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Abstract
Purpose  Differences in resting energy expenditure (REE) between men and women mainly result from sex-related differ-
ences in lean body mass (LBM). So far, a little is known about whether REE and LBM are reflected by a distinct human 
metabolite profile. Therefore, we aimed to identify plasma and urine metabolite patterns that are associated with REE and 
LBM of healthy subjects.
Methods  We investigated 301 healthy male and female subjects (18–80 years) under standardized conditions in the cross-
sectional KarMeN (Karlsruhe Metabolomics and Nutrition) study. REE was determined by indirect calorimetry and LBM by 
dual X-ray absorptiometry. Fasting blood and 24 h urine samples were analyzed by targeted and non-targeted metabolomics 
methods using GC × GC–MS, GC–MS, LC–MS, and NMR. Data were evaluated by predictive modeling of combined data 
using different machine learning algorithms, namely SVM, glmnet, and PLS.
Results  When evaluating data of men and women combined, we were able to predict REE and LBM with high accuracy 
(> 90%). This, however, was a clear effect of sex, which is supported by the high degree of overlap in identified important 
metabolites for LBM, REE, and sex, respectively. The applied machine learning algorithms did not reveal a metabolite pat-
tern predictive of REE or LBM, when analyzing data for men and women, separately.
Conclusions  We could not identify a sex independent predictive metabolite pattern for REE or LBM. REE and LBM have 
no impact on plasma and urine metabolite profiles in the KarMeN Study participants. Studies applying metabolomics in 
healthy humans need to consider sex specific data evaluation.
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differences
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RMSE	� Root mean squared error
SM	� Sphingomyelin

Background

As an outcome of a highly complex biochemical network, 
resting energy expenditure (REE) is determined by many 
different endogenous and exogenous factors. The most 
important exogenous factors are various diseases, climatic 
conditions, the actual individual stress level, or medication 
[1, 2]. Amongst endogenous factors, lean body mass (LBM) 
is the major determinant of REE [3–6]. Furthermore, age, 
sex, body composition, and biological factors contribute to 
the variability of REE. Variation in LBM has been shown 
to explain 65–90% of the between-subject variation in REE 
[3–6].

LBM is, however, not a homogeneous tissue, but con-
sists of high and low metabolic rate organs, such as visceral 
organs, brain, and skeletal muscles. Tissue-specific meta-
bolic rates contribute to the observed variation of REE [7]. 
The body cell mass (BCM) of LBM is the metabolically 
active mass and is supposed to account for the majority of 
resting thermogenesis [8]. Therefore, LBM is decisive for 
human energy expenditure.

The cellular metabolism is reflected in biological matri-
ces such as blood and urine by the sum of its metabolites, the 
so-called metabolome. Recent progress in high-throughput 
analytical technologies and bioinformatics now permits 
simultaneous analysis of hundreds of small metabolites 
constituting the metabolome. Metabolomics is already 
widely used in medicine mainly to identify biomarkers for 
metabolic diseases [9]. Additionally, it is used in nutrition 
research to identify dietary biomarkers, in studies of diet-
related diseases, in dietary intervention studies as a tool to 
identify molecular mechanisms [10], and furthermore, in 
exercise science to understand the metabolic responses to 
physical stress [11].

Metabolomics (blood, urine) can accurately distinguish 
age and sex differences in humans [12–19], but can only par-
tially explain the components of body composition [20–23] 
such as LBM, muscle and fat mass. It remains unclear 
whether the discrimination of LBM is nothing more than 
the discrimination of sex, because most of the metabolites 
for sex seem to be identical to the metabolites discrimi-
nating LBM [24]. To date, limited data are available from 
metabolomics studies which determined predictors of REE. 
Results from a cancer patient study revealed that none of 
the algorithms applied to 63 urine metabolites could predict 
variations in REE [24]. Whether the REE of healthy humans 
is associated with distinct metabolite profiles has not been 
investigated so far.

Therefore, our aim was to investigate in a cross-sectional 
study the association of REE and LBM, respectively, with 
metabolite patterns in plasma and 24-h urine of healthy men 
and women. More than 1000 analytes from a wide range of 
chemical classes were obtained through the combination of 
non-targeted GC × GC–MS, different targeted GC–MS and 
LC–MS methods, as well as 1H-NMR. In this cohort, we 
recently identified distinct metabolite patterns associated 
with age and sex [19]. Since sex has an impact on LBM, 
which is the major determinant of REE, we particularly con-
sidered these factors during data evaluation.

Methods

Study design and subjects

The Karlsruhe Metabolomics and Nutrition (KarMeN) study 
is a cross-sectional study that was performed at the Max 
Rubner-Institut (MRI) in Karlsruhe, Germany, between 2011 
and 2013 and was described in detail by Bub et al. [25].

After medical examination, 301 healthy, normal weight 
and overweight adults (129 females, 172 males) 18–80 years 
of age were included into the study. All subjects were 
non-smokers and took no medication known to influence 
energy metabolism or body composition. Exclusion criteria 
included the presence of acute or chronic illness and preg-
nancy or breastfeeding. Additionally, if a participant did 
not follow the study protocol, their results were excluded. 
In females, all measurements were performed during the 
luteal phase of the menstrual cycle to reduce cycle-related 
impact on metabolites and to avoid blood contaminating 
urine samples.

Following a 10-h overnight fast, body weight and height 
were measured following standardized operation procedures: 
weight was measured without shoes, with light clothing/
underwear, and after voiding at an accuracy of 0.1 kg, height 
to the nearest 0.5 cm with a stadiometer (seca, Hamburg, 
Germany).

REE was measured by indirect calorimetry (IC) using a 
ventilated hood system (Vmax Encore 29 n, SensorMedics 
BV, Bilthoven, The Netherlands). In accordance with the 
recommended best practice guidelines [26], the subjects lay 
down in comfortable beds in a quiet special study room. 
Room temperature was 22–24 °C at a constant humidity. 
The IC measurement started with an initial 10-min period 
to accustom the participant to the device and test conditions. 
Subsequently, a 20-min recording period followed under 
strict resting conditions. Flow calibration was performed by 
a 3-L syringe, and gas analyzers were calibrated before. Data 
were collected every 20 s, and acquired volume of oxygen 
(VO2) and carbon dioxide (VCO2) were converted to REE 
(kcal/24 h) using the equation of Weir (3.940 × VO2 + 1.10
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6 × VCO2) × 1440 − 2.17 × N2 (VO2 and VCO2 measured in 
ml/min; N2: nitrogen in g/24 h) [27]. Nitrogen excretion was 
measured from 24-h urine collections.

Body composition was assessed by dual-energy X-ray 
absorptiometry (DXA) (Lunar iDXA™ GE Healthcare, 
USA) immediately after the IC and standard anthropometry 
measurements. For the analysis of fat mass, bone mass, and 
LBM enCORE Software v16 was used. Appendicular LBM 
is the sum of Arm and leg LBM. Trunk LBM was calculated 
by subtracting appendicular LBM from whole body LBM.

Urine and plasma sampling

The day before examinations the participants collected their 
urine over a period of 24 h. Collection bottles were kept in 
cool bags with cooling units throughout. The completeness 
of the 24-h urine collection was verified using the PABA 
method (para-aminobenzoic acid) through HPLC-UV by the 
method of Jakobsen et al. [28]. Upon delivery of the 24-h 
urine samples in the study center, the volume was recorded. 
Subsamples were centrifuged at 1850×g at 20 °C and ali-
quots were stored at − 196 °C until analysis.

Blood samples were collected from an antecubital vein 
into 9-mL EDTA plasma tubes (S-Monovette, Sarstedt, 
Nümbrecht, Germany). Blood was centrifuged at 1850×g at 
4 °C and aliquoted into small portions. In addition, serum 
samples (S-Monovette Z-gel, Sarstedt, Nümbrecht, Ger-
many) were collected for standard clinical biochemistry 
analyses. All samples were initially frozen at − 20 °C for 
1 day and then cryopreserved at − 196 °C until analysis. 
Quality control (QC) samples were prepared by pooling fast-
ing plasma samples and 24-h urine samples, respectively, 
from KarMeN participants. These QC samples were used 
for all analytical methods applied.

Metabolomic analyses

To obtain a preferably broad coverage of the metabolome of 
human biofluids, a number of different targeted and non-tar-
geted analytical methods were applied. This section provides 
a short overview of the different analytical methods used. 
Details are available in the supplement of Rist et al. [19]

Non‑targeted GC × GC–MS analysis of plasma and urine 
samples

All 24-h urine and fasting plasma samples were analyzed 
by non-targeted GC × GC–MS using a Shimadzu GCMS 
QP2010 Ultra instrument equipped with a ZOEX ZX2 mod-
ulator according to the method established by Weinert et al. 
[29]. With this method a wide range of metabolites can be 
detected, such as amines, amino acids, organic acids, sugars, 
sugar alcohols, other polyols etc.

Semi‑targeted GC–MS analysis of sugar species in urine 
samples

As some isomeric sugar species cannot be sufficiently 
resolved with the non-targeted GC × GC–MS approach 
[29] but may play an important role in human metabolism, 
a complementary targeted GC–MS sugar profiling method 
was developed for urine samples using a Shimadzu GCMS 
QP2010 Ultra instrument. Overall 66 metabolites, consisting 
of 40 known sugar species, 15 unknown sugar species, and 
11 non-sugar-compounds were detected with this method.

Targeted GC–MS analysis of fatty acids in plasma

The chromatographic separation of plasma fatty acids usu-
ally requires the application of specialized polar columns 
and can thus not be done adequately using a standard apo-
lar × medium-polar GC × GC column setup. For this rea-
son, we used the method described by Ecker et al. [30] 
with minor modifications to determine plasma fatty acids 
as methyl esters. Using a GC single quadrupole instrument 
(Shimadzu GCMS QP2010 Ultra) and a BPX90 column 
(Trajan Scientific), 48 fatty acids could be determined in 
plasma.

LC–MS metabolite profiling using the Absolute IDQ™ p180 
kit

Acyl carnitines, amino acids, biogenic amines, phosphatidyl-
cholines, and sphingomyelins were determined by LC–MS 
in fasting plasma samples using the Absolute IDQ™ kit 
developed by Biocrates AG (Innsbruck, Austria) [31].

Targeted LC–MS analysis of methylated amino compounds

A targeted quantification UPLC–MS/MS method for seven 
amino compounds in plasma, including L-carnitine, cho-
line, and trimethylamine-N-oxide (TMAO) was established 
using an Acquity UPLC H-Class system coupled to a Xevo 
TQD triple quadrupole MS (both from Waters, Eschborn, 
Germany) [32].

Targeted LC–MS analysis of bile acids

Analyses of 14 bile acids were done from fasting plasma 
using a 1200 series HPLC system (Agilent, Waldbronn, Ger-
many) coupled to a Q-Trap 3200 mass spectrometer (AB 
Sciex, Darmstadt, Germany) as described in Frommherz 
et al. [33].
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Non‑targeted NMR analysis of plasma and urine samples

All plasma and urine samples were analyzed by 1D-1H-
NMR spectroscopy as described in Rist et al. [19, 34]. Typi-
cally, metabolites that can be detected include organic acids, 
amino acids, amines, sugars, sugar alcohols, and others.

Standard clinical biochemistry

Calcium, chloride, potassium, sodium, and phosphate con-
centrations were determined in a 24-h urine specimen. Due 
to potential interferences with metabolomics analyses, urine 
had not been acidified by hydrochloric acid. Calcium, chlo-
ride, potassium, sodium, phosphate, and also iron concen-
trations, as well as bilirubin, LDL-, HDL-, and total cho-
lesterol, triglycerides, glucose, uric acid, urea, free T3, and 
free T4 thyroid hormone concentrations were determined 
in blood serum. Analyses were carried out by the medical 
laboratory MVZ Labor PD Dr. Volkmann und Kollegen GbR 
(Karlsruhe, Germany) which is an accredited lab accord-
ing to DIN EN ISO 15189:2001, using standard analytic 
procedures. Creatinine was quantified in 24-h urine speci-
mens using a photometric assay based on the Jaffé reaction 
(DetectX® Urinary Creatinine Detection Kit; Arbor Assays, 
Ann Arbor, MI, USA). Total urinary nitrogen was quanti-
fied by the Kjeldahl method [35, 36]. 25-hydroxyvitamin D 
and its epimer were quantified by an in-house LC–MS/MS 
method using serum calibrators and controls from Chrom-
systems (Gräfelfing, Germany).

Data processing

(GC×)GC–MS

GC × GC–MS raw data files were processed by non-targeted 
alignment with in-house developed R-modules as described 
recently [37]. Signal intensity drift, i.e., intra- and inter-
batch effects occurring during the 4–5 week measurement 
period were corrected by means of regularly injected quality 
control (QC) samples [38–40]. For the data of the semi-
targeted GC–MS analysis of sugar species in urine, an auto-
matic method for integration was prepared using the Pos-
trun Analysis feature of GCMSSolution (v 4.1.1.). An excel 
table with integrated peak areas of the chosen substances 
was made for further data processing.

LC–MS metabolite profiling (Absolute IDQ™ p180 kit)

To analyze the samples of the entire study, five Absolute 
IDQ well plates were used. To account for possible batch 
effects between the plates, data normalization as described 
in the manufacturer’s user manual was applied based on the 

pooled QC samples, which were extracted and measured ten 
times on each well plate in between study samples.

NMR

All spectra were automatically phased with the Bruker 
AU program apk0.noe. Using the programme AMIX (v 
3.9.14.) (Bruker, Rheinstetten, Germany), plasma spectra 
were then referenced to the EDTA signal at 2.5809 ppm and 
bucketed graphically, such that buckets wherever possible 
contained only one signal or group of signals and no peaks 
were split between buckets. Urine spectra were resampled to 
bring them to a uniform frequency axis. Then, spectra were 
aligned by “correlation optimized warping” [41] and buck-
eted using an in-house developed software based on Python, 
again trying to define buckets that contain only one signal 
or group of signals and not splitting peaks between buckets 
whenever possible. Identification of metabolites important 
for prediction of REE, LBM, or sex was achieved with Che-
nomx NMR Suite 8.1 (Chenomx, Edmonton, Canada).

Data analysis

Data of the different analytical platforms were integrated 
into a common data matrix, consisting of 301 samples and 
> 1000 analytes (including knowns and unknowns). Ana-
lytes with a detected frequency lower than 75% in the study 
samples were eliminated from the data matrix prior to sta-
tistical analysis. Non-detected values were replaced by val-
ues corresponding to 1/10 × limit of quantitation (LOQ) in 
targeted methods, where no limit of detection (LOD) was 
determined; 1/2 × LOD in methods, where LOD was deter-
mined/available, 1/2 × minimal intensity for non-targeted 
MS-based methods.

The columns of this common data matrix were mean cen-
tered and scaled by standard deviation prior to analysis. This 
transformation leads to a uniform scale (mean = 0, SD = 1) 
for all analytes so that they are comparable between analyti-
cal platforms. Using the raw values without scaling would 
put more weight on the platform that produces the high-
est absolute values [42]. The resulting matrix was used as 
input for three different prediction models [support vector 
machine (SVM) with linear kernel, generalized linear model 
net (glmnet), and partial least squares (PLS)]. The predic-
tion performance of these models is dependent on model 
specific hyperparameters which have to be optimized. For 
example, SVM uses a cost parameter C that controls the 
trade-off between complexity of the decision function and 
training error. In glmnet, parameters α and λ are tuned, and 
in PLS, the number of components (ncomp) is tuned. To find 
the optimal value for the hyperparameter, a grid search in 
conjunction with a nested 5 × 10-fold cross-validation (CV) 



2211European Journal of Nutrition (2019) 58:2207–2217	

1 3

scheme [43] was applied, and the average of the resulting 50 
values was used in the final model.

REE, LBM and sex were treated as dependent variables 
in the prediction models. Metabolites from targeted and non-
targeted metabolomics methods (GC × GC–MS, GC–MS, 
LC–MS, and NMR) as well as standard clinical biochemistry 
were used as independent variables. When the model was 
used for continuous outcomes, the root mean squared error 
(RMSE) and R2 were calculated to estimate performance of 
the predictions. Otherwise, each of these algorithms uses 
a labeled data set to produce a classifier that can predict 
the class label of a new person. Here, classes were defined 
as tertiles (lowest, middle, and highest tertile). Tertiles of 
REE (and LBM) were treated as dependent variables in the 
prediction models. Based on the data matrix, the algorithms 
tried to classify subjects to the highest or lowest tertile of 
REE (and LBM), respectively. When the model was used to 
predict sex or categorically considered REE (or LBM), the 
classification accuracy was assessed.

Finally, we showed a ranking of the top 20 analytes in 
the metabolite patterns of REE, LBM, and sex. Therefore, 
analytes were assigned a rank for each algorithm according 
to their weight, the ranks of the three algorithms were aver-
aged, and analytes sorted according to mean rank. A big 
advantage of the mean rank is that important metabolites 
to predict REE, LBM and sex could be identified by each 
of the different machine learning algorithms. Therefore, 
metabolites that were important in all three algorithms may 
be considered to be biologically relevant.

Identification of unknown substances from non-targeted 
analyses that are important for the prediction of sex or age 
was performed by comparison with databases, as described 
in Weinert et al. and Egert et al. [29, 37] for GC × GC–MS 
or with the Chenomx NMR Suite 8.1 (Chenomx, Edmonton, 

Canada) for NMR. Statistical analyses were performed with 
SAS (version 9.4, SAS Institute, Cary, NC, USA) and the 
statistical software ‘R’ (version 3.2.2) with the R package 
‘caret’, version 6.0-71.

Results

After quality checks and data filtering, 442 plasma analytes 
were included in the metabolomics data analyses. Of these, 
174 were derived from targeted analyses and thus known 
a priori. Of the detected analytes from non-targeted analy-
ses, approximately 30% could be identified by comparison 
with databases. For 24-h urine samples, 531 analytes were 
included in the analyses after data filtering. Targeted analy-
ses contributed 57 a priori known metabolites, whereas from 
the non-targeted analyses approximately 20% of analytes 
could be identified. A full descriptive table of the metabo-
lites that were identified and quantified is shown in Rist et al. 
[19].

Participant characteristics

Basic characteristics of the KarMeN study participants as 
well as selected anthropometric, physiological, and func-
tional parameters assessed are listed in Table 1. According 
to the study criteria, participants were healthy and showed 
clinical parameters within the reference values. For the 
participants of the KarMeN study, LBM (R2 = 0.77; linear 
regression) as well as trunk (R2 = 0.76) and appendicular 
LBM (R2 = 0.77) are associated with REE, while trunk 
to appendicular LBM ratio showed minor associations 
(R2 = 0.38). REE and LBM were significantly higher in men 
compared to women (Table 1). Therefore, the calculation 

Table 1   Basic anthropometric 
characteristics of the study 
participants

Data are given as mean ± SD
*p < 0.001 (t test) between men and women

Men (n = 172) Women (n = 129) Total (n = 301)

Age (years) 44.4 ± 17.9* 51.7 ± 15.0 47.5 ± 17.1
Height (cm) 180.1 ± 7.2* 166.8 ± 6.5 174.4 ± 9.5
Weight (kg) 79.2 ± 10.2* 64.4 ± 8.3 72.9 ± 11.9
BMI (kg/m2) 24.4 ± 2.7* 23.2 ± 2.9 23.9 ± 2.9
LBM (kg) 61.2 ± 6.9* 42.6 ± 3.9 53.2 ± 10.9
Trunk LBM (kg) 32.2 ± 3.4* 23.6 ± 2.1 28.5 ± 5.2
Appendicular LBM (kg) 29.0 ± 3.7* 18.9 ± 2.1 24.7 ± 5.9
Fat body mass (kg) 18.6 ± 6.7* 22.0 ± 6.7 20.1 ± 6.9
Body fat (%) 22.9 ± 6.4* 33.5 ± 6.7 27.4 ± 8.4
REE (kcal/day) 1574 ± 191* 1194 ± 127 1411 ± 251
Waist circumference (cm) 87.8 ± 8.9* 79.1 ± 8.3 84.1 ± 9.7
Blood pressure systolic (mmHg) 128.3 ± 14.1* 120.7 ± 18.1 125.1 ± 16.3
Blood pressure diastolic (mmHg) 84.8 ± 10.6 83.8 ± 12.4 84.4 ± 11.4
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of the metabolite patterns of REE and LBM, respectively, 
was performed separately for men and women. Additionally, 
we adjusted REE for LBM by univariate linear regression 
analysis with REE as dependent and LBM as independent 
variable. The residuals of the model represent the LBM 
adjusted REE and show no significant differences between 
men and women.

Metabolite profiles of resting energy expenditure 
in plasma and urine

The metabolite pattern of REE was calculated separately for 
women and men, in plasma and urine, respectively. In the 
first step, REE was used as a continuous variable (Table 2); 
in the second step REE classified into tertiles was consid-
ered (Table 3). No significant associations between urine or 
plasma metabolites with REE could be identified using any 

of the three models (SVMlinear, glmnet, and PLS) in healthy 
subjects. In the tertile classified approach (Table 3), the 
most accurate predictor in men was 64.4% accuracy (PLS 
in urine) and 62.4% accuracy (PLS in plasma) for women. 
Accuracy would be expected to be 50% based on random 
numbers.

Metabolite profiles of lean body mass in plasma 
and urine

Since LBM is the major determinant of REE, we applied 
predictive modeling to investigate whether a metabolite pat-
tern exists for LBM. Calculations were performed based on 
plasma and urine data for women and for men. In healthy 
subjects, no significant associations between either urine or 
plasma metabolites and LBM could be identified using the 
three models (SVMlinear, glmnet, and PLS) (see Supple-
mental Tables 1 and 2).

The calculation of the metabolite patterns of REE and 
LBM for men and women separately showed no meaning-
ful results. It is known from other studies that age and sex 
differences exist in the human plasma and urine metabo-
lome [12–18]. Nevertheless, if and to which extent the dis-
crimination of sex is responsible for the discrimination of 
body composition, has not been clarified definitely [20–23]. 
Furthermore, to which extent sex is important in the predic-
tion of REE still remains unknown. Therefore, the follow-
ing calculations were performed for both sexes together. In 
addition, the results were compared with the prediction of 
sex differences.

The impact of sex on REE‑ and LBM‑associated 
metabolite profiles

To compare predictions of REE and LBM with the predic-
tion of sex, predictive models were calculated by combining 
male and female data sets. Prediction accuracy in the study 
group was excellent for sex (SVM accuracy = 98.1%), for 
REE (SVM accuracy = 93.4%), and for LBM (SVM accu-
racy = 98.3%) in plasma (see Supplemental Table 3). When 
adjusting REE for LBM, these metabolites important for 
the correct prediction of either sex, REE, or LBM groups 
showed a high degree of agreement (Table 4). 17 of the 
top 20 metabolites in urine (12 of the top 20 metabolites 
in plasma) for REE were identical, with the metabolites 
discriminating LBM. For REE and sex, 13/20 metabo-
lites in urine and 11/20 in plasma were identical. A simi-
lar result was found for the agreement between LBM and 
sex: 12/20 metabolites in urine and 14/20 in plasma were 
identical. Here, we present mean ranks of metabolites which 
were slightly different, but showed an overlap between the 
methods SVM, glmnet and PLS. As an example individual 
ranks from SVM, glmnet, and PLS of most important urine 

Table 2   Prediction of REE of the KarMeN study participants (sepa-
rately for women and men) based on metabolite profiles in plasma 
and urine using different algorithms

Matrix Algorithm Men (n = 172) Women (n = 129)

RMSE R2 RMSE R2

Plasma SVM 184 0.020 125 0.008
glmnet 172 0.147 131 − 0.085
PLS 186 − 0.007 140 − 0.263

Urine SVM 187 − 0.019 127 − 0.044
glmnet 179 0.072 128 − 0.069
PLS 186 − 0.025 140 − 0.298

Table 3   Prediction of REE tertiles of the KarMeN study partici-
pants (separately for women and men) based on metabolite profiles in 
plasma and urine using different algorithms

Matrix Algorithm Prediction accuracy %

Total Low High

Plasma
 Men (n = 113) SVM 60.5 59.7 61.2

glmnet 62.8 63.4 62.3
PLS 62.2 65.2 59.5

 Women (n = 81) SVM 60.8 62.3 59.0
glmnet 61.2 63.5 59.0
PLS 62.4 62.3 62.5

Urine
 Men (n = 115) SVM 64.2 65.7 63.0

glmnet 64.2 67.8 61.2
PLS 64.4 68.4 60.7

 Women (n = 86) SVM 59.0 56.8 60.8
glmnet 57.5 54.6 60.2
PLS 59.1 59.1 58.8
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Table 4   Top 20 metabolites of the 301 KarMeN study participants for the accurate prediction of REE, LBM, and sex in urine and plasma, 
respectively (REE and LBM: men and women considered together)

Mean rank from SVM, glmnet, and PLS. Abbreviations in brackets indicate analytical method
U unknown, 4-DTA 4-deoxythreonic acid, α-KGA α-ketoglutaric acid, N-AAA N-acetylaspartic acid, 4-HPPA 4-hydroxyphenylpyruvic acid, PAA 
para-acetaminobenzoic acid, 4-HPLA 4-hydroxyphenyllactic acid, SM sphingomyelin, PC phosphatidylcholine
a Metabolites are identical in the top 20 for sex as well as REE
b Metabolites are identical in the top 20 for sex as well as LBM
c Tentatively identified using the NIST2011 library solely based on mass spectral similarity

Matrix Rank REE LBM Sex

Urine 1 U 2.19 (NMR)1 Creatinine 2 (NMR)b 4-DTA (GC × GC)a,b

2 Citrate 2 (NMR)a 4-DTA (GC × GC)b α-KGA (GC × GC)a,b

3 4-DTA (GC × GC)a α-KGA (GC × GC)b Citrate 2 (NMR)a,b

4 U 7.57 (NMR)a Citrate 2 (NMR)b Creatinine 2 (NMR)a,b

5 Citrate 1 (NMR)a 3-Indoxyl sulfate (NMR)b N-AAA (GC × GC)
6 Creatinine 2 (NMR)a U 2.19 (NMR)b U 2.19 (NMR)a,b

7 U 05 (GC) Citrate 1 (NMR)b U 3.93 (NMR)a,b

8 U 3.93 (NMR)a U 3.93 (NMR)b U 0566 (GC × GC)a,b

9 U 0566 (GC × GC)a U 0566 (GC × GC)b U 7.57 (NMR)a,b

10 4-DTA (NMR)a U 7.57 (NMR)b Citrate 1 (NMR)a,b

11 3-Indoxyl sulfate (NMR)a Creatinine 1 (NMR)b 4-DTA (NMR)a

12 α-KGA (GC × GC)a U 05 (GC) 3-Methylglutaric acidc (GC × GC)
13 Citrate (GC × GC) U 0599 (GC × GC) l-Cysteine (GC)
14 PAA (GC × GC) Leucine (NMR)b 3-Indoxyl sulfate (NMR)a,b

15 Hippuric acid (NMR) Gluconic acid (GC) Creatinine 1 (NMR)a,b

16 Gluconic acid (GC) PAA (GC × GC) 4-HPPA (GC × GC)
17 cis-Aconitate (NMR) Creatinine (CB) Leucine (NMR)a,b

18 U 4.30 (NMR) Creatinine (GC) d-Fructose isomer 2 (GC)
19 Creatinine 1 (NMR)a cis-Aconitate (NMR) d-Fructose isomer 1 (GC)
20 Leucine (NMR)a Citrate (GC × GC) U 0704 (GC × GC)

Plasma 1 Creatinine (CB)a Creatinine (CB)b Creatine (NMR)a,b

2 Uric acid (CB)a Uric acid (CB)b Creatinine (CB)a,b

3 U 2.91 (NMR)a Creatine (NMR)b U 2.91 (NMR)a,b

4 Creatinine 1 (NMR)a SM C16.1 (Biocrates) Phosphate (CB)b

5 SM C18.1 (Biocrates)a Creatinine 1 (NMR)b Creatinine (Biocrates)a,b

6 4-HPLA (GC × GC) Creatinine (Biocrates)b Creatinine 1 (NMR)a,b

7 SM C16.1 (Biocrates) U 2.91 (NMR)b Uric acid (CB)a,b

8 Creatinine (Biocrates)a Leucine 1 (NMR)b U 3.66 (NMR)b

9 Sarcosine (LC)a U 0.81 (NMR)b Glycine (NMR)b

10 Creatine (NMR)a LysoPC.a.C20.4 (Biocrates) SM C18.1 (Biocrates)a,b

11 U 1.08 (NMR) Glycine (NMR)b U 0.81 (NMR)a,b

12 U 0.81 (NMR)a U 3.66 (NMR)b Creatinine 2 (NMR)
13 U 1.09 (NMR) U 1.26 (NMR)b U 1.26 (NMR)b

14 Isoleucine (Biocrates) Phosphate (CB)b U 3.37 (NMR)
15 SM C18.0 (Biocrates) SM C18.1 (Biocrates)b Proline (NMR)a

16 Valine (NMR) LysoPC.a.C20.3 (Biocrates) PC.aa.C32.2 (Biocrates)
17 Proline (NMR)a Valine (NMR) Sarcosine (LC)a

18 Leucine (Biocrates) U 3.33 (NMR)b Leucine 1 (NMR)a,b

19 Leucine 1 (NMR)a Leucine (Biocrates) Betaine (LC)
20 Glycerin acid (GC × GC) Leucine 2 (NMR) U 3.33 (NMR)b
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metabolites in predicting REE (tertile classified approach) 
are presented in Supplemental Table 6.

Discussion

It was unclear whether metabolite profiles may also be 
used as a suitable tool in the prediction of REE and LBM 
in healthy humans. Only limited data from metabolomics 
studies are available so far [20–23]. In the present cross-
sectional study, we therefore investigated whether urine as 
well as plasma metabolite profiles are associated with REE 
or LBM in healthy subjects under resting conditions. Sepa-
rately for men and women we could also show in our study 
that LBM is by far the most important variable to explain 
REE in healthy subjects (R2 = 0.77).

Due to the fact that REE and LBM were significantly 
higher in men than in women (see Table 1), the analysis of 
metabolite patterns of both REE and LBM were performed 
separately for men and women. We could not find any 
metabolite patterns in urine and plasma that enabled a reli-
able prediction of REE or LBM (see Tables 2, 3). The reason 
why differences in the metabolically active mass, and also in 
REE, are not reflected in urine and plasma metabolites can-
not be explained by our study results. Our results are in line 
with previous findings of Frisard et al. and Stretch et al. [24, 
44] who also did not find any associations between energy 
metabolism and metabolite profiles. Frisard et al. examined 
only markers of oxidative stress in healthy adults [44]. Fur-
thermore, Stretch et al. only investigated 63 urine metabo-
lites in advanced cancer patients [24]. Our results based on 
a multi-platform metabolomics approach in urine as well 
as in plasma revealed that also in healthy subjects there is 
no distinct metabolite profile directly associated with REE.

However, Stretch et  al. found that LBM variations 
could effectively be predicted using urinary metabolites 
in advanced cancer patients [24]. It should be noted that 
these analyses were done combined for women and men. 
To compare our results with those of Stretch et al. [24] and 
despite the knowledge of the impact of sex on metabolite 
profiles, analyses on the entire KarMeN study population 
have been performed. Thus, we could find good prediction 
accuracies for REE and LBM in plasma as well as urine 
(R2 > 0.5; see Supplemental Table 4). In the tertile classi-
fied approach, we could demonstrate very good prediction 
accuracies of 93% for REE and 98% for LBM in plasma 
as well as urine, respectively (see Supplemental Table 3). 
These excellent prediction accuracies for healthy subjects 
confirm the prediction accuracy of 90% recently described 
by Stretch et al. for lean mass in patients with advanced 
cancer [24]. However, when we adjusted REE for LBM these 
prediction accuracies were no longer present (see Supple-
mental Table 5). We also could show that 13 of the top 20 

metabolites in plasma and 11 of the top 20 metabolites in 
urine are identical and explain differences in sex as well as 
in REE (see Table 4). We revealed comparable results for 
LBM, with 12 of the top 20 metabolites in plasma and 14 of 
the top 20 metabolites in urine being identical for sex, and 
thus explain differences in sex as well as in LBM (see also 
Table 4). Therefore, our results support the suggestion that 
the discrimination of REE or LBM, respectively, seem to be 
a discrimination of sex. To exclude that the increased sample 
size when combining data of men and women may improve 
predicting ability of the model we performed sensitivity 
analyses on a reduced dataset (50% of men and women, 
respectively) which resulted in robust prediction accuracies 
(data not shown). Thus, observed good predictions are likely 
effects of sex rather than of a higher sample size.

Overall, the focus should be on the metabolite patterns 
and not on every single metabolite. Nevertheless, associa-
tions between various single metabolites and LBM calcu-
lated by linear regression models have been shown before 
[20, 22, 23, 45]. However, these studies did not aim to pre-
dict LBM based on metabolite profiles and therefore such 
data are still missing. We could show a metabolite pattern 
apparently playing an important role in the prediction of 
REE or LBM, respectively. Of the metabolites listed in the 
top 20 mean ranks, many could be identified, some of which 
have also been described by others: in plasma, creatinine 
[20, 22], valine [20, 23, 45], leucine [20, 23, 45], glycine, 
sphingomyelin C18:1, sphingomyelin C16:1, and uric acid 
[20], in urine, creatinine [24, 46], citrate [46], 4-deoxythre-
onic acid, 3-indoxylsulfate [24, 46], α-ketoglutaric acid, and 
gluconic acid could be identified.

Most of the described metabolites not only play an 
important role in explaining REE or LBM, respectively, 
but also in distinguishing between men and women. The 
following metabolites show higher concentrations in men 
than in women (also higher in high REE or LBM, respec-
tively): creatinine, leucine, 4-deoxythreonic acid, and uric 
acid. These metabolites are either involved in muscle energy 
metabolism [13, 16, 18, 47, 48] and known to be determined 
by the larger muscle mass in men [49], or their function is 
yet unknown [19, 50]. It is likely that sex differences cause a 
differential production of muscle-specific metabolites. Other 
metabolites identified to have lower concentrations in men 
than in women (also lower in high REE or LBM, respec-
tively) include glycine, sphingomyelin C18:1, citrate, and 
3-indoxylsulfate. The reasons for the different metabolite 
concentrations are not always known. In case of glycine, it 
could be due to genetic polymorphisms [12, 15, 17], in case 
of citrate it is largely speculative. Since a further intermedi-
ate of the citrate cycle, α-ketoglutaric acid, is also higher 
in women [13, 16, 18, 19, 47, 51, 52], this may hint at a 
general difference in citrate cycle turnover between men and 
women. We cannot exclude that food intake is related to 
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certain metabolites, such as amino acids, which we identi-
fied to be associated with LBM. Since plasma samples were 
collected in the fasted state, we assume that the contribution 
of dietary factors to, e.g., plasma amino acids is of minor 
importance. The impact of food intake on metabolite profiles 
is an important issue and currently under investigation in the 
KarMeN study.

Conclusions

We applied targeted and non-targeted metabolomics meth-
ods to identify urine as well as plasma metabolites in healthy 
subjects associated with REE and LBM. As described in 
the literature and in our study, LBM is the major determi-
nant of REE. The applied machine learning algorithms did 
not reveal a metabolite pattern predictive for REE or LBM, 
when analyzing data for men and women, separately. When 
evaluating data of men and women combined, we were able 
to predict REE and LBM with high accuracy (> 90%). This, 
however, may be an effect of sex, since the identified impor-
tant metabolites for sex show a high degree of overlap with 
those identified for LBM and REE, respectively. Therefore, 
under resting conditions REE and LBM have no detectable 
sex-independent impact on urine and plasma metabolite pro-
files in the KarMeN study participants. In addition, we con-
clude that studies applying metabolomics in healthy humans, 
especially those investigating body composition or energy 
metabolism, need to consider sex-specific data evaluation.
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