoma and orbital inflammation, but not statistically significant. Edema and thyroid 

eye disease (TED) do not show an increase in OrbitBAG.
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Fig5. 
Gradient Class Activation Maps (Grad CAM) visualization for raw MRI (left) and raw CT 

(right) used in the combined networks. Visualizations were binned according to true and 

predicted age. Ten random subjects were chosen from each category to compute the Grad 

CAM and the maps were averaged. Activation maps are overlaid over a representative 

subject from the sample.
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Table 1.
Demographics for brain MRI cohort per site.

Our study uses brain MRI of subjects marked as healthy controls from nine different sites. Parenthesis indicate 

number of female subjects.

Site Mean Age Young Age
(0 - 30 y/o)

Middle Aged
(30 −50 y/o)

Older Adult
(50 - 96 y/o) Site total

ABIDE 17.2 ± 7.8 523 (95) 39 (3) 1 (0) 563 (98)

ADHD-200 11.6 ± 3.3 950 (367) - - 950 (367)

BLSA 68.1 ± 12.7 1 (0) 61 (31) 552 (311) 614 (342)

Cutting 12.5 ± 5.0 583 (293) 3 (1) - 586 (294)

FCON-1000 28.3 ± 13.8 823 (469) 130 (56) 116 (68) 1,069 (593)

IXI 48.8 ± 16.4 98 (54) 166 (80) 259 (162) 523 (296)

NDAR 11.0 ± 3.8 328 (168) - - 328 (168)

NKI-Rockland 33.9 ± 21.5 58 (26) 21 (8) 24 (14) 103 (48)

OASIS 45.2 ± 23.8 139 (78) 43 (24) 130 (93) 312 (195)

Total 29.1 ± 22.7 3503 (1550) 463 (203) 1082 (648) 5,048 (2,401)
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Table 2.
Demographics for head CT cohort per disease status.

Our study uses clinically acquired head CT from healthy subjects as well as five different eye disease status. 

Note: Some of these subjects have multiple diagnoses. IOND: Intrinsic optic nerve disease; TED: Thyroid eye 

disease.

Cohort Mean Age Young Age
(0 - 30 y/o)

Middle Aged
(30 −50 y/o)

Older Adult
(50 - 96 y/o) Total

Healthy Control 56.5 ± 19.5 108 107 651 866

Glaucoma 61.0 ± 18.7 8 15 78 101

IOND 44.6 ± 20.0 54 64 82 200

Optic Nerve Edema 32.0 ± 14.7 97 75 21 193

Orbital inflammation 46.1 ±21.6 9 10 14 33

TED 53.3 ± 14.0 2 25 38 65

Total 52.1 ±20.7 242 252 819 1,313
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Table 3.

Accuracy of all three models on brain MRI data. MAE: mean absolute error. RMSE: Root mean squared error. 

R: Pearson correlation coefficient.

Imaging Modality Input Data MAE (yrs) RMSE R R2

Brain MRI Volumetric Features 8.23 12.91 0.84 0.70

Raw Image (13) 5.00 7.25 0.95 0.90

Combined Features 4.08 5.93 0.97 0.93

Orbital CT Volumetric Features 13.28 18.02 0.45 0.20

Raw Image (13) 11.02 14.11 0.75 0.56

Combined Features 9.99 13.19 0.76 0.58
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Table 4.

OrbitBAG accuracy results for each disease cohort. MAE: mean absolute error. RMSE: Root mean squared 

error. R: Pearson correlation coefficient.

Cohort MAE (yrs) RMSE R R2

Controls 9.62 12.25 0.82 0.68

Glaucoma 9.97 12.97 0.73 0.53

Intrinsic Optic Nerve Disease 13.92 17.12 0.66 0.44

Optic Nerve Edema 15.66 18.32 0.62 0.38

Orbital Inflammation 11.36 14.11 0.77 0.60

Thyroid Eye Disease 11.69 15.03 0.43 0.19
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