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Abstract

Background—Individuals with peripheral arterial disease (PAD) have a nearly two-fold 

increased risk of all-cause and cardiovascular disease mortality compared to those without PAD. 

This pilot study determined whether metabolomic profiling can accurately identify patients with 

PAD who are at increased risk of near-term mortality.

Methods—We completed a case-control study using 1H NMR metabolomic profiling of plasma 

from 20 decedents with PAD, without critical limb ischemia, who had blood drawn within 8 

months prior to death (index blood draw) and within 10 to 28 months prior to death (preindex 

blood draw). Twenty-one PAD participants who survived more than 30 months after their index 

blood draw served as a control population.

Results—Results showed distinct metabolomic patterns between preindex decedent, index 

decedent, and survivor samples. The major chemical signals contributing to the differential pattern 
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(between survivors and decedents) arose from the fatty acyl chain protons of lipoproteins and the 

choline head group protons of phospholipids. Using the top 40 chemical signals for which the 

intensity was most distinct between survivor and preindex decedent samples, classification models 

predicted near-term all-cause death with overall accuracy of 78% (32/41), a sensitivity of 85% 

(17/20), and a specificity of 71% (15/21). When comparing survivor with index decedent samples, 

the overall classification accuracy was optimal at 83% (34/41) with a sensitivity of 80% (16/20) 

and a specificity of 86% (18/21), using as few as the top 10 to 20 chemical signals.

Conclusions—Our results suggest that metabolomic profiling of plasma may be useful for 

identifying PAD patients at increased risk for near-term death. Larger studies using more sensitive 

metabolomic techniques are needed to identify specific metabolic pathways associated with 

increased risk of near-term all-cause mortality among PAD patients.

Lower extremity peripheral arterial disease (PAD) affects eight million men and women in 

the United States and is expected to increase in prevalence as the U.S. population survives 

longer with chronic disease.1 Men and women with PAD have a higher risk for all-cause and 

cardiovascular disease (CVD) mortality than men and women without PAD, even after 

adjusting for CVD risk factors and comorbidities.2, 3 Despite optimal atherosclerotic disease 

risk factor control, many patients with PAD suffer from cardiovascular events. Conventional 

cardiovascular risk factors are useful to predict long-term coronary events and mortality, but 

are less useful for predicting near-term events.4, 5, 6, 7

Many acute coronary events result from plaque rupture and lumen thrombosisat arterial sites 

with minimally occlusive atherosclerosis.8 Circulating inflammatory and hemostatic 

biomarkers may contribute to plaque instability and rupture.9, 10, 11 However, these 

associations are not clearly established. Identifying biomarkers that are elevated immediately 

prior to an acute coronary event could provide important short-term prognostic information 

and may elucidate mechanisms of acute coronary events.

Metabolites are the end products of complex interactions between the host genome and 

environmental stimuli. Thus, metabolic changes are the most proximal reporters of an 

individual’s physiological status (such as an acute coronary event). Identifying novel 

metabolic pathways that are activated immediately prior to death may help establish new 

mechanisms of mortality that may be targeted with novel therapies to prevent adverse 

outcomes in patients with PAD. Metabolomics,12 a relatively new “omics” system, provides 

an unbiased means to probe the full spectrum of the metabolic pattern. Metabolomics holds 

great potential to discover major chemical alterations in response to physiological changes 

and guide the selection of therapeutic targets.13, 14 Thus, metabolomics represents a 

potentially powerful tool to capture molecular events that define distinct populations of 

patients and to attain a high prognostic accuracy for near-term events such as death.

We performed a pilot study to compare the proton nuclear magnetic resonance (1H NMR) 

metabolic profiles of plasma between PAD patients who died within 8 months of a blood 

draw and PAD patients who survived for at least 30 months after a blood draw. We 

hypothesized that metabolomic profiles of plasma can differentiate PAD patients with vs 

without increased risk of near-term death.
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Methods

Study participants and blood sample selections

The study protocol was approved by the institutional review boards of Northwestern 

University’s Feinberg School of Medicine and participating study sites. Participants gave 

written informed consent. PAD participants were selected from existing cohorts of 

outpatients with PAD at Northwestern University including the Walking and Leg Circulation 

Study (WALCS), II, III cohorts, the Study to Improve Leg Circulation (SILC), and the 

Reducing Risk Factors in Peripheral Arterial Disease (RRF) study. Detailed descriptions of 

the WALCS, SILC, and RRF study designs and methods have been published previously.
15, 16, 17, 18 Across these studies, PAD was defined as an ankle-brachial index <0.95, 

documented evidence of lower extremity revascularization, or documented clinical evidence 

of lower extremity atherosclerosis.

The current study consists of 20 PAD participants who died within 8 months of their last 

study blood draws (decedents) and 21 gender- and age-matched (within 3 years) PAD 

controls (survivors). Decedents died between May 1, 2000 and December 31, 2008. We 

selected all decedents from the WALCS, SILC, and RRF cohorts who met the following 

criteria: (a) presence of two blood draws (eg, index and preindex blood draws) prior to 

death; (b) the final blood draw (index blood draw) was within 1 year before death; and (c) 

the presence of a matched control survivor PAD participant. The index blood draw is defined 

as the blood draw that occurred closest to death (2–8 months preceding death). The preindex 

blood draw is defined as the blood draw at the study visit immediately prior to the index 

blood draw. The preindex blood draws occurred 7 to 25 months prior to the index blood 

draws. Each control PAD participant (survivor) was also selected from one of the same 

cohorts (WALCS I, II, or III, SILC, or RRF) and met the following criteria for inclusion in 

the study: a) presence of one blood sample that was matched for date of blood draw to 

within 3 months of the date of the decedent’s index blood draw date; survival to at least 30 

months (mean ± standard deviation [sd], 67 ± 28 months) after the date of their blood draws. 

There were a total of 61 blood samples for the metabolomics experiment, two for each 

decedent and one for each survivor.

Ascertainment of mortality

Deaths were identified using the Social Security Administration death database and by 

contact with participants’ family members, proxies, and primary care physicians. Cause of 

death was determined using death certificates and by a certified nosologist. Cardiovascular 

deaths were those with International Classification of Disease-10 codes in the ranges I01.0 

through I99.9, including deaths due to coronary heart disease, stroke, peripheral vascular 

disease, and other CVD.

Plasma sample preparation

Blood was collected into Vacutainer (Becton Dickinson, Franklin Lakes, NJ) tubes 

containing EDTA and sodium citrate and immediately placed on ice. The plasma was 

separated immediately by centrifugation at 3000 rpm for 20 minutes at 4°C and samples 

were frozen and stored at −70°C.
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Measurement of clinical variables

The clinical variables and blood biomarkers for the current study include ankle-brachial 

index, total and high density lipoprotein cholesterol levels, D-dimer, CRP, cigarette smoking, 

body mass index, and medical history. CRP and D-dimer data were only available for 16 

survivors and 16 decedents from the WALCS and WALCS II cohorts. The details for 

calculation and acquisition of all these measures for each study have been reported 

previously15, 16, 17, 18, 19, 20 and are described briefly in the Appendix (online only).

Plasma 1H NMR spectroscopy protocol and quality control

For each plasma sample, 550 μL of plasma and saline (0.9%) mixture was used for the 1H 

NMR spectrum measurement at 600.13 MHz on a Bruker DRX-600 spectrometer (Bruker 

Corporation, Billerica, Mass). The water resonance was suppressed. The experimental 

temperature was set at 298 k.

1H NMR spectra of plasma were acquired using both Carr-Purcell-Meiboom-Gill (CPMG) 

pulse sequence and diffusion-edited sequence.21 Diffusion-edited sequence of the 1H NMR 

spectrum characterized the lipid molecules of lipoproteins, such as the –CH3 group of 

trigelycerides, cholesterols, phospholipids, and glycophospholipids to generate broad 

resonances in the spectrum. To characterize the small molecules such as creatinine, lactate, 

and glucose, we used the spectrometer with CPMG pulse sequence to detect the low 

molecular weight molecules by suppressing most of the broad resonances. The spectrum 

from both small molecules and lipoproteins generates an overall chemical structural profile.

Metabolomics data preprocessing, normalization, and statistical analysis

All spectra were phase-corrected and referenced to the chemical shift of alpha-glucose 

anomeric doublet at 5223 parts per million (ppm). Baseline correction was also applied to 

each spectrum using a penalized smoothing method.22 Each spectrum was segmented into 

1000 chemical shift regions with a binning size 0.01 ppm in the range of chemical shift δ 0–

10 for all data analysis. The peak region of water signal between δ 4.5 to 5.2 ppm was 

removed prior to statistical analysis.

Statistical analysis of plasma 1H NMR spectral data was performed with R 2.10 (R 

Development Core Team; http://www.R-project.org) using several data analysis strategies, as 

described below. All binned NMR spectral data were logged and normalized with a quantile 

normalization procedure. Identification of differential chemical signals (ie, binned variables) 

was performed using two-sample or paired t-tests as appropriate. Detailed statistical methods 

for metabolomics data analysis regarding chemical signal selection for sample classification 

are described in the Appendix (online only). Baseline clinical characteristics between 

decedents and survivors with PAD were compared using t-tests for continuous variables and 

χ2 tests for categorical variables.

Self-Organizing Map

We used the Self-Organizing Map (SOM) to create an ordered representation of multi-

dimensional metabolomic data to reveal complex correlation structures among samples and 

metabolite patterns. An algorithm similar to Makinen et al23 was used to perform SOM 
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analyses. Briefly, we produced a map with 5 by 5 hexagonal units using a Gaussian 

neighborhood function (2.4 samples per unit on average). The SOM algorithm resulted in 

spectral models of neighboring units that are more similar to each other than those from the 

remote sites of the SOM. After the map was constructed, each of 61 spectra was allocated to 

its best-matching spectral model (eg, a hexagonal unit) on the SOM. Samples mapped to the 

same unit represent a cluster of closely related metabolomic profiles. The interpretation of 

the SOM is provided in the Appendix (online only). To observe the differences between 

spectral models, the metabolic spectrum of each hexagonal unit was represented according 

to the average intensity of the key substructures of lipid or small molecules in the spectra 

mapped to the certain unit within one unit radius.

Results

Characteristics of PAD participants

The baseline clinical characteristics of the participants are shown in the Table. There were 

no significant differences in the majority of the clinical variables between survivors and 

decedents. However, the prevalence of several comorbidities (eg, angina, stroke, myocardial 

infarction, and pulmonary disease) was higher among the decedents, and there is a 

significant difference between the decedents and survivors (74% vs 33%; P = .03) in active 

atherosclerotic vascular diseases (ie, a combination of stroke, angina, and myocardial 

infarction). Additionally, the number of stair flights walked was significantly higher in the 

survivor group (6.2 vs 17.7; P = .03). For the 20 decedents, seven died of coronary heart 

disease or CVD, six died of cancer, five died of non-coronary heart disease/CVD or 

noncancer causes, and two died of an unknown cause.

Metabolic patterns of decedents vs survivors

We observed a large number of spectrum signals with distinct intensity levels between the 

decedent index, decedent preindex, and survivor blood samples from the diffusion-edited 

spectra. Specifically, 26% of signals for index decedent samples vs survivor samples, 23% of 

signals for preindex decedent samples vs survivor samples, and 12% of signals for index 

decedent samples vs preindex decedent samples were significantly different at P values <.05. 

In contrast, no distinct CPMG 1H NMR metabolomic patterns were observed between these 

three groups (data not shown). Thus, we focused on the diffusion-edited spectra data for the 

remaining analyses.

The SOM analysis used 222 signals (false discovery rate <10%) of the diffusion-edited 

spectral data from the comparison between the decedent preindex samples and the survivor 

samples. As shown in Fig 1, most survivor samples shared metabolomic patterns on the 

upper-right hexagonal units of the SOM while most decedent pre-index and decedent index 

samples had similar metabolomic patterns on the left and lower hexagonal units. For 

example, most survivor samples (86%; Fig 2) had metabolomic patterns characterizing 

metabolites from signals of the following chemical groups: –CH3 (0.7 ppm), (–CH2–)n (1.3 

ppm), βCH2 (1.45 ppm), CH–CH2CH2– (1.95 ppm), αCH2 (2.2 ppm), and CH–CH2–CH 

(2.82 ppm) of fatty acyl chain protons of various lipid types as part of lipoproteins as well as 

–N(CH3)3 (3.26 ppm) and NCH2 (3.6 ppm) from the choline head group protons of 

Huang et al. Page 5

J Vasc Surg. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



phospholipids. The intensity levels of these chemical signals are significantly different 

between survivors and decedents (Fig 3). Relative to survivor samples, most of these 

chemical signals that have higher (or lower) mean intensity levels in the decedent preindex 

samples have even higher (or lower) mean intensity levels in the decedent index samples, 

although none of them reaches statistical significance (P < .05).

Sensitivity and specificity of metabolic profile for predicting near-term mortality
1H NMR metabolomic profiles provide a high predictive accuracy for the near-term all-

cause deaths in these PAD participants. For the classification between decedent preindex 

samples and survivor samples, the overall classification performance was optimal at 78% (32 

out of 41 participants), with a specificity of 71% (15 out of 21 survivors) and a sensitivity of 

85% (17 out of 20 decedents) using the top 40 to 150 chemical signals of the diffusion-

edited data. The predictive accuracy was similar when decedent index and survivor samples 

were compared. Specifically, the overall classification success was optimal at 83% (34 out of 

41 participants) with a specificity of 86% (18 out of 21 survivors) and a sensitivity of 80% 

(16 out of 20 decedents) using the top 10 to 20 chemical signals. The four decedents who 

were misclassified included two who died of cancer, one who died of CVD, and one who 

died of an unknown cause. Logistic regression shows that the metabolomic signature 

remained significantly associated with near-term all-cause death (P < 10−4) after adjustment 

for active atherosclerotic diseases status.

Discussion

Our results demonstrate that the global metabolomic profiling of plasma differed between 20 

PAD participants who died within 8 months after their blood samples were obtained and 21 

PAD participants who survived for at least 30 months after their blood samples were 

obtained. Importantly, the metabolomics profiling of decedent preindex samples shows that 

these differences are already detectable more than 1 year before death. Since death involves 

a global breakdown of the homeostatic regulation of multiple metabolic pathways that fails 

to counter the overwhelming destructive metabolic reactions,24 the dramatically altered 

metabolic composition in decedents may reflect underlying physiological changes leading to 

death. These findings suggest that metabolomic profiling of plasma may be a useful tool to 

delineate the pathophysiological and biologic mechanisms immediately preceding death.

Our results show that the major chemical signals differentiating survivors from decedents 

were derived from the diffusion-edited profiling but were not from the CPMG profiling, 

suggesting lipid metabolism may have a stronger association with near-term death than other 

small molecules such as carbohydrates or amino acids. Although specific molecular 

mechanisms may exist in different diseases, the lipid signature identified in the current study 

may represent a common pathway associated with mortality in different diseases. Evidence 

is emerging to support this assertion. For example, large epidemiological studies have found 

an increased risk of developing coronary heart disease and a variety of cancers in individuals 

with diabetes,25, 26 suggesting the existence of common molecular mechanisms that are 

associated with the development of various chronic diseases. Additionally, our metabolomics 

finding is in line with a recent transcriptomic finding by Hirsch et al,27 who identified an 
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unexpected molecular link between lipid metabolism and diverse human diseases including 

cancer, atherosclerosis, diabetes, and autoimmune diseases. Structural analysis of our 

metabolomic data showed that the most significant chemical signals arose from lipoproteins 

and phospholipids. These two lipid groups can be converted through arachidonic acid 

metabolism to prostaglandins, which play a central role in platelet aggregation, vascular 

smooth muscle tone, and inflammation.28 This suggests that these two lipid groups have a 

fundamental role in plaque homeostasis or pathophysiological changes prior to death.29 

Experimental studies also demonstrated that inhibition of cyclooxygenase, the rate-limiting 

enzyme for conversion of arachidonic acid to important signal molecules (ie, 

prostaglandins), has a profound effect on cellular functions in many tissues, including tumor 

growth suppression and reduction of atherosclerosis.30, 31, 32, 33 Since the cyclooxygenase 

pathway plays a critical role in inflammation, future investigation is needed to determine 

whether these two groups of lipid species (ie, those with fatty acyl chain protons of 

lipoproteins and the choline head group protons of phospholipids) are involved in this 

pathway and induce further inflammation or changes in other biological processes related to 

the pathophysiology of all-cause near-term death. These two groups of lipid species may 

also be associated with physical activity. The survivor group of our study’s participants had 

better walking performance than the decedent group. A recent metabolomics analysis34 of 

the Framingham Heart Study participants showed that baseline plasma concentration of 

metabolites in the lipolysis pathway that were altered in response to exercise was associated 

with cardiovascular fitness. Furthermore, several cohort and twin studies show that long-

term leisure-time physical activity affects serum concentrations of a wide spectrum of 

lipoprotein subclasses, independent of body mass index and age.35 Therefore, future studies 

will be needed to examine whether our observation in the alteration of lipid profiling is 

linked to physical activity – thereby identifying an enhanced secondary prevention strategy 

for the high-risk patients with PAD. The intensity levels of the majority of these chemical 

signals show linear increases or decreases from survivor to decedent preindex to decedent 

index samples (Fig 3). Intensity levels are significantly different between survivors and 

decedent index samples and between survivor and decedent preindex samples (except for 

βCH2), but are not significantly different between decedent preindex and index samples. 

Since both decedent metabolomics profiles are near-term mortality measurements (18.4 vs 

3.6 months), the relatively stable concentration of these metabolites over the 1 year or so 

before death among the decedents (but significantly different from survivors) suggests that 

these lipid signals are a robust metabolite signature to discriminate those at risk for 

imminent acute events including death. However, further prospective study is needed, 

including confirmation of these findings in a larger cohort of individuals with PAD. 

Identifying these specific metabolites using high-sensitive technologies such as mass 

spectrometry may help elucidate metabolic mechanisms of mortality and may lead to new 

therapies to improve longevity.

Some limitations of the current study should be acknowledged. First, the small sample size 

of our pilot study does not allow adjustment for other risk factors and clinical variables in 

our classification model. Similarly, our study has a low statistical power to evaluate the 

correlation between metabolites and known risk factors such as cholesterol levels, thereby 

limiting the clinical utility of the metabolomic profile in modifying the clinical course. 

Huang et al. Page 7

J Vasc Surg. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Future studies with a larger sample size are needed to confirm the findings reported here. 

Second, our pilot study did not have all the clinical variables necessary to construct the 10-

year Charlson comorbidity score.36 Therefore, we are not able to assess the incremental 

predictive value of our metabolomics profiling for near-term mortality in addition to the 

Charlson comorbidity score. Third, 1H NMR profiling is advantageous because it is capable 

of screening a large number of metabolites and revealing a global metabolomic pattern. 

However, the molecular species giving rise to the peaks are generally unknown, and this 

method tends to have a low sensitivity that can detect only highly abundant metabolites.37 

Further studies using technology with high precision and accuracy such as liquid 

chromatography mass spectrometry may identify unambiguously specific lipid metabolites 

and other nonlipid metabolites that may complement current existing biomarkers for near-

term mortality. Fourth, study participants were outpatients with PAD. Our findings may not 

be generalizable to individuals at risk for PAD or those with critical limb ischemia. Fifth, we 

did not have data on diabetes mellitus severity. However, we are unaware of evidence 

demonstrating that more severe diabetes mellitus is associated with higher mortality in PAD 

patients without critical limb ischemia.

In summary, our result, as a proof-of-principle, shows that a specific metabolite signature 

from the lipid species correlated well with near-term death. To our knowledge, this is the 

first study to examine the utility of metabolomics profiling for near-term mortality prediction 

in any patient population. Our results suggest that metabolomic profiling may be a useful 

prognostic tool to identify individuals at high risk for near-term mortality. However, 

confirmation of these findings in a larger cohort is needed. In addition, further in-depth 

investigation of these metabolites is required to understand how the alteration of these 

metabolites’ concentration influences the metabolic pathways that are activated during the 

days and weeks leading up to death.
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Appendix (online version only).

Measurement of clinical variables

Ankle-brachial index measurement

A hand-held Doppler probe (Pocket-Dop II, Nicolet Vascular, Golden, Colo) was used to 

measure systolic pressures in the right brachial artery, right dorsalis pedis and posterior tibial 

arteries, left dorsalis pedis and posterior tibial arteries, and left brachial artery.

Total and high-density lipoprotein cholesterol levels

Total cholesterol levels were measured by using enzymatic reaction with peroxidase-

phenol-4-aminophenazone indicator reaction. High-density lipoprotein cholesterol levels 

were measured by using a direct enzymatic colorimetric assay.
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Cigarette smoking, body mass index, and medical history

We determined smoking status by patient report using a structured interview. Body mass 

index was calculated as weight in kilograms dividing by height in meters squared. Diabetes 

status was determined based on patient self-report in the SILC and the RRF clinical trials. In 

the WALCS II, III cohorts, diabetes was considered present if the participant was taking 

insulin or an oral hypoglycemic agent or if a patient report of diabetes mellitus was 

confirmed by medical record review or a primary care physician questionnaire. Hypertension 

was defined as either a patient report of physician-diagnosed hypertension or a physician 

report of a history of hypertension on the primary care physician questionnaire. The patient 

report of a physician diagnosis of each comorbid condition was used in the SILC and RRF 

clinical trials. In WALCS cohorts, we obtained patient reports of physician-diagnosed 

comorbidities, but the data were also adjudicated from medical record review and a primary 

care physician questionnaire.

D-dimer and CRP levels

D-dimer levels were measured using an Asserachrom D-Di it (Diagnostica Stago, Asniè res-

sur-Seine, France) with an enzyme-linked immunosorbent assayprocedure. CRP levels were 

measured using an immunotechnique on the Behring BN II analyzer (Dade Behring, 

Wilmington, Del). CRP and D-dimer data were only available for 16 survivors and 16 

decedents from the WALCS and WALCS II cohorts.

Physical activity

Patient-reported physical activity was measured with a questionnaire derived from the 

Harvard Alumni Activity Survey.1 Participants were asked, “During the last week, how 

many city blocks or their equivalent did you walk? Let 12 city blocks equal 1 mile.” and “In 

the last week, about how many flights of stairs did you climb up? A flight is 10 steps.”

Statistical methods for chemical signal selection and sample classification

To assess the probability of false positive findings, we used the positive False Discovery 

Rate method proposed by Storey.2 For predicting all-cause deaths, the leave-one-out cross 

validation procedure with support vector machine classifiers was used to evaluate the 

classification accuracy. For each binned variable, a c statistic to evaluate its discriminative 

power for near-term death was calculated. Binned variables with the largest c statistics were 

sequentially added to support vector machine classifiers.

Interpretation of SOM

After the locations of the metabolomic spectra on the SOM were obtained, color coding was 

used for each hexagonal unit to represent the percentage of a specific category of spectra 

within one unit radius of a certain hexagonal unit. For example, if two spectra of survivor 

samples are mapped to a certain hexagonal unit, and eight spectra of survivor samples are 

mapped to the nearby units, then there were 10 (2 + 8) spectra of survivor samples mapped 

to the certain unit within one unit radius. If a total of 16 experimental spectra were mapped 

to the certain unit within one unit radius, the color value of the certain hexagon unit for 

survivor category is 63% (10/16).
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Fig 1. 
Self-Organizing Maps (SOMs) of 61 proton nuclear magnetic resonance (1H NMR) spectra 

of plasma from peripheral arterial disease (PAD) patients with and without experiencing 

near-term death. Each hexagonal unit of the SOM represents a specific metabolic model 

spectrum and the color coding represents the percentage estimate of samples from a specific 

category (decedent index, decedent preindex, and survivor) mapped to the corresponding 

model spectrum. A-C represent the SOMs of 21 survivor samples, 20 decedent preindex 

samples, and 20 decedent samples, respectively.
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Fig 2. 
Three key metabolic model spectra of the Self-Organizing Map (SOM). A, The survivor 

model spectrum mapped to the grid (1,5) in Fig 3, A. B, The decedent preindex model 

spectrum mapped to the grid (3,1) in Fig 3, B. C, The decedent index model spectrum 

mapped to the grid (5,3) in Fig 3, C. The red curve indicates the current metabolic model; 

the black curve indicates the mean spectrum over all 61 spectra, thus serving as a constant 

reference. The proportional differences of each metabolic model spectrum and the mean 

spectrum are shown by the colored area below each model spectrum.
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Fig 3. 
Concentration levels of substructures of lipid molecules from plasma samples of survivors 

and decedents. Quantified were: A, –CH3 signal at 0.7 parts per million (ppm). B, (–CH2–)n 

signal at 1.3 ppm. C, βCH2 signal at 1.45 ppm. D, = CH–CH2CH2– signal at 1.95 ppm. E, 

αCH2 signal at 2.2 ppm. F, =CH–CH2–CH = signal at 2.82 ppm. G, –(NH3)3 signal at 3.26 

ppm. H, NCH2 signal at 3.6 ppm. Statistically significant levels for comparison between 

survivor and preindex decedent and comparison between survivor and index decedent 
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samples are indicated by red star: *P < .05; **P < .01. Intensity levels are not significantly 

different between preindex and index decedent samples for all eight chemical signals.
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Table.

Baseline clinical characteristics of peripheral arterial disease (PAD) participants, according to whether they 

were decedents vs survivors

Variables Decedent (n = 120) Survivor (n = 21) P value
a

Age, years 75.9 ± 7.8 73.9 ± 8.0 .42

Male, % 80 (16/20) 81 (17/21) .99

Ankle-brachial index 0.74 ± 0.24 0.73 ± 0.20 .94

Body mass index, kg/m2 26.5 ± 5.3 25.3 ± 3.5 .38

Total cholesterol, mg/dL 168.8 ± 38.1 173.0 ± 22.9 .70

High-density lipoproteins, mg/dL 41.1 ± 11.0 43.2 ± 17.6 .67

CRP,
b
 mg/L (range)

6.11 ± 6.75 (0.2–23.9) 5.32 ± 7.98 (0.2–33.4) .75

D-dimer,
b
 μg/L (range)

0.80 ± 0.47 (0.23–1.71) 0.77 ± 0.45 (0.32–1.92) .81

Current smoker, % 30 (6/20) 14 (3/21) .64

Hypertension, % 95 (19/20) 75 (15/20) .18

Statin use, % 40 (8/20) 45 (9/20) .99

Diabetes, % 55 (1½0) 41 (7/17) .61

Stroke, % 17 (3/18) 0 (0/19) .21

Angina, % 37 (7/19) 19 (4/21) .37

Cancer, % 26 (5/19) 29 (6/21) .99

Congestive heart failure, % 16 (3/19) 0 (0/21) .20

Myocardial infarction, % 42 (8/19) 25 (5/20) .43

Pulmonary disease, % 21 (4/19) 10 (2/21) .56

Atherosclerotic vascular disease,
c
 %

74 (14/19) 33 (7/21) .03

Classic claudication symptoms, % 15 (3/20) 24 (5/21) .69

Antiplatelet use, % 50 (10/20) 71 (15/21) .27

Physical activity

Number of blocks walked last week 28.3 ± 38.8 33.6 ± 46.7 .70

Number of stair flights climbed last week 6.2 ± 8.1 17.7 ± 19.1 .03

CRP, C-reactive protein.

a
P values were obtained from two-sample t-tests or χ2 tests.

b
CRP and D-dimer data were only available for 16 survivors and 16 decedents from the WALCS and WALCS II cohorts. WALCS, Walking and 

Leg Circulation Study.

c
Comprising stroke, angina, or myocardial infarction.
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