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Abstract

Background—Human exposure to mercury leads to a variety of pathologies involving numerous 

organ systems including the immune system. A paucity of epidemiological studies and suitable 

diagnostic criteria, however, has hampered collection of sufficient data to support a causative role 

for mercury in autoimmune diseases. Nevertheless, there is evidence that mercury exposure in 

humans is linked to markers of inflammation and autoimmunity. This is supported by experimental 

animal model studies, which convincingly demonstrate the biological plausibility of mercury as a 

factor in the pathogenesis of autoimmune disease.

Scope of the review—In this review, we focus on ability of mercury to elicit inflammatory and 

autoimmune responses in both humans and experimental animal models.

Major conclusions—Although subtle differences exist, the inflammatory and autoimmune 

responses elicited by mercury exposure in humans and experimental animal models show many 

similarities. Proinflammatory cytokine expression, lymphoproliferation, autoantibody production, 

and nephropathy are common outcomes. Animal studies have revealed significant strain dependent 

differences in inflammation and autoimmunity suggesting genetic regulation. This has been 

confirmed by the requirement for individual genes as well as genome wide association studies. 

*Corresponding author. mpollard@scripps.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Author disclosure statement
The authors have no conflicts of interest to declare.

HHS Public Access
Author manuscript
Biochim Biophys Acta Gen Subj. Author manuscript; available in PMC 2020 December 01.

Published in final edited form as:
Biochim Biophys Acta Gen Subj. 2019 December ; 1863(12): 129299. doi:10.1016/j.bbagen.2019.02.001.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Importantly, many of the genes required for mercury-induced inflammation and autoimmunity are 

also required for idiopathic systemic autoimmunity. A notable difference is that mercury-induced 

autoimmunity does not require type I IFN. This observation suggests that mercury-induced 

autoimmunity may arise by both common and specific pathways, thereby raising the possibility of 

devising criteria for environmentally associated autoimmunity.

General significance—Mercury exposure likely contributes to the pathogenesis of 

autoimmunity.
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1. Introduction

Mercury is a widely distributed environmental and industrial xenobiotic. Consequently, the 

risk of mercury exposure for human populations is substantial and occurs through diverse 

routes such as occupational, dietary contamination, overuse of therapeutic or cosmetic 

agents, and fossil fuel emissions, among others [1–4]. Exposure to all forms of mercury 

including elemental, organic and inorganic can lead to a variety of pathologies involving 

numerous organ systems [3]. In this review, we focus on the immune system and the ability 

of mercury to elicit inflammatory and autoimmune responses in both humans and 

experimental animal models. Using this information, we propose possible molecular and 

cellular pathways through which mercury-induced inflammation can lead to autoimmunity.

2. Mercury exposure and induction of inflammation

Mercury exposure leading to documented inflammatory or autoimmune outcomes include 

mining, skin whitening creams, and fish consumption. Mercury is used by small scale gold 

miners in 50 developing countries and is a major source of mercury contamination in the 

associated rural communities [5, 6]. It is believed that between 10-15 million people, 

including women and children, are directly involved in artisanal gold mining [5, 7] including 

over 400,000 in China alone [8]. Mercury containing skin care products are widely used, 

with one commercial product being available in 35 countries [9]. Although regulated in the 

USA, use of mercury containing skin lightening creams has been documented in Hispanic 

women on the Texas-Mexico border [10], and their use accounted for reportable levels of 

urinary mercury (≥20μg/L) in 9 of 13 individuals identified among 1,840 adult New Yorkers 

[11]. Consumption offish is one of the major, if not the major, sources of ingestion-related 

mercury exposure in humans. The levels of exposure can vary depending upon the type of 

seafood consumed [3], the extent of seafood consumption [12, 13], and proximity to sources 

of environmental mercury contamination [14].

The ability of metal ions to stimulate inflammatory responses in the absence of mitogens is 

well established [15], although the mechanisms involved remain to be resolved [16]. Much 

of our understanding of metal-induced inflammation comes from studies of beryllium 

exposure [16, 17] where the proposed cellular mechanism involves activation of the innate 

immune system via cell death, engagement of pattern recognition receptors, migration of 
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antigen presenting cells to secondary lymphoid organs and subsequent activation of the 

adaptive immune system including IFN-γ producing Th1 CD4+ T cells [16, 17]. T cell 

responses in chronic beryllium disease (CBD) are not mediated by direct recognition of 

Be2+ ions but by beryllium ion-induced changes in the structure of preexisting self MHC-

peptide complexes that are then recognized by specific T cell antigen receptors [18]. 

Adaptive immunity mediated by mercury exposure also requires components of the innate 

immune system [19] arguing that an understanding of the very early events in metal-induced 

immune cell activation are important for both inflammation and subsequent immuno-

pathology [17, 20]. However, an important distinction is that mercury, in contrast to 

beryllium, exposure induces systemic rather than organ specific autoimmunity [20, 21].

2.1 Human studies

2.1.1 In vitro studies—Mercury-induced proliferation of human lymphocytes has been 

reviewed previously [15]. These studies primarily involved unfractionated PBMC making 

identification of the responding cell types difficult. However, several observations are noted 

here simply because of their relevance to similar studies, described below, using 

experimental animals. PBMC and thymocytes proliferate within 6 days of exposure [22, 23], 

and removal of adherent cells does not affect the response of PBMC [23, 24]. Expression of 

several cytokines including IL-6 and IL-8 [25] but not IL-1β or TNF-α [26] are increased in 

PBMC. These findings argue that mercury-induced proliferation does not require the 

structured cellular compartmentalization of secondary lymphoid organs, at least for the first 

few days of exposure.

Micromolar concentrations of HgCl2 negatively affect several functional activities of 

neutrophils [27, 28] but enhance chemiluminescence and H202 production [28], and increase 

release of lysosomal enzymes within hours [27]. Reactive oxygen species generation is also 

linked to mercury-induced formation of neutrophil extracellular traps [29]. These finding 

suggest early events following local tissue injury produced by mercury exposure require 

infiltrating neutrophils [30].

Intracellular tyrosine phosphorylation is increased in neutrophils [31] and lymphocytes [32] 

following exposure to mercury. This may be related to activation of p56lck [32, 33]. More 

detailed analysis of intracellular signaling has been done using Jurkat cells, a human T cell 

line. Mercury enhanced survival of Jurkat cells via blockage of CD95-induced caspase-3 

activation [34] potentially via disruption of the death inducing signaling complex (DISC) 

[35] due to dissociation of preassembled Fas receptor complexes [36]. Low dose mercury 

exposure also inhibits T cell receptor mediated activation of Ras and ERK MAP kinase in 

Jurkat cells [37]. This appears due to hypo-phosphorylation of LAT via inactive tyrosine 

kinase ZAP-70 [38]. The failure to activate ZAP-70 is likely due to mercury-induced 

inhibition of phosphorylation of the protein tyrosine kinase Lck [39]. These findings with 

Lck conflict with those found for human PBMC where phosphorylated Lck was co-

immunoprecipitated with anti-CD4 after treatment with HgCl2 [32]. Whether these findings 

reflect differences in intracellular signaling in primary versus transformed cells, or 

differences in phosphorylation of different tyrosines in Lck remains to be determined.
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2.1.2 Epidemiological studies—Elevated serum levels of the inflammatory markers 

IL-1β, TNF-α, and IFN-γ have been found in gold miners in Amazonian Brazil [40]. 

Among fish consumers in Amazonian Brazil, L-6, IFN-γ, IL-4 and IL-17 cytokine levels 

were increased with mercury exposure [41]. In contrast, long term occupational exposure to 

inorganic mercury was not associated with cytokine levels, except for a negative relationship 

with serum TNF-α [42, 43]. Studies of cohorts with lower levels of exposure including 

maternal mercury exposures in the Brazilian Amazon [44] and fish consumers on Long 

Island, New York [45], have not found associations between mercury levels and serum 

cytokines. These studies suggest a relationship between exposure level and increased 

cytokine expression however more studies are needed, particularly those in which care is 

taken to identify appropriately exposed cohorts, and which control for the complexity of 

confounding variables including culture and ethnicity, severity and length of exposure, 

source of exposure (occupational, dietary), biological fluids assayed, analytical procedures, 

and statistical analysis.

2.2 Animal studies

2.2.1 In vitro studies—Mercuric chloride elicits in vitro lymphoproliferation in guinea 

pigs, rats and rabbits [46], and mice [47–49]. Consistent with human PBMC studies (see 

above), HgCl2-induced proliferation of murine splenocytes is dependent on mercury 

concentration, cell density and culture conditions [47–49]. Similar findings were reported 

for lymphocytes from rat, guinea pig and rabbit [46]. Mouse lymphocyte proliferation is 

dependent upon macrophages [47] or splenic adherent cells [48, 49] and involves mature 

CD4+ and CD8+ T cells as neither splenic B cells [48, 49] nor thymocytes respond [48]. In 

contrast, thymocytes and splenic lymphoid cells from guinea pigs proliferate even in the 

absence of adherent cells [50], a response more akin to that found for human PBMC [15]. 

Antibodies against co-stimulatory molecules, and particularly IL-1α, inhibit proliferative 

responses [48]. Although human and animal studies have used mixed cell populations 

(PBMC vs. spleen) they show that mercury induces a proliferative response in lymphocytes.

Several studies have determined that in vitro exposure to mercury involves intracellular 

calcium accumulation and signal transduction [15]. These events, occurring within minutes, 

appear to be initiated at the plasma membrane [51, 52], possibly via oxidation of cell surface 

thiol groups [15, 33]. Tyrosine phosphorylation is observed in both primary and transformed 

lymphocytes [33, 53]. Non-toxic doses of HgCl2 selectively affect tyrosine phosphorylation 

in the mouse B cell line WEHI-231 [54] including attenuation of B cell receptor (BCR)-

mediated activation of ERK-MAPK [51]. Lyn, a protein tyrosine kinase, appears to be one 

target of mercury-induced B cell intracellular signaling [55] leading to defects in BCR 

signaling in immature B cells [56] and modulation of cytoskeletal protein phosphorylation 

[57]. It remains to be determined if these findings contribute to in vivo inflammatory and 

autoimmune responses, however the role that Lyn plays in regulating signaling pathways 

within B cells is known to be important in idiopathic autoimmunity [58].

2.2.2 In vivo studies—Mercury-induced lymphoproliferation in vivo has been 

documented in mice using the popliteal lymph node assay (PLNA) [59, 60]. As found for in 
vitro studies, responses are strain, dose and time dependent. Reactions peak between 4-8 
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days except for the DBA/2 strain which is unresponsive [59]. DBA/2 mice also fail to 

develop an inflammatory response following subcutaneous injection of HgCl2 [61]. In 

contrast, sensitive strains show pronounced inflammatory cell infiltrates, and elevated 

proinflammatory cytokines together with increased cathepsin B activity [62]. It is unclear 

whether cathepsin B activity is responsible for, or a consequence of, proinflammatory 

cytokine expression as cytokines required for mHgIA (IFN-γ, IL-6) are not required for 

mercury-induced increase in cathepsin B activity nor inflammation at the site of exposure 

[61, 62]. However, the localization of mercury to lysosomes [63, 64], and subsequent 

lysosomal membrane destabilization [65] may be a mechanism of rapid cathepsin B release.

Inflammatory events in the first 2-3 days at the site of exposure have not been examined in 

detail, although increases in IL-1 expression [66] and IFN-γ+ cells [61] can occur within 24 

hours. Consistent with in vitro studies, both CD4+ and CD8+ T cells and cytokine 

expression begin to increase within 3 days in spleen and lymph nodes [67–70]. In contrast to 

in vitro studies, B cell expansion also occurs [67, 68] together with production of IgE and 

IL-4 [71–73]. These studies argued that mercury-induced lymphoproliferation drives a type 

2 helper CD4+ T cell response (Th2) [74–76]. However, induction of Th2 IL-4 and/or Th1 

IFN-γ was found to be strain dependent, suggesting that a Th2 response does not 

predominate [69]. Subsequent gene deletion studies found that IFN-γ but not IL-4 is 

required for mercury-induced proliferation of CD4+ T cells and (auto)antibody producing B 

cells [77–79]. More recently, it was found that HgCl2 exposure induced the expansion of 

hematopoietic stem cells and this required bone marrow-resident macrophages and FN-γ 
[80]. The effects of inorganic mercury exposure on myeloid and lymphoid lineage 

development might also impact inflammatory and autoimmune responses.

The early inflammatory response, and particularly proinflammatory cytokine expression, is 

most obvious at the site of exposure rather than the spleen [61, 62, 81]. Numerous 

proinflammatory mediators, including NLRP3, IL-1β, IL-4, IL-6, TNF-α, IFN-γ [61, 62, 

81], and innate and adaptive immune cells [61], are increased within the first week after 

exposure. Although IFN-γ and IL-6 are not required for the early inflammatory response, 

they are necessary for the exacerbation of other proinflammatory cytokines as well as genes 

known to be regulated by either IFN-γ or type I IFN [61]. Pivotal among these may be 

IRF-1, because it appears to be at the nexus of the interplay between IFN-γ and IL-6 in 

exacerbating mercury-induced inflammation, regulation of interferon responsive genes and 

autoimmunity [61, 78]. These early inflammatory events are required for expression of 

mercury-induced autoimmunity although it remains to be determined which are essential for 

development of autoantibody production such as germinal center formation and polyclonal 

expansion of autoreactive B cells.

3. Mercury-Induced Autoimmunity

3.1 Human studies

A recent review of epidemiological data concluded that there is insufficient evidence to 

prove a causative role for mercury in development of autoimmune diseases [82]. This is due 

in large part to the paucity of epidemiological studies addressing this association, as well as 

lack of suitable diagnostic criteria to identify autoimmune disease phenotypes for which 
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such an environmental exposure plays a causative role [83]. However, a more recent review 

of the association between mercury exposure and autoimmunity concluded that while 

evidence of clinical disease remains elusive, mercury exposure in humans is linked to the 

presence of autoantibodies [84].

3.1.1 Association of mercury exposure and autoantibodies—Association 

between the presence of autoantibodies and mercury exposure has been found in several 

quite distinct populations. Epidemiological studies have described autoantibodies [40, 85, 

86] in artisanal goldminers in South America. Other studies have observed a positive 

correlation between fish eating in Amazonians and the presence of anti-nuclear antibodies 

(ANA) [41], and the interactions of female gender with blood mercury and the presence of 

ANA in Cheyenne River Sioux Tribe members exposed to mercury through fish 

consumption [87]. In Faroese children, blood mercury was associated with multiple neural 

and non-neural IgM antibodies [12]. However, another study of mercury exposure from fish 

eating in the Amazon failed to find an association between hair mercury levels and ANA, 

although ANA positivity was more frequent in fish eaters and the only ANA positive 

individuals were those with ≥6 ppm of hair-mercury [88]. Separate studies of Colombian 

artisanal gold miners [89] and seafood consumers on Long Island, New York [45] failed to 

confirm a link between mercury exposures and ANA, however this may reflect the lower 

levels of mercury in these two study populations. In contrast, an association has been found 

between urinary mercury levels and anti-fibrillarin autoantibodies in scleroderma patients 

even though mercury levels were within the normal range [90].

The possibility of an association between autoantibodies and mercury levels has also been 

examined in various cohorts of the National Health and Nutrition Examination Survey 

(NHANES), a program designed to assess the health and nutritional status of adults and 

children in the United States. Using the 2007-2008 NHANES survey, an association was 

found between the upper quintile of blood mercury (>1.81 ug/L) in women 20 years and 

older and thyroglobulin autoantibody positivity [91], and hair and blood mercury levels were 

found associated with ANA in women 16-49 years old from the NHANES 1999-2004 

survey [92]. However, analysis of men and women in the NHANES 1999-2004 survey failed 

to confirm this association [93] as did a comparison of blood levels of mercury and presence 

of ANA in men and women aged 12 – 85 using 2003-2004 NHAMES data [94].

These NHANES cohort studies suggest a relationship between mercury exposure and 

autoantibody induction particularly in cohorts with elevated exposure levels. However 

differences in study populations, study design and/or statistical analysis make establishing a 

convincing linkage difficult. Moreover, the lack of standardization of ANA testing [95] adds 

a further layer of complexity that is only likely to be resolved by more specific and sensitive 

autoantibody assays.

3.1.2 Mercury and nephrotic syndrome—An established outcome of mercury 

exposure in humans is nephrotic syndrome [96]. Associated exposures include mercury 

containing cosmetics such as skin whitening/lightening creams [9, 97] and hair dyes [98], 

occupational contact [99], and mercury-containing pills [98]. A literature review found 26 

cases with renal biopsy of which 21 (72%) had glomerular diseases, with membranous 
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glomerulonephritis (15 patients) and minimal change disease (4 patients) being the major 

pathological observations [96]. Autoantibodies have been found in some patients [98, 100] 

but not others [96, 101]. The mechanisms leading to mercury-induced glomerular injury in 

humans are unknown. Mercury does exhibit significant renal tubular toxicity [102], and it 

has been suggested that this leads to release of self-antigen and an ensuing inflammatory 

response involving cytokine [103] and autoantibody production [98, 103].

3.2 Animal studies

The clear demonstration that mercury exposure can induce systemic autoimmunity in 

different animal species supports the biological plausibility of mercury as a factor in human 

autoimmune diseases. Numerous studies, predominantly in mice, have shown that mercury-

induced autoimmunity can be elicited by a variety of exposure routes including 

subcutaneous injection [33] or oral ingestion of HgCl2 [34], inhalation of mercury vapor 

[35], and dental [36] or peritoneal [37] implantation of mercury containing dental amalgam 

[37]. The expression of disease is influenced by dose [104–107], length of exposure [106], 

strain [108–110] and the presence or absence of specific genes [19, 77, 78, 111].

Although renal damage following inorganic mercury exposure in humans was known by the 

1950s [112], it was not until the early 1970s that studies described glomerulonephritis 

mediated by immune complex deposits in rat based experimental models [113]. These 

observations were followed by reports of anti-glomerular basement membrane (GBM) 

autoantibodies in rats [114] and rabbits [115], and ANA in rats [116]. In mice, HgCl2-

induced ANA were found to include anti-nucleolar autoantibodies (ANoA) [117] 

subsequently identified as antibodies against fibrillarin, a 37-kDa protein component of box 

C/D small nucleolar ribonucleoprotein (snoRNP) particles [118, 119].

The anti-fibrillarin response is MHC class II restricted unlike HgCl2-induced responses to 

other nuclear antigens such as chromatin [109]. The response has similar properties to the 

anti-fibrillarin response in human autoimmunity including recognition of an epitope 

conserved from humans to yeast [120]. Although mercury binds fibrillarin at its two 

cysteines, this modification impairs both human and mouse anti-fibrillarin binding indicating 

that unmodified native fibrillarin is the dominant B cell antigen and arguing against the 

possibility that anti-fibrillarin neoantigens drive the B cell response [121]. Rather, mercury 

induced cell death results in proteolytic cleavage of fibrillarin to a 19-kDa fragment [122]. 

Proteolysis of fibrillarin lacking cysteines, and therefore unable to bind mercury, also 

produced the 19-kDa fragment which was capable of inducing anti-fibrillarin autoantibodies 

[122]. These observations suggest that mercury-induced cell death may generate novel 

protein fragments as sources of antigenic determinants for self-reactive T lymphocytes.

Additional evidence for the genetic regulation of autoimmune responses induced by mercury 

have come from comparison of inbred mouse strains. These studies have revealed a 

spectrum of responses ranging from non-responsiveness in the DBA/2, to the presence of 

autoantibodies without immune deposits in A/J and C57BL/6, to systemic disease with 

autoantibodies and immune deposits in tissues including the kidney in B10.S, A.SW and 

SJL [109]. The lack of response in the DBA/2 is due to the absence of inflammation at the 

site of exposure [30, 59, 61, 62], coincident with the lack of proinflammatory cytokines 
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IL-1β, TNF-α, and IFN-γ and cathepsin B activity [62]. In contrast, development of 

autoantibodies and immune deposits relies in large part on IFN-γ and genes affecting its 

function including IFN-γ receptor, IRF-1 and IL-6 [61, 78].

The molecular and cellular requirements for murine mercury-induced autoimmunity 

(mHgIA) have been investigated using a variety of approaches (Table 1, Figure 1). The most 

common approach has been to use mice lacking individual genes. These studies have 

identified four different types of genes, a) those required for autoimmunity, b) those not 

required, c) those that are partially required, and d) those that suppress autoimmunity. A fifth 

influence are autoimmune prone genotypes that result in exacerbation of mercury-induced 

autoimmunity. These studies have identified the essential roles that TLR trafficking and 

signaling (Ap3b1, Unc93b1, Slc15a4, Nfkb1, IL-6), IFN-γ response (IFN-γ, IFN-γR, IRF1, 

hemopexin), and T cell co-stimulation (CD28, CD40L, LAG-3, Daf1) play in mHgIA (Table 

1). These observations also show that while genes such as CD40L and CD28 are required for 

mercury-induced T cell activation and autoantibodies [123], other genes, such as IFN-γ and 

IRF1, are not required for T cell activation but are necessary for production of 

autoantibodies [78].

An alternative approach has been to use antibody treatment to target specific immune 

components. Many of these studies have targeted molecules that regulate T cell responses 

including CD40L [74], CD80 and CD86 [124], CTLA4 [125], LAG-3 [126], ICOS [127], 

and 4-1BB [128] to confirm the importance of T cell co-stimulation in mHgIA. Another 

modality has been the use of recombinant molecules such as IL-10 to support findings with 

IL-10 deficient mice [129] and the fusion protein CTLA4-Ig [74] to confirm the importance 

of T cell co-stimulation in mHgIA. TACI-Ig fusion protein has been used to show the 

importance of BAFF in autoantibody production by B cells [130].

A less frequently used approach has been genome wide association studies. Hybrids between 

HgCl2 sensitive Brown-Norway and resistant Lewis rats have found genetic linkages to 

MHC (RT1) for anti-glomerular basement membrane (anti-GBM) [131, 132], 

glomerulonephritis [132], and IgE [133]. More recent studies have found that a 117-kb 

interval on chromosome 9 from Lewis rats protects Brown-Norway rats from both elevated 

IgE response and nephropathy [134]. The region contains 4 genes, C3, Gpr108, Cip4/Trip10 
and exons 1-15 of Vav1, with non-synonymous polymorphisms in C3 and Vav1 [134]. 

However, the genetic element, or elements, responsible for the observed phenotype remain 

to be determined.

Genome wide scans using F2 intercrosses of the mHgIA resistant DBA/2 mouse with either 

of the mHgIA sensitive SJL or NZB strains were used to identify the genetic basis of 

resistance/sensitivity to mHgIA [135]. A single major QTL, designated Hmr1, and 

containing several lupus susceptibility loci, was identified on chromosome 1. Hmr1 is linked 

to glomerular immune complex deposits but not autoantibody production [135]. Differential 

expression of genes within the Hmr1 locus of DBA/2 and NZB mice identified decay 

accelerating factor 1 (,Daf1 or CD55) which has a functional activity, inhibition of 

complement activation, that offered a rational explanation for the phenotype displayed by 

the Hmr1 locus [136]. However complement is not required for mHgIA [137]. Nonetheless, 
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it was found that exposure to HgCl2 reduces Daf1 expression on activated CD4+ T cells in 

mHgIA sensitive B10.S but not the resistant DBA/2, and that autoimmune prone NZB mice 

have reduced constitutive expression of Daf1 on T and B cells [138]. A unique 

pentanucleotide repeat variant in the second intron of Daf1 in DBA/2 mice was shown in F2 

intercrosses to be associated with less severe renal immune deposits, however analysis of 

Hmr1 congenics failed to show that this regulates Daf1 expression [139]. A recent study 

used A.SW and B10.S mice, both with the same MHC class II (H-2s), to investigate non-

MHC genes involved in the development of ANoA [140]. A QTL on chromosome 3 was 

identified and candidate genes Bank1 (B-cell scaffold protein with ankyrin repeats 1) and 

Nfkb1 (nuclear factor kappa B subunit 1) proposed as key regulators of ANoA development 

in mHgIA. These studies argue that induction of autoimmune pathology by mercury is 

complex and likely requires multiple genetic elements.

4. Molecular and cellular mechanisms of mercury-induced immune 

activation and autoimmunity

In contrast to idiopathic models of autoimmunity, a notable feature of the induced models is 

that the initiating factor is known making it possible to identify and study the temporal and 

mechanistic course of events leading to autoimmunity. This is especially true for the 

mercury model where autoantibodies are detected within two weeks of initial exposure and 

the development of autoimmunity resembles to a large extent a classical T-dependent 

humoral immune response (Figure 1). Accordingly, mercury-induced autoimmunity is 

characterized sequentially by the development of an essential inflammatory reaction at the 

site of exposure; a T-dependent humoral response characterized by activation and expansion 

of CD4+ T cells, hypertrophy of draining lymph nodes with new germinal centers, and IgG 

production; the generation of IgG ANAs; and immune complex deposits in glomeruli and 

blood vessels.

We recently proposed that the inflammation following exposure to mercury likely arises as a 

consequence of tissue damage leading to the availability of damage associated molecular 

patterns (DAMPs), resulting in the engagement of innate sensors including nucleic acid-

sensing TLRs, the production of inflammatory cytokines and the induction of chronic 

inflammation [30]. Although mercury-induced TLR activation leading to proinflammatory 

cytokine production remains to be documented, the concept is supported by mercury-

induced neutrophil extracellular trap (NET) activation and release (NETosis) as a source of 

TLR agonists [29], mercury-induced changes in TLR expression [141], and the requirement 

for TLR trafficking and signaling [19]. The localization of mercury to lysosomal 

compartments [64] and increased cathepsin B activity [62] likely contribute to the 

involvement of innate immune processes in mercury-induced inflammation and 

autoimmunity [19]. Importantly, several early inflammatory events including activation of 

cathepsin B [62], proinflammatory cytokines [61, 62, 81] and cellular infiltrates [61, 62] are 

linked to subsequent autoimmune responses. Taken together, these findings support a 

fundamental role for the local inflammation induced by mercury.
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An additional contributing factor appears to be the relationship between persistence of 

mercury in tissues and autoimmunity [104]. The prolonged presence of mercury likely 

fosters chronic tissue damage and inflammation leading to secondary lymphoid organ 

hypertrophy and possibly formation of transient organized aggregates of lymphoid cells 

called ectopic lymphoid structures [30]. Several observations also show that the subsequent 

development of autoimmunity requires additional distinct pathobiologies from that of the 

local innate immune pathways. For example, inflammation at the site of mercury exposure 

occurs in the absence of many genes required for mHgIA [61, 62]. Accordingly, both in vitro 
and in vivo studies show that mercury-induced T cell proliferation requires “accessory cells” 

[25–27], the presence of inflammatory cytokines [25, 26, 87], and co-stimulatory molecules 

[123, 142] all of which is consistent with a T-dependent antibody mechanism. Other genes 

such as IFN-γ and IRF1 are not required for mercury-induced T cell proliferation, but are 

required for mHgIA [78] indicating the presence of additional autoAb-specific pathways.

Although it remains unclear how the mercury-induced innate immune response leads to an 

adaptive autoimmune response, it is most likely that TLR trafficking and signaling in antigen 

presenting cells (APCs and B cells) play a key role [19] as mercury-induced MHC class II 

expression is important for T cell activation [143] and autoantibody production [109, 144]. 

Remarkably, lack of endosomal TLR signaling associated with deficiencies in either 

UN93B1, AP3B1, or SLC15A4, blocks not only autoAb production in HgIA, but also CD4+ 

T cell activation and polyclonal IgG production. This suggests that activation of the innate 

system required for even non autoAb T-dependent antibody responses to mercury is 

completely dependent on recognition of extracellular nucleic acid material. This contrasts to 

T-dependent humoral immune responses which are not dependent on nucleic acid TLR 

signaling [145, 146].

Tissue pathology following mercury exposure involves both toxic [147] and immunological 

facets [96]. Continued exposure can be fatal, however this appears to be a toxic rather than 

immune mediated outcome as lethal proteinuria is rare in the absence of idiopathic 

autoimmunity [148]. Genes which are necessary for innate and adaptive immune responses 

are also required for immune-mediated pathology however there are genes, such as caspase 

1 [78], that appear to contribute more to immune deposits than the proceeding immune 

responses.

An important consideration in defining the immunological and pathological criteria for 

mercury-induced autoimmunity, is that many of the genes required for disease are also 

required for idiopathic systemic autoimmunity. This is particularly true for genes required 

for TLR trafficking and signaling, IFN-γ signaling, and T cell co-stimulation (Table 1). A 

notable caveat to this is that mHgIA is a novel type I IFN-independent model of systemic 

autoimmunity [19]. Thus, mercury-induced autoimmunity arises by both common and 

unique pathways. This raises the possibility of identifying specific criteria for 

environmentally associated autoimmune diseases and applying this information to improve 

diagnosis, treatment and preventative strategies.
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5. Conclusions

Human exposure to mercury in its various forms is associated with pathological outcomes 

including inflammatory markers, autoantibodies and renal pathology. However, definitive 

association with one or more diagnosable autoimmune diseases has not been documented 

due to the small number of small scale epidemiological studies and the lack of suitable 

diagnostic criteria. Nonetheless, our understanding of the mechanisms of mercury-induced 

inflammation and autoimmunity has benefited substantially from experimental animal 

studies. Such studies have recapitulated the presence of inflammatory cytokines, 

lymphoproliferation, autoantibodies and nephropathy that characterize human exposure. 

Moreover, they have allowed insight into the importance of genetics in the regulation of 

inflammatory and autoimmune phenotypes by demonstrating the significant spectrum of 

responses among inbred strains as well as the importance of single genes to disease 

expression. These studies have also demonstrated the importance of a susceptible 

autoimmune phenotype in disease severity, an observation that is reflected in the fact that 

many of the genes required for disease expression are also important for idiopathic 

autoimmune disease. Intriguingly, the caveat to this is the independence of mHgIA for type I 

IFN, a peculiarity which may explain the mild autoimmune disease features exhibited by 

both humans and mice exposed to mercury.
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4-1BB tumor necrosis factor receptor superfamily member 9 (TNFRSF9) 

(CD137)

AP3B1 adaptor related protein complex 3 subunit beta 1

CD cluster of differentiation

Con A concanavalin A

CTLA4 cytotoxic T-lymphocyte associated protein 4 (CD152)

DAF1 decay accelerating factor 1

ICOS inducible T-cell costimulator (CD278)

IFN interferon

IL interleukin

IRF1 interferon regulatory factor 1

LAG lymphocyte-activation gene

MHC major histocompatibility complex
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NFKB1 nuclear factor kappa B subunit 1

PHA phytohaemagglutinin

SLC15A4 solute carrier family 15 member 4

TLR Toll-like receptor

TACI transmembrane activator and CAML interactor

TNF tumor necrosis factor

UNC93B1 Unc-93 homolog B1
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Highlights

• Mercury exposure is linked with inflammation, autoantibodies, and renal 

pathology.

• Animal studies recapitulate the immune features of human exposure.

• Differences in inflammation and autoimmunity are genetically regulated.

• Required genes include those regulating innate and/or adaptive immunity.

• Unlike idiopathic autoimmunity type I IFN is not required.
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Figure 1. 
The pathogenesis of inflammatory and autoimmune responses induced by subcutaneous 

mercury exposure in mouse models. The earliest events occurring within minutes to hours 

(Initiation) involve a toxic response that includes cell death and tissue damage with the 

release of lysosomal constituents such as cathepsin B (CatB), NETosis, and phagocytosis of 

cellular material. Proteolysis of self-proteins such as fibrillarin to autoantigenic forms also 

likely begins at this time. The ensuing Localized Inflammation occurs within hours after 

initial exposure and is associated with elevated CatB activity and proinflammatory cytokine 

expression, which is exacerbated by IL-6 and IFN-γ. Within the first 7 days, there is T Cell 

Activation and hypertrophy of draining Lymph Nodes dependent on co-stimulation (e.g. 

CD28, CD40L) and associated with concomitant reduced CD55 expression on CD4+ T 

cells. The subsequent B cell activation and generation of polyclonal and autoantibodies 

(AutoAbs) including the MHC-restricted anti-fibrillarin occurs by 7-14 days and requires 

IFN-γ, and likely B cell endosomal TLR signaling. Pathology, occurring within the first 

month, is characterized by immunoglobulin and complement deposition in the kidney. 

Known and Postulated events are indicated based on the literature and current understanding 

of inflammatory and autoimmune processes. Mouse strains that typify specific levels of 

response, such as resistance (DBA/2), autoAbs without pathology (C57BL/6, A/J) and 

autoAbs with immune deposits (B10.S, ASW, SJL) are shown.
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Table 1.

Genetic requirements for murine mercury-induced autoimmunity

Effect Genes or genotype Reference (No.)

Required IFN-γ Kono et al, 1998 (82)

Havarinasab et al, 2009 (117)

CD28, CD40 ligand (CD154) Pollard et al, 2004 (129)

Havarinasab et al, 2009 (117)

Hemopexin Fagoonee et al, 2008 (142)

IFN-γ receptor, IRF1 Pollard et al, 2012 (83)

Ap3b1, Unc93b1, Slc15a4, Nfkb1, IL-6 Pollard et al, 2017 (19)

Havarinasab et al, 2009 (117)

Not required IL-4 Kono et al, 1998 (82)

Bagenstose et al, 1998 (84)

Havarinasab et al, 2009 (117)

Icam1 Pollard et al, 2004 (129)

Nlrp3, IL-12p35, IL-12p40, Stat4 Pollard et al, 2012 (83)

IRF7, IFN-α/β receptor Pollard et al, 2017 (19)

Partially required β2-microglobulin (B2m) Pollard et al, 2011 (86)

Casp1 Pollard et al, 2012 (83)

Suppressive IL-10** Haggqvist et al, 2005 (137)

Daf1 Toomey et al, 2010 (147)

LAG-3* Jha et al, 2014 (134)

CTLA4* Zheng et al, 2003 (133)

Exacerbate (Autoimmune prone mice) NZBWF1 al-Balaghi et al, 1996 (130)

NZBWF1, MRL-Fas/pr, MRL-Fas+/+ Pollard et al, 1999 (115)

BXSB Pollard et al, 2001 (131)

*
Confirmed by specific antibody

**
Confirmed by specific recombinant protein
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