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Abstract

Ultrasound shear wave elastography (SWE) is an imaging modality used for noninvasive, 

quantitative evaluation of tissue mechanical properties. SWE uses an acoustic radiation force to 

produce laterally propagating shear waves that can be tracked in spatial and temporal domains in 

order to obtain the wave velocity. One of the ways to study the viscoelasticity is through 

examining the shear wave velocity dispersion curves. In this paper, we present an alternative 

method to two-dimensional Fourier transform (2D-FT). Our unique approach (2P-CWT) considers 

shear wave propagation measured in two lateral locations only and uses wavelet transformation 

analysis. We used the complex Morlet wavelet function as the mother wavelet to filter two shear 

waves at different locations. We examined how the first signal position and the distance between 

the two locations affect the shear wave velocity dispersion estimation in 2P-CWT. We tested this 

new method on a digital phantom data created using the local interaction simulation approach 

(LISA) in viscoelastic media with and without added white Gaussian noise to the wave motion. 

Moreover, we tested data acquired from custom made tissue mimicking viscoelastic phantom 

experiments and ex vivo porcine liver mea-surements. We compared results from 2P-CWT with 

the 2D-FT technique. 2P-CWT provided dispersion curves estimation with lower errors over a 

wider frequency band in comparison to 2D-FT. Tests conducted showed that the two-point 

technique gives results with better accuracy in simulation results and can be used to measure phase 

velocity of viscoelastic materials.
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Introduction

Shear wave elastography (SWE) has been used over the last decade to make noninvasive, 

quantitative measurements of various mechanical properties of soft tissues. SWE uses 

ultrasound beams, focused in tissue, to generate a propagating shear wave by acoustic 

radiation force excitation (Sarvazyan et al. (1998, 2011); Ambrozinski et al. (2016a)) or uses 

external mechanical excitation coupled to the body wall (Huwart et al. (2006); Sandrin et al. 

(2003)). The propagation of shear waves is monitored in the spatiotemporal domain. 

Variation of the underlying mechanical properties of the tissue results in change of the shear 

wave velocity. In most SWE applications, examined tissue is assumed to be elastic, 

homogeneous, isotropic, linear, and infinite. For this type of medium, time-of-flight methods 

are normally used to estimate the shear wave velocity (Palmeri et al. (2008)).

In reality, soft tissues exhibit viscoelastic behavior. As a result, wave velocity varies with 

frequency, a phenomenon called dispersion (Chen et al. (2004)). Many SWE techniques 

have used this phenomenon by measuring shear wave phase velocity at different frequencies 

to evaluate the viscoelasticity of tissue (Chen et al. (2004, 2009); Deffieux et al. (2009)). 

Viscoelasticity is not the only property which can induce wave dispersion. Geometry of a 

medium can also cause wave velocity changes with frequency. Waves propagating in thin 

materials can undergo multiple reflections resulting in mode conversion. The interaction of 

such waves form guided or Lamb waves which are dispersive by nature (Gra (2012); Rose 

(2014)). In situations where tissues have finite thicknesses and are viscoelastic (arteries, 

myocardium, bladder wall, and tendons), the dispersion effect is present both from vis-

coelasticity and geometry (Nenadic et al. (2011b,a); Urban et al. (2013); Helfenstein-Didier 

et al. (2016); Ambrozinski et al. (2016b)).

In most current applications, shear wave propagation is measured using the multiple tracking 

location (MTL) method. SWE methods are where the shear waves are measured at multiple 

locations simultaneously for one or multiple acquisitions. Various ultrafast imaging 

techniques exist either using plane wave compounding (Montaldo et al. (2009)) or by using 

multiple acquisitions with focused beams (Song et al. (2015)). In many cases, the two-

dimensional Fourier transform (2D-FT) of the spatiotemporal particle motion v (x, t) is used 

to create the “k-space” represented by the wavenumber, k, and frequency, f (Alleyne and 

Cawley (1991)). For an impulsive input similar to the acoustic radiation force used in many 

SWE applications, the k-space will have a distribution of energy covering a bandwidth that 

is related to the push beam geometry, push temporal length, and the mechanical properties of 

the medium (Palmeri et al. (2014)). The peaks of the k-space distribution for an impulsive 

acoustic radiation force push are related to the phase velocities of different wave propagation 

modes. These peaks can be found by searching in orthogonal directions either along the f or 

k directions as described by Bernal et al. (2011). Usually, a threshold is applied to the k-

space before the search to avoid spurious peaks (Bernal et al. (2011)).

An alternative approach to measure shear wave propagation is to use the single-track-

location (STL) approach proposed by McAleavey et al. (2009). STL employs multiple, 

laterally offset push beams and a single tracking location, rather than tracking the speed of a 

single propagating shear wave going through multiple tracking locations. Methods that 
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involve tracking in a single location, as opposed to multiple locations, cancel out speckle-

induced phase errors in shear wave velocity estimates, because the same scatterers are being 

interrogated (Elegbe and McAleavey (2013); Langdon et al. (2015)). While STL is fairly 

robust for generating shear wave velocity maps, it does take multiple acquisitions and hence 

considerable time.

A different method used to search the k-space is a Radon sum method (Nightingale et al. 

(2015)). It uses the k-space and finds the curved trajectory defined by a linear dispersion 

function that maximizes the summed magnitude. For this method, any dispersion function 

could be defined, however, the parameters that provide the maximized sum are reported for 

the characterization of the medium under examination.

Another method used for dispersion curves evaluation is based on the multiple signal 

classification (MUSIC) technique (Schmidt (1986); Ambrozinski et al. (2015); Kijanka et al. 

(2018)). The algorithm evaluates wavenumber spectra using an eigenspace analysis method. 

Similar to 2D-FT, this method allows estimation of dispersion curves using a frequency-

wavenumber representation. Kijanka et al. (2018) have shown that the MUSIC method is 

more resistant to experimental noise unlike the phase gradient and 2D-FT methods which 

can, at times, be prone to failure in the face of experimental noise.

The aforementioned methods require shear wave responses acquired over multiple laterally-

spaced spatial points. This means that the resulting dispersion curves describe averaged 

material properties over a lateral segment. In practical applications, however, local properties 

are sought. Therefore, a method permitting measurement of dispersive wave speed from two 

closely spaced spatial points would be advantageous. Phase velocity of a dispersive medium 

can be evaluated from the phase of the cross-spectrum of two signals (Bloch and Hales 

(1968)). However, this method can not be used for multimodal waves and is ineffective in 

the presence of noise.

In this paper, we describe a method for phase velocity estimation applicable in viscoelastic 

media. This technique was originally proposed in geophysics for interstation phase velocity 

measurement (Wu et al. (2009)). The unique approach used in this method considers the 

shear wave propagation measured only at two lateral locations, separated from each other by 

distance Δ. To improve robustness of the method, continuous wavelet transform (CWT) is 

used as a bank of filters to decompose the signals into a set of narrow-band details. In the 

next, step phase shift between the corresponding details is calculated. The technique uses 

reduced data (by means of using only two tracking locations) as opposed to a fuller data set 

(i.e. shear wave propagation is measured at multiple lateral locations) 2D-FT-based methods.

The rest of the paper is organized as follows. First, we present the two point continuous 

wavelet transform (2P-CWT) method applied for shear wave dispersion curve estimation. 

The 2P-CWT method is introduced as an alternative to the 2D-FT method to compute the 

phase velocity curve. This method was tested on data from local interaction simulation 

approach (LISA) simulations of shear wave propagation. The robustness of the method was 

tested by adding noise to these data sets. We also examined the method on data from custom 

made tissue-mimicking (TM) viscoelastic elastography phantoms and ex vivo porcine liver, 
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respectively. Results from these digital and physical phantoms will be presented. It is 

assumed that the shear waves are observed over one half of the x-axis. The results will be 

followed with a discussion and conclusions.

Materials and Methods

In this section, the 2P-CWT method is developed for dispersion curves estimation from data 

produced from digital phantoms based on LISA viscoelastic models and experimentally 

from viscoelastic TM phantoms and ex vivo porcine liver. The whole procedure is described 

in the following section. Then, descriptions of the numerical LISA viscoelastic and 

experimental phantoms are introduced.

The Continuous Wavelet Transform Used for Phase Velocity Evaluation (2P-CWT)

The phase velocity dispersion curves can be evaluated using a methodology which involves 

waveforms acquired from two measurement points only and adopts the continuous wavelet 

transform. In summary, the steps of the procedure can be summarized as follows:

Step 1: Collect two shear wave motion measurements as time-domain data (sw1 (t, x1), sw2 

(t, x2)), at spatially distributed locations separated by Δ distance, whare Δ= x2 − x1.

Step 2: Decompose time-varying signals into their non-stationary spectral components 

using a wavelet transform. CWT with mother wavelet, ψ , can be expressed as follows:

W i(τ, α) = 1
α∫−∞

+∞
swi t, xi ψ* t − τ

α dt, (1)

where τ is the time delay, α is the dilating scale, ψ  is the mother wavelet function, and swi (t, 
xi) is the shear wave motion signal in the time domain at location xi. The * denotes a 

complex conjugation.

Step 3: For each scale, α, find corresponding frequency of the wavelet as

f =
f c
α f s, (2)

where fc is the central frequency of the given wavelet calculated as a maximum of the 

Fourier transformed mother wavelet. The parameter fs is the sampling frequency.

Step 4: For each frequency, f, determine phase, φ(f), for resulting cross correlation analysis 

between signals W1(τ,α) and W2(τ,α) If both wavelet signals are in phase, phase of the 

cross-correlogram is a minimum.

Step 5: Calculate phase velocity using the formula (Wu et al. (2009))
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cph( f ) = f Δ
f t0 + [φ( f ) ± N] , (3)

where t0 is the first time point and N is an integer.

The above-mentioned procedure has been implemented in MATLAB (Math-works, Natick, 

MA, USA) to show and evaluate the principle and its basic performance. We used Eq. 1 to 

do wavelet transformation using the complex Morlet wavelet transform defined as

φσ(t) = πσ2 −0.5 ⋅ e
2iπ f ct

⋅ e
− t2

σ2
, (4)

where, σ2 = 3 and fc = 1. The transform was calculated for set of scale parameters α = 0.1, 

…, 400 with a step size equal to 1.

Figure 1a shows two shear wave motion measurements for a TM viscoelastic phantom, for 

lateral locations chosen to be 5.2 mm for the sw1 and 8.2 mm for the sw2 from the push 

beam location, respectively. The resulting cross-correlogram for the 2P-CWT technique in 

presented in Fig. 1b with superimposed estimated phase velocity. The phase velocity 

computed using 2P-CWT is compared with the results obtained using the 2D-FT method in 

Fig. 1c.

In order to show the effectiveness of this new method, we conducted tests with LISA 

numerical and TM experimental data as well as ex vivo porcine liver data and compared 

results with 2D-FT results. The results of these tests have demonstrated the potential of this 

approach for handling dispersion curves of shear waves (1–10 m/s) in medical applications.

In this paper, we use two different methods to calculate phase velocity curves. Phase 

velocities estimated based on the 2P-CWT and 2D-FT methods are computed from the 

maximum peaks (Kijanka et al. (2018)). Dispersion curves results were compared by 

calculating the root-mean-square error (RMSE) of the measured curves and the true curves 

for the LISA results with the true curves calculated with values presented in Table 1. The 

RMSE can be calculated as follows:

RMSE = 1
N ∑

i = 1

N
Ai − Ai

2, (5)

where,Ãi is a phase velocity vector of reference values made up of N scalar observations and 

Ai is the vector of observed values. The reference shear wave phase velocity curves were 

calculated for the Kelvin-Voigt model as (Chen et al. (2004))

Kijanka et al. Page 5

Ultrasound Med Biol. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Vs(ω) =
2 μ1

2 + ω2μ2
2

ρ μ1 + μ1
2 + ω2μ2

2 (6)

where ρ is the density of the medium, ω is the angular frequency, and μ1 and μ2 are the shear 

elasticity and shear viscosity, respectively.

Numerical LISA Viscoelastic Phantoms Description

Digital phantoms of viscoelastic materials with known mechanical properties were produced 

using a 2D LISA method (Delsanto et al. (1994); Lee and Staszewski (2003); Kijanka et al. 

(2012, 2013)). We used LISA for SWE applications in our previous studies (Kijanka and 

Urban (2018)). The LISA model for an elastic, isotropic, homogeneous, and nearly 

incompressible model for soft tissue is described by Navier’s equation

λ1 + 2μ1 ∇(∇ ⋅ u) + μ1∇ × (∇ × u) + F = ρ ∂
∂t u, (7)

where, λ1 and μ1 are the bulk and shear modulus, respectively. The parameter ρ is the 

density, u is the local particle displacement, F is the induced body force, and t is the time. 

When the Kelvin Voigt (KV) model for viscous loss is incorporated, Navier’s equation 

becomes (Bercoff et al. (2004))

λ1 + 2μ1 + λ2 + 2μ2
∂
∂t ∇(∇ ⋅ u) + μ1 + μ2

∂
∂t ∇ × (∇ × u) + F = ρ ∂

∂t u, (8)

where, λ2 and μ2 indicate the bulk viscosity and shear viscosity, respectively.

In the LISA implementation, similar to the standard finite difference (FD) scheme, the future 

time step is calculated as a combination of the same quantities taken in the already computed 

time steps. Consequently, the algorithm can be parallelized very efficiently. Therefore, we 

utilized parallel computation technology offered by graphics processing units and compute 

unified device architecture (CUDA) used in low-cost graphics cards for computation of the 

LISA equations. The entire process was implemented in MATLAB software.

The domains were uniformly spatially sampled at Δx = Δz = 0.1 mm. The dimensions of the 

simulated domain are x = ±45 mm in the lateral direction and z = 60 mm in the axial 

dimension. We adopted a KV material model with three different material properties 

scenarios presented in Table 1. They are denoted phantoms 1, 2, and 3 for this study.

The acoustic radiation force push beam, for the numerical models, was simulated using Field 

II (Jensen and Svendsen (1992); Jensen (1996)). A linear array with element width of 0.283 

mm, element height of 7 mm, element pitch of 0.308 mm, elevation focus of 25 mm was 

simulated with a center frequency of 5.0 MHz, and using medium attenuation, α, of 0.5 
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dB/cm/MHz and sound velocity, c, of 1540 m/s. The intensity, I, was calculated by squaring 

the pressure to be used in the body force defined by F = 2αI/c (Doherty et al. (2013)). A 

focal depth of 21.6 mm was used for the push beams with a fixed f-number (F/N) of 2. 

Resulting shear wave responses were interpolated with a temporal sampling frequency of 

4.1667 kHz and then used for further data processing.

Numerical LISA shear wave responses for digital phantoms of viscoelastic materials are 

studied twofold. Examples of a “clean” (without any additional noise) as well as in the 

presence of noise, as added white Gaussian noise, wave motions are studied. The white 

Gaussian noise was generated in MATLAB software using the awgn function and then 

added to the shear wave time-domain particle velocity signals. The power of the wave 

motion was measured. Subsequently, white Gaussian noise was added to the time-domain 

vector signals. A signal-to-noise ratio (SNR) for the noise-added models was set to 15 dB.

Tissue Mimicking Phantoms Description

Custom tissue-mimicking viscoelastic phantoms (CIRS Inc., Norfolk, VA, USA) were used 

in this work to test robustness of the 2P-CWT approach for shear wave phase velocity 

calculation. These phantoms were designed such that each one represented a different stage 

of liver fibrosis. They are denoted phantoms A, B, and C for this study. Shear wave 

acquisitions were performed with a Verasonics system (V1, Verasonics, Inc., Kirkland, WA, 

USA) and a linear L7–4 array transducer (Philips Healthcare, Andover, MA). The acoustic 

radiation force push beam was focused at 21.6 mm. The push duration was 400 μs and the 

push frequency was 4.09 MHz. A fixed F-number (F/N) of 2 was used. The push beam was 

generated by 32 active elements. Push beam was placed on one side of the L7–4 probe. A 

plane wave acquisition was used using three angularly directed plane waves (−4°, 0°, +4°) 

that were coherently compounded (Montaldo et al. (2009)). The effective frame rate after 

compounding was 4.1667 kHz. The motion (shear wave particle velocity) was computed 

from the in-phase/quadrature data using an autocorrelation algorithm (Kasai et al. (1985)).

Ex vivo Liver Data Description

In our experiments, two ex vivo porcine livers were also used to test the efficacy of the 2P-

CWT approach in soft tissues. The livers were obtained from pigs after euthanasia where the 

pigs were used for studies dedicated to medical education or cardiovascular research on 

protocols approved by the Mayo Clinic Institutional Animal Care and Use Committee. The 

same acquisition parameters and data processing as for the TM phantom experiments were 

used, with the di erence that three frames at −3°, 0° and +3° steering angles were used for 

the angular compounding. The acoustic radiation force push beam was focused at 25 mm. 

The particle velocity waveforms were averaged from 2 mm in axial direction at focal depth. 

Then, the DC component was removed from the waveforms. For the data presented in Fig. 

12, a lateral segment of the data was limited to 20 mm.
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Results

Numerical LISA Viscoelastic Phantoms Results

Numerical LISA viscoelastic phantom results were investigated for clean data (without 

added noise) and with added white Gaussian noise. Shear wave spatiotemporal data are 

presented in Fig. 2. Wave motion for clean data and with added Gaussian noise are 

presented, respectively. The results are shown for three different viscoelastic media tabulated 

in Table 1.

Figure 3 presents the k-space spectra computed using the 2D-FT method for all three 

numerical phantoms. The results were calculated at a focal depth of 21.6 mm. The clean data 

(Fig. 3a) and data with added white Gaussian noise (Fig. 3b) are presented, respectively. We 

normalized the spectra and found the maximum frequencies that corresponded to the cases 

when the magnitude of the data represented the top 80 and 90%. Appropriate frequencies are 

marked in the k-space images by dotted (80%) and dashed (90%) lines, respectively. 

Comparing these values for Phantoms 1, 2 and 3, it can be seen that characteristic 

frequencies decrease with softer (or more viscous) tissue mimicking phantoms. For 80% of 

maximum power spectra magnitude, characteristic frequencies are 398, 278, and 192 Hz for 

Phantoms 1, 2 and 3, respectively (Fig. 3a). 90% of maximum power spectra amplitude 

instead, corresponds to 583, 426, and 298 Hz for all numerical tissue mimicking viscoelastic 

phantoms investigated, i.e., Phantoms 1, 2 and 3, respectively. Similar values can be 

retrieved for the data with added white Gaussian noise shown in Fig. 3b. One can notice that 

characteristic frequencies are slightly shifted in comparison to the clean data presented in 

Fig. 3a.

The RMSE for the numerical LISA data for the 2P-CWT and 2D-FT methods is presented 

graphically in Fig. 4 for the clean data. First signal position versus the distance between two 

measurement signals is investigated for the 2P-CWT technique in Figs. 4a and 4c for the 

clean data. At the same time, the RMSE for the first signal position versus distance to the 

last signal position (with multiple acquisition points in between) for 2D-FT is examined in 

Figs. 4b and 4d. The RMSE was calculated in a frequency range from 100 Hz to the 

characteristic frequencies corresponding to 80% (Figs. 4a and 4b) and 90% (Figs. 4c and 4d) 

of the maximum power spectra magnitude. Results for Phantom 1, Phantom 2, and Phantom 

3 are introduced in the top, middle, and bottom rows, respectively.

The RMSE for the 2P-CWT method for Phantom 1 and the frequency corresponding to 80% 

of the maximum power spectra amplitude (Fig. 4a, top row) oscillates within limits of 0.1 to 

0.2 m/s for the first signal position selected between 1 to 5 mm and the distance between the 

two signals positions varying from 2 to 4 mm. If the distance between two positions was 

selected to be approximately 5 mm or above (for the first signal position selected near the 

focused push beam), the RMSE decreased below 0.1 m/s. For a comparison, the 2D-FT 

method required shear waveforms measured along a distance of at least 8 mm in order to 

reduce the RMSE below 0.1 m/s (Fig. 4b, top row). When a shorter segment of shear wave 

data was taken into account, the RMSE increased up to 0.3 m/s. Similar behavior can be 

observed for other two, softer numerical phantoms presented in the middle and bottom rows 

of Figs. 4a and 4b. The 2P-CWT method for Phantom 3 gives RMSE below 0.1 m/s for 
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almost any selected first signal position and the distance between two measurement points 

(Fig. 4a, bottom row).

The 2P-CWT and 2D-FT methods have higher RMSE when higher frequencies 

corresponding to 90% of the maximum power spectra amplitude are investigated. Results are 

shown in Figs. 4c and 4d for the 2P-CWT and 2D-FT methods, respectively. The 2P-CWT 

method exhibits increased RMSE (up to 0.25 m/s) when the shear waveforms are selected 

for a position of 6 mm and above from the focused push beam. Below this range, a RMSE 

lower than 0.1 m/s can be observed. 2D-FT also presents increased RMSE (above 10 m/s) 

when the shear wave data are measured starting from the distance of 6 mm and above. In 

order to reconstruct the shear wave phase velocity with the RMSE below 0.1 m/s, 

measurement points within at least 8 mm were necessary for Phantoms 1 and 2. Phantom 3 

required measurements within approximately 6 mm of lateral directions.

Similar results to Fig. 4 for the same numerical LISA data (however with a SNR = 15 dB) 

are shown in Fig. 5. A comparison between the 2P-CWT and 2D-FT methods is made. It can 

be seen that added white Gaussian noise to the shear wave signal resulted in higher 

calculated RMSE for both techniques. The RMSE increased for the 2P-CWT method in 

comparison to 2D-FT when longer distance between two measurement points were taken 

into account.

Figure 6 shows the comparison of phase velocity dispersion curves for numerical LISA 

tissue mimicking phantoms for the clean (without added noise) and noisy (SNR = 15 dB) 

data. Results were calculated using two different approaches. Results for the 2P-CWT 

method are presented along with the 2D-FT method. The first signal position in the lateral 

direction was chosen to be 3 mm and distance between two measurement points was 6 mm. 

All these results are compared with the true, analytical values. Results presented in Fig. 6 are 

to show differences pictorially and appreciate the deviation from the reference values. Data 

for the 2D-FT method are more affected by the noise. The 2P-CWT method estimated the 

phase velocity within the investigated frequency range and for chosen signals positions with 

lower RMSE for all three numerical phantoms examined in this study.

Experimental TM Phantom Results

In this section, the 2P-CWT-based method used for phase velocity estimation of shear waves 

was used for the experimental TM phantom data. As in the previous section, results for the 

2P-CWT method are compared with those from the 2D-FT method. In this section, three 

different custom made TM phantoms were investigated, and the results are shown in Figs. 7–

9.

Figure 7 presents the spatiotemporal particle velocity for all three phantoms on a linear 

scale. Figure 8a presents magnitude of the k-space spectra calculated using the 2D-FT 

method for all three TM phantoms. Similar as in previous section, vertical lines representing 

characteristic frequencies for 80% (dotted lines) and 90% (dashed lines) of maximum power 

spectra magnitude are superimposed on the k-space images. The characteristic frequencies 

for 80% of maximum power spectrum amplitude are 597, 567, and 606 Hz for Phantoms A, 

B, and C, respectively. For 90%, 882, 805, and 809 Hz characteristic frequencies were 
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recorded for phantoms A, B, and C, respectively. Fig. 8b presents a comparison of dispersion 

phase velocity curves for a single acquisition calculated using the 2D-FT and newly 

proposed 2P-CWT techniques. Very good agreement can be observed between the methods 

investigated in this study.

The mean and standard deviation (SD) of the phase velocity for the custom made TM 

phantoms are presented graphically in Fig. 9. The values were calculated for 12 acquisitions 

acquired at different locations for each phantom. A frequency range used for the 

computations was from 100 to 700 Hz. The mean and SD results for 2P-CWT are compared 

against the 2D-FT technique. First signal position and distance between two measurement 

points were studied for the 2P-CWT method (Figs. 9a and 9c). Likewise, first signal position 

versus distance to the last measurement point (with multiple measurements locations in 

order to project the same lateral distance as in 2P-CWT) was examined for the 2D-FT 

method. Results are presented in Figs. 9b and 9d. Nominal mean phase velocities, calculated 

using the 2D-FT for the lateral segment of 20 mm, for Phantoms A, B, and C are 2.52, 1.89, 

and 1.66 m/s, respectively. Nominal SDs for the same data are 0.19, 0.14, and 0.13 m/s for 

phantoms A, B, and C, respectively.

Comparing the mean and SD of phase velocity results for both methods, differences can be 

distinguished. The 2P-CWT method gives good estimation of the mean values for almost 

any selected measurement points (approximately 2.51 m/s for Phantom A, 1.88 m/s for 

Phantom B, and 1.66 m/s for Phantom C).

Figure 10 presents dispersion phase velocity curves calculated for an exemplary set of 

positions. The mean and SD from 12 separate acquisitions are presented. Phase velocity 

curves for Phantom A (Fig. 10a) were computed for the first signal position of 4 mm and the 

distance between positions for 2P-CWT (lateral segment length for 2D-FT) of 2 mm. 

Phantom C (Fig. 10b) instead, shows estimated phase velocity curves for the first signal 

position of 9 mm and the distance between positions for 2P-CWT (lateral segment length for 

2D-FT) of 5 mm. Clear differences between the 2P-CWT and 2D-FT methods can be 

observed. The phase velocity curve for Phantom A and the 2P-CWT method is very similar 

to the one presented in Fig. 8b. At the same time, the estimated phase velocity for 2D-FT 

exhibits a dissimilar trend with higher SD. Results for Phantom C are close to 500 Hz for 

both approaches. Above that, the SD for 2D-FT drastically increases, whereas, 2P-CWT 

presents constant SD.

Experimental Ex vivo Liver Results

In this section, the 2P-CWT method used for phase velocity estimation of shear waves was 

used for the experimental ex vivo liver data. As in previous sections, results for the 2P-CWT 

method are compared with those from the 2D-FT technique. In this section, two different 

porcine livers were investigated, and the results are shown in Figs. 11–12. Figure 11 shows 

the spatiotemporal shear wave propagation using the particle velocity signal for the acoustic 

radiation force push beam focused at 25 mm.

The top row of Fig. 12 presents the k-space spectra for livers 1 and 2, respectively. The 

phase velocity results are also presented in the bottom row of Fig. 12. As for the numerical 
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LISA viscoelastic phantoms and the custom made TM phantoms, in this case, the phase 

velocity dispersion results were calculated using the 2P-CWT method for two selected 

measurement points. The first signal position and distance between signals were chosen as 

follow: 3.9 mm and 2.5 mm for liver 1 and 4.2 mm and 0.616 mm for liver 2, respectively. 

Very similar results are observed for the two methods in a frequency range from 75 to 250 

Hz for Liver 1 (Fig. 12a, bottom row). Above this frequency, results for 2D-FT diverges 

probably due to the poorer SNR for the shear waves measured in this liver. The 2P-CWT 

method presents stable phase velocity results up to 600 Hz. More stable results can be 

observed for Liver 2 (Fig. 12b). The two methods exhibit similar results with the caveat that 

the results for 2D-FT exhibit some oscillations. At the same time, the 2P-CWT method 

exhibits a smooth trend as shown in the bottom row in Fig. 12b.

The mean and SD of the phase velocity for ex vivo livers are presented graphically in Fig. 

13. The values were calculated in a frequency range starting from 100 Hz to the frequency 

corresponding to 80% of the maximum power spectra, i.e. 188 Hz for liver 1 and 182 Hz for 

liver 2, respectively. Results for different first signal positions and distance between signals 

for 2P-CWT (lateral segment length for the 2D-FT) are shown. Similar as for the custom 

made TM phantoms (Fig. 9), differences between, two methods can be distinguished. 

Overall, the 2D-FT approach needs shear waves propagating over longer lateral distance 

than the 2P-CWT method to produce stable and accurate phase velocity results. At least 

multiple data measurements within 2.5 mm were necessary in order to meet the RMSE of 

0.1 m/s or below for the frequency range investigated. At the same time, 2P-CWT required a 

minimum measured distance equal to 0.154 mm (corresponding to a lateral spatial 

resolution). This can be seen for example for first signal position equal to 3 mm for liver 1 

(Figs. 13c and 13d). Similar observations can be made for the mean values depicted in Figs. 

13a and 13b. The 2D-FT approach requires more acquisition data than the 2P-CWT method 

in order to stabilize the mean phase velocity.

Discussion

A new method, called 2P-CWT, for the estimation of phase velocities for shear waves in soft 

media and tissue has been investigated. The approach utilizes the continuous wavelet 

transform adopted to two measurement points only to find the phase velocity curves of the 

shear wave signal.

This method was tested on simulated data from LISA models of shear wave propagation 

induced by acoustic radiation force in viscoelastic media. LISA models do not take into 

account displacement underestimation bias which occur during ultrasound motion detection, 

which is a limitation here. As a result, only adding Gaussian noise to the resulting particle 

velocity from the LISA models may not completely capture the noise model experienced in 

practice. We compared the performance of our method against 2D-FT using clean data and 

with added white Gaussian noise as shown in examples in Figs. 3, 4, 5, and Table 1. The 

results showed that the 2P-CWT method had comparable (Phantom 1) or lower (Phantoms 2 

and 3) values of RMSE than their counterparts based on the 2D-FT method. We can observe 

the qualitative similarities between the simulation and experimental data. More-over, in this 
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study, we have experimental data in viscoelastic phantoms and ex vivo tissue to supplement 

the simulation data.

The method was also tested with experimental data in custom made TM viscoelastic 

phantoms. The results were generally similar between the 2D-FT and 2P-CWT methods. We 

also examined the influence of the first signal position from the focused push beam and 

distance between two measurement points for the 2P-CWT method and corresponding to 

that a lateral segment of data for the 2D-FT method. Using the 2P-CWT method data 

acquired with a very short distance (1–2 mm) were sufficient in order to provide robust 

estimates of the mean phase velocity (Fig. 9). For the same lateral segment of data with 

multiple acquisitions for 2D-FT, the mean phase velocity experienced high standard 

deviation (>1 m/s).

This confirms that shear waveforms measured along a very short lateral distance (e.g. 1–2 

mm) at only two points are sufficient in order to properly reconstruct the shear wave phase 

velocity. This is also confirmed with SD results presented in Fig. 9c. One exception can be 

observed, i.e., when data within a short distance (less than 2 mm) from the focused push 

beam are considered, higher SD is observed. This is induced by a near field effect which has 

greater impact on the 2D-FT method. In order to properly estimate the mean phase velocity 

using the 2D-FT method, shear wave signals acquired along longer lateral distance (5 mm 

and above) are necessary. When shorter segment lengths in the lateral direction are taken 

into account, higher SD is present for all TM phantoms and the frequency range 

investigated, as can be observed in Fig. 9d.

In our study, we defined the usable bandwidth as a frequency corresponding to 80% or 90% 

of the maximum power spectra amplitude calculated using the 2D-FT method. The 

bandwidth depends on the mechanical properties (shear modulus and viscosity) of tissue and 

the geometry and temporal length of the acoustic radiation force push beam (Palmeri et al. 

(2014)). We have found in our study that the reconstructed shear wave phase velocity in the 

bandwidth from 100 Hz to characteristic frequency corresponding to 80% of the spectra 

magnitude produced lower RMSE (<0.1 m/s) for more combinations of the first signal 

position and the distance between two measurement points (Figs. 4a and 5a). For 90% of the 

bandwidth instead, the RMSE is still below 0.1 m/s when the first signal position is chosen 

between 2–4 mm from the focused push beam (Figs. 4c and 5c). Choosing the first signal 

position further than 5 mm from the push beam resulted in increased RMSE up to 0.2–0.3 

m/s.

The shear wave motion data measured at farther lateral locations have lower SNR. The 2P-

CWT method takes into account information from only two measurement points, whereas, 

2D-FT uses information from multiple points along the lateral segment using shear wave 

motions with higher amplitudes, i.e., higher SNR. Results for higher frequencies 

corresponding to 90% of the maximum power spectra amplitude are more susceptible to the 

noise than 80%.
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2P-CWT was also tested using two ex vivo porcine livers data in Fig. 12. The 2P-CWT 

method provides fewer oscillations than the 2D-FT approach. Moreover, extended usable 

bandwidth (up to 600 Hz) was observed for liver 1 in bottom row of Fig. 12a.

It should be mentioned that the wave velocity dispersion results from the 2P-CWT method 

and the 2D-FT approach are dependent on the data input to the algorithm. We have also 

observed that adjusting the distance range of the data, i.e., the distance from the source 

(below approximately 2 mm) can cause changes to the dispersion (Fig. 9c). Shear wave 

interference leads to fluctuations in shear wave intensity near the focused push beam and is 

known as the near field. Because of the shear wave variations within the near field, it can be 

difficult to accurately evaluate dispersion curves in materials within this area. Hence, the 

area beyond the near field where the shear wave is more uniform is more typically used. 

This behavior, has been also observed in 2D-FT based methods for phase velocity dispersion 

curves computation (Rouze et al. (2017); Kijanka et al. (2018)).

Shear wave velocity estimation can be affected by jitter (Walker and Trahey (1995)), 

shearing (McAleavey et al. (2003); Deffieux et al. (2012)), out-of-plane propagations (Zhao 

et al. (2011)), motion artifacts, and dispersion. For multiple track location methods, speckle 

noise is also a source of error. This type of source is due to the fact that stronger speckle are 

tracked preferentially, and they may be located off the axis of the tracking beam in favor of 

weaker on-axis speckle. In order to overcome this problem, tracking at a single location can 

be used which subtracts out this speckle noise in shear wave velocity estimates (Elegbe and 

McAleavey (2013)). An STL approach could be applied for 2P-CWT in order to eliminate 

this type of error, but this was not explored in this work.

There are several main advantages of the proposed 2P-CWT method over traditional Fourier-

based analyses. Firstly, 2P-CWT uses a reduced number of data points. Shear wave velocity 

waveforms are analyzed from two spatially distributed points only. This has a strong 

potential in scenarios where shear waves decay very fast and do not propagate over a long 

distance, e.g., below 5 mm. In some cases, it may be useful to have these locations closely 

spaced due to high attenuation in viscoelastic media. However, in other cases, it may be 

necessary to have some minimum spacing if the material has higher shear wave velocities. 

At the same time, Fourier-based methods are considered as more laterally global methods 

that require many data points for robust results. The resulting information is averaged from 

many acquisition points taken in the lateral direction.

Secondly, the 2P-CWT method uses wavelet analysis as a bank of filters to decompose the 

signals into a set of narrow-band details. CWT retains information on how the spectral 

content varies with time delay. The accuracy of the time and frequency remain constant over 

the entire time-frequency domain.

Another advantage is that the 2P-CWT method requires shear wave velocity waveforms 

measured at two locations. Hence, the temporal resolution of acquisitions can be increased 

by activating only a few array transducers. This in turn, may increase the signal-to-noise 

ratio of shear wave tracking (Song et al. (2015)). Additionally, instead of using plane waves, 
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focused transmit beams could also increase SNR at the two locations of interest (Palmeri et 

al. (2014)).

We can conclude from our study that an optimal combination of measurement points for the 

2P-CWT method, in order to properly reconstruct the phase velocity with low SD and 

RMSE, is approximately 4–8 mm for the first signal position (in order to avoid the near field 

effect) and the distance between two locations ranging from 0.154 mm (corresponding to the 

lateral spatial resolution) to approximately 6 mm. These combinations gave the SD ≤ 0.1 m/s 

for the numerical data, custom made TM phantoms, and liver data in the frequency range 

from 100 Hz to the 80% characteristic frequency. For a higher frequency range (up to 90% 

or more), the optimal combination of these points is still under consideration and needs 

further investigation.

In future work, we will use this method on data from in vivo tissue measurements to 

determine the robustness of the 2P-CWT method.

Conclusions

A method for the estimation of shear wave phase velocity dispersion curves based on the 

continuous wavelet transform was presented. The newly developed method was tested on 

simulated and experimental phantom data. In comparison with the 2D-FT method, the 2P-

CWT method achieved better performance with SNR in the simulation data for selected 

bandwidth. Future work will be devoted to use this method in the viscoelastic 

characterization of soft tissues.
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Figure 1: 
Example of reconstruction phase velocity based on the 2P-CWT approach for shear wave 

motion measurements. (a)temporal shear wave propagation using the particle velocity 

signals for selected lateral positions of 5.2 (sw1) and 8.2 (sw2) mm from the push beam 

location, respectively. (b) a cross-correlogram with its minimum representing the phase 

velocity of the shear wave. (c) extracted the phase velocity from the cross-correlogram (b) 

compared with the phase velocity com-puted using the 2D-FT approach.
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Figure 2: 
Spatiotemporal shear wave propagation using the particle sig-nal velocity (a) without added 

noise and (b) with an SNR = 15 dB. Results were calculated for the numerical LISA 

viscoelastic phantoms, with assumed material properties. (top row) μ1 = 4.99 kPa and μ2 = 1 

Pa·s (Phantom 1). (middle row) μ1 = 3.34 kPa and μ2 = 1.25 Pa·s (Phantom 2). (bottom row) 

μ1 = 1.48 kPa and μ2 = 0.75 Pa·s (Phantom 3). (bottom row) μ1 = 1.48 kPa and μ2 = 0.75 Pa 

s (Phantom 3).
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Figure 3: 
Magnitude of the k-space spectra calculated using the 2D-FT method. The k-space spectra 

have superimposed vertical lines corresponding to 80 % (dotted line) and 90 % (dashed line) 

of power spectra amplitude, respectively. Results were calculated for the numerical LISA 

viscoelastic phantoms without added noise and with a SNR = 15 dB, with assumed material 

properties. (top row) μ1 = 4.99 kPa and μ2 = 1 Pa·s (Phantom 1). (middle row) μ1 = 3.34 kPa 

and μ2 = 1.25 Pa·s (Phantom 2). (bottom row) μ1 = 1.48 kPa and μ2 = 0.75 Pa·s (Phantom 3).
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Figure 4: 
The RMSE calculated in a frequency range from 100 Hz to the frequency corresponding to 

(a), (b) 80 % and (c), (d) 90 % of the maximum power spectra amplitude presented in Fig. 

3a. The RMSE was computed for (a), (c) 2P-CWT and (b), (d) 2D-FT techniques. Results 

were calculated for the numerical LISA viscoelastic phantoms without added noise with 

assumed material properties (top row) μ1 = 4.99 kPa and μ2 = 1 Pa·s (Phantom 1). (middle 

row) μ1 = 3.34 kPa and μ2 = 1.25 Pa·s (Phantom 2). (bottom row) μ1 = 1.48 kPa and μ2 = 

0.75 Pa·s (Phantom 3).
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Figure 5: 
The RMSE calculated in a frequency range from 100 Hz to the frequency corresponding to 

(a), (b) 80 % and (c), (d) 90 % of the maximum power spectra amplitude presented in Fig. 

3b. The RMSE was computed for (a), (c) 2P-CWT and (b), (d) 2D-FT techniques. Results 

were calculated for the numerical LISA viscoelastic phantoms with a SNR = 15 dB with 

assumed material properties (top row) μ1 = 4.99 kPa and μ2 = 1 Pa·s (Phantom 1). (middle 

row) μ1 = 3.34 kPa and μ2 = 1.25 Pa·s (Phantom 2). (bottom row) μ1 = 1.48 kPa and μ2 = 

0.75 Pa·s (Phantom 3).
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Figure 6: 
Phase velocity curves computed for the 2D-FT (red stars) and 2P-CWT (blue dots) methods. 

Results were calculated for the numerical LISA viscoelastic phantoms without added noise 

and with a SNR = 15 dB, with assumed material properties. (top row) μ1 = 4.99 kPa and μ2 = 

1 Pa·s (Phantom 1). (middle row) μ1 = 3.34 kPa and μ2 = 1.25 Pa·s (Phantom 2).(bottom 

row) μ1 = 1.48 kPa and μ2 = 0.75 P·s (Phantom 3). A comparison to the true (black, 

continues curves) values is made.
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Figure 7: 
Spatiotemporal shear wave propagation using the particle ve-locity signal. Results are 

presented for the experimental, cus-tom made TM viscoelastic phantoms (a) Phantom A, (b) 

Phan-tom B and (c) Phantom C.
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Figure 8: 
Magnitude of the k-space spectra calculated using the 2D-FT method (a) and phase velocity 

curves computed for the 2D-FT and 2P-CWT methods (b). Results were calculated for the 

experimental TM viscoelastic phantoms (top row) Phantom A, (middle row) Phantom B and 

(bottom row) Phantom C.
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Figure 9: 
Mean of the phase velocity curves for the (a) 2P-CWT and (b) 2D-FT methods. Standard 

deviation of the phase velocity for the (c) 2P-CWT and (d) 2D-FT methods. All results were 

computed in a frequency range from 100 to 700 Hz. Results were calculated for the 

experimental TM viscoelastic phan-toms (top row) Phantom A, (middle row) Phantom B 

and (bottom row) Phantom C.
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Figure 10: 
Mean phase velocity dispersion curves from 12 acquisitions calculated for (a) Phantom A 

and (b) Phantom C, respectively. Results for Phantom A were calculated for first signal 

position of 4 mm and distance between positions (lateral segment length) of 2 mm. Results 

for Phantom C were computed for first signal position of 9 mm and distance between 

positions (lateral segment length) of 5 mm.
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Figure 11: 
Spatiotemporal shear wave propagation using the particle velocity signal. Results were 

calculated for the experimental, ex vivo liver data.
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Figure 12: 
Top row presents magnitude of the k-space spectra calculated using the 2D-FT method. 

Bottom row presents phase velocity curves computed for the 2D-FT and 2P-CWT methods. 

Results were calculated for ex vivo liver data.
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Figure 13: 
Mean of the phase velocity curves for the (a) 2P-CWT and (b) 2D-FT methods. Standard 

deviation of the phase velocity for the (c) 2P-CWT and (d) 2D-FT methods. All results were 

computed in a frequency range from 100 to 80% of maximum power spectra. Results were 

calculated for ex vivo liver data.
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Table 1:

Material properties adopted for a Kelvin-Voigt LISA numerical models.

Phantom 1 Phantom 2 Phantom 3

μ1 [kPa] 4.99 3.34 1.48

μ2 [Pa·s] 1.00 1.25 0.75

Ultrasound Med Biol. Author manuscript; available in PMC 2020 September 01.


	Abstract
	Introduction
	Materials and Methods
	The Continuous Wavelet Transform Used for Phase Velocity Evaluation
(2P-CWT)
	Step 1:
	Step 2:
	Step 3:
	Step 4:
	Step 5:

	Numerical LISA Viscoelastic Phantoms Description
	Tissue Mimicking Phantoms Description
	Ex vivo Liver Data Description

	Results
	Numerical LISA Viscoelastic Phantoms Results
	Experimental TM Phantom Results
	Experimental Ex vivo Liver Results

	Discussion
	Conclusions
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:
	Figure 9:
	Figure 10:
	Figure 11:
	Figure 12:
	Figure 13:
	Table 1:

