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The vaquita (Phocoena sinus) is a small porpoise endemic to
Mexico. It is listed by IUCN as Critically Endangered
because of unsustainable levels of bycatch in gillnets. The
population has been monitored with passive acoustic
detectors every summer from 2011 to 2018; here we report
results for 2017 and 2018. We combine the acoustic trends
with an independent estimate of population size from 2015,
and visual observations of at least seven animals in 2017 and
six in 2018. Despite adoption of an emergency gillnet ban in
May 2015, the estimated rate of decline remains extremely
high: 48% decline in 2017 (95% Bayesian credible interval
(CRI) 78% decline to 9% increase) and 47% in 2018 (95% CRI
80% decline to 13% increase). Estimated total population
decline since 2011 is 98.6%, with greater than 99% probability
the decline is greater than 33% yr~'. We estimate fewer than
19 vaquitas remained as of summer 2018 (posterior mean 9,
median 8, 95% CRI 6-19). From March 2016 to March 2019,
10 dead vaquitas killed in gillnets were found. The ongoing
presence of illegal gillnets despite the emergency ban
continues to drive the vaquita towards extinction. Immediate
management action is required if the species is to be saved.

© 2019 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
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1. Introduction

The vaquita (Phocoena sinus) is a species of porpoise endemic to the northern Gulf of California, Mexico.
Historically, its population has declined because of unsustainable bycatch in gillnets, and it is listed as
critically endangered by the IUCN. Since about 2010, an illegal gillnet fishery for an endangered fish,
the totoaba (Totoaba macdonaldi), has resurged throughout the vaquita’s range.

While vaquitas are difficult and expensive to survey visually, they are readily detectable using acoustics
because they produce a nearly continuous series of echolocation clicks. This makes them excellent
candidates for passive acoustic monitoring to estimate trends in abundance. In 2011, a systematic set of
46 acoustic sampling locations were established within the Vaquita Refuge (figure 1), a no fishing zone,
and these have been monitored for a period of two months between June and August each year since
then. Analysis of data from 2011 to 2015 showed an estimated decline in acoustic activity of 34% yr™"
(95% Bayesian credible interval (CRI) 48% decline to 21% decline; [1]). Based on preliminary results
through 2014, the government of Mexico enacted in 2015 an emergency 2-year ban on gillnets
throughout the species’ range to prevent extinction, at a cost of US$74 million to compensate fishers [2].

The acoustic monitoring programme was designed to produce estimates of temporal trend, not
absolute population size. To obtain a population size estimate, a combined visual and acoustic survey
was conducted in October and November 2015 covering the entire area of the gillnet exclusion zone
(figure 1; note that the acoustic component of this survey was independent of the summer acoustic
monitoring programme). This produced an estimate of about 60 vaquitas (posterior median 59, 95%
CRI 22-145) [2]. Acoustic monitoring of vaquita during summer has continued through 2018. The
most recent published analysis used acoustic data up to 2016 and estimated a decline of 49% (95%
CRI 82% decline to 8% increase) between 2015 and 2016 [3]. Combining this finding with the 2015
population survey results, Thomas et al. [3] concluded that approximately 30 (posterior mean 33,
median 27, 95% CRI 8-96) vaquitas remained as of autumn 2016.

Here, we provide updated estimates based on the two most recent years of monitoring data and new
visual observations that give the minimum number of living vaquitas in autumn 2017 and 2018 [4,5]. The
quantitative analysis presented here uses the same 46 acoustic sampling sites monitored since 2011 and
an analytical method used previously [1,3], except for a small extension to accommodate the new
observational data.

2. Material and methods

2.1. Relevant aspects of vaquita biology

The vaquita is found only in turbid waters in the far northwestern Gulf of California, Mexico [6,7]. Their
range has reduced as abundance has declined [2], being recently confined to a small area towards the west
margin of Vaquita Refuge (figure 1, blue polygon). Life expectancy historically is thought to have been
approximately 20 years, with sexual maturity at 3-6 years and single calves born in the spring every
1-2 years [5,8]. Given these demographic parameters, maximum annual population growth rate was
thought to be 4% [9], but the recent evidence for potential annual calving could increase this to
roughly 6% [5]. Vaquitas are typically found in groups of one to three individuals, with an average of
2; this has not changed in recent visual surveys [2]. Like other porpoises, vaquitas make only high
frequency narrow band echolocation clicks in regular sequences known as click trains [10]. Click rate is
relatively constant [1], facilitating the use of acoustic detection rates to estimate trends in abundance.

2.2. Acoustic data collection and processing

The acoustic monitoring design and analyses were described in Jaramillo-Legorreta ef al. [1]. Here we
provide a brief overview. A grid of vaquita click detectors (C-PODs, manufactured by Chelonia Ltd.,
Mousehole, Cornwall, UK; http://www.chelonia.co.uk) was deployed in summers of 2017 and 2018
during the same season and at the same 46 core monitoring sites as previous monitoring studies from
2011 to 2016 [1,3]. In 2017, all sites were marked with surface buoys to facilitate rapid retrieval and
replacement of C-PODs. To avoid complete data loss at any station due to instrument failure or loss,
C-PODs were retrieved and replaced approximately every three weeks. As in previous analyses,
vaquita click trains were identified with the KERNO classifier (v. 2.044; software freely available at
http://www.chelonia.co.uk/cpod_downloads.htm) and validated by experienced analysts. This
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Figure 1. Historical distribution of vaquitas (yellow hatched area) in the northern Gulf of California. The Vaquita Refuge (agreed in 2005
and enforced in 2008 as a no fishing zone) is outlined in blue. The gillnet exclusion zone (where fishing with gillnets is banned but other
types of fishing is allowed) was given straight boundaries (dotted white) described by single latitude and longitude to fadilitate
enforcement. An enhanced enforcement zone (red) was recommended by CIRVA in the area where the remaining vaquitas are thought
to spend most of their time that also has high levels of totoaba fishing effort. Landsat satellite composite imagery provided by United
States Geological Survey, National Aeronautics and Space Administration (NASA) and Esri, Inc. Projection UTM. Datum WGS84.

procedure results in a negligible level of false-positive detections, and detection rates that are not
impacted significantly by variation in oceanographic conditions or acoustic behaviour of vaquitas
[1,3]. Statistical analysis is based on data from the same 62-day period (19 June-19 August) in all
years (dataset available in the electronic supplementary material). Trend estimates are based on the
changes in the average number of vaquita clicks (in recognized click trains) per site per day. Detection
positive minutes (DPMs, i.e. the number of minutes per day that contain one or more vaquita clicks)
[11-13] are used as an index of vaquita abundance in figure 2.

2.3. Trend analyses

Previous analyses of the acoustic monitoring data [1,3] have used two statistical models—a geostatistical
model and a non-spatial mixture model—to make inferences about trends in click rate over years. These
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Figure 2. Mean acoustic detection positive minutes, averaged across the 46 core monitoring sites (y-axis) for each day of sampling
(x-axis). Each dot represents a single day of sampling, with dot size proportional to the number of sites samples on that day. The
green curves represent a smooth fit (a generalized additive mixed model with separate thin plate regression spline smooths per
year, normal errors, identity link, weights that are number of sampling sites and auto-regressive error structure of order 1) with
approximate 95% confidence interval shown as dashed lines. Vertical red lines indicate the core sampling period from Julian day
170-231.

models would not be necessary if sampling effort were balanced across C-PODs through time, but
uneven sampling effort and missing data from some C-POD locations, mainly in the earlier years of
the study, necessitate the model-based approach. Note that the models do not account for possible
changes in the acoustic detection range of vaquita clicks or vaquita acoustic behaviour (see Discussion
and conclusion). Here, we use only the geostatistical model because we found the mixture model is
no longer a good fit to the data (see the electronic supplementary material). Despite this, we note that
results from the mixture model are very similar to those from the geostatistical model, and results are
essentially unchanged regardless of which is used (see the electronic supplementary material).
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In brief, the geostatistical model compensates for locations with missing data by ‘borrowing strength’ [ 5 |
from those around it: the model assumes the average click rate varies smoothly over space, with a
separate smooth surface fit to each year of data but with the same level of smoothness (the spatial
autocorrelation) across years. It further accounts for variation in sampling by assuming locations with
more sampling days give more precise estimates of average click rate than those with fewer sampling
days.

More details are given below; full model specifications are in Jaramillo-Legorreta et al. [1], while data
and code are available in the electronic supplementary material. Let W;; denote the mean number of
vaquita clicks detected in year t at site i, averaged over n; days of sampling. The data were log-
transformed for analysis, Y}; =1log(W; + 1), and the resulting values are modelled as

0.2
Yii| e, Zii, 02, nyi ~ Normal (/-Lt + Zy, n—"’)

t

*sosi/Jeunof/6106uiysgnd/aposjedos

where ; is the expected mean clicks per day across sites in year ¢, Z,; is a spatially autocorrelated random
effect and o2 is the variance for spatially independent random error. The spatial random effect allows the
number of clicks per day at each site within a year to depart from the overall mean, with sites in closer
proximity to each other expected to have more similar departures from the overall mean. It took the form

Z; ~ Multivariate normal(0, ofR(p)),

where Z, is the vector of site-specific random effects in year t, (Zy, ..., Zm,)/, of is the variance of the
spatial random effect and R(p) is a 46 x46 correlation matrix. The value for the ith row and jth
column of R(p) is given by exp(—3h;/p), where h;; is the Euclidian distance (in kilometres) between
sites i and j, and p is a parameter controlling the spatial smoothness of the random effect.

The model was fitted under the framework of Bayesian statistics. Uninformative prior distributions
were used for all model parameters (uso11,..., M201ss oﬁ, of, p; see the electronic supplementary
material). As a check, the model was re-run with wider prior distributions and near-identical results
obtained. Samples from the posterior distribution were generated using Markov chain Monte Carlo
(MCMC) methods via the OpenBugs software package [14]. One chain was used, with a mix of hand-
chosen and randomly generated starting values (see the electronic supplementary material).
Convergence was assessed using both Geweke’s [15] and Heidelberger & Welch’s [16] diagnostics, and
(conservatively) the first 7500 samples were discarded as burn-in. Thereafter, we retained 1000000
samples (keeping every 100th sample to reduce the computational burden during post-processing)—
this was sufficient to ensure at least three significant figure accuracy in posterior summaries. To check
goodness-of-fit of the model, marginal predictive checks in the form of Bayesian p-values [17] were
calculated for each site times year combination (see the electronic supplementary material).

The main outputs of interest from the model are annual changes in average acoustic activity,
averaging over the sampling sites (but acknowledging the realized spatial variation, see [1]). These are
given by

.” 8 6 506 L v 9 /)g L 305 v H ,.

)\t,f+1 = Bf ’
t

where
1 s
B = %; (exp (u; + Zy) — 1).

Changes between any two time points can be calculated similarly—for example, the total change in
average acoustic activity between 2011 and 2018 is given by Ax011 2018 = B2o11/Bao1s. Values of 44 4, less
than 1 indicate a decline; this is sometimes expressed as the percentage decline (1 — 41 1) x 100.

2.4. Projected estimates of vaquita abundance

We assume that annual changes in acoustic activity reflect changes in vaquita population size (see
Discussion and conclusion). This means that the estimated population size from the 2015 survey [2]
can be projected forwards to give a population size in 2018 based on the estimated acoustic trends.
The population abundance estimate from the 2015 survey (Nyys) [2] can be represented by a
lognormal distribution with mean 66 and standard deviation of 33. To project the population forward
from 2015 to 2018, we drew 10000 random samples from this lognormal distribution and multiplied



these in succession by 10000 MCMC samples for 5\2015,2016, ;\2016,2017 and X2017,2013. This generated n
population size estimates for each successive year (Napi6, N2g17 and Nooig).

2.5. Updating estimates based on minimum count data

In October and November 2017, an effort was made to capture vaquitas [4]. A minimum of five vaquitas
were observed through photographic identification, plus two different vaquitas were captured (i.e. at
least seven known alive). In September 2018, an effort was made to obtain both photographs and
biopsies from vaquitas. At one point, two different groups (one of four and one of two) were
observed for a minimum of six individuals.

This information can be treated as new data for updating the posterior distribution of population
sizes: with this additional information, the posterior probability of fewer than seven animals in
autumn 2017 or six in autumn 2018 is zero. Hence, MCMC trajectories (where a trajectory consists of
single set of MCMC draws for N2015, 12015’2016, }\2016,2017 and 5\2017,2013) for which the derived N2017 or
Nagis were fewer than seven or six, respectively, were discarded. This resulted in retention of 2388 of
the 10000 samples mentioned previously. The retained truncated trajectories were used to generate
updated posterior summaries of population size and trend between 2015 and 2018.

*sosi/Jeunof/6106uiysgnd/aposjedos

3. Results

3.1. Within-year patterns in acoustic data

.” 8 6 906 L v 9 /)g L 305 v H ,.

The core monitoring period was 19 June-19 August each year (62 days). Acoustic data were sometimes
missing during this period because of logger failure or loss; this could potentially bias annual trend
estimates if there is a temporal trend within a monitoring period in instrument loss and also in
acoustic detection rate. While there were some data losses for brief periods in 2017, generally
sampling effort remained close to the maximum of 46 sensors throughout the monitoring period
(figure 3). In addition, there was no strong pattern detected in the rate of vaquita detections within
the monitoring period in any year (figure 2).

3.2. Annual change and trend analyses from acoustic data

The mean number of vaquita clicks detected per day, averaged over the sampling sites and days within
the core monitoring period, decreased by 62.3% from 2016 to 2017 and by 70.1% from 2017 to 2018. In
terms of annual change (i.e. the ratio of the value in year 2 divided by the value in year 1), the above
declines in acoustic detections translate to 5\2016,2017 =0.377 and ;\2017,2018 = 0.299. However, these
values do not account for unequal effort across the sampling sites between years. The statistical
models do account for unequal effort, in different ways, and also give estimates of uncertainty in the
annual changes.

Results from the geospatial model are visually depicted in figure 4 and estimates of between-year
change are given in table 1. Note the continuing range contraction first noted in Jaramillo-Legorreta
et al. [1]. The values for years 2011-2016 are similar to those previously reported [1,3]. The posterior
mean rates of decline in acoustic activity for the two new years are 49% decline from 2016 to 2017
(95% CRI 79% decline to 7% increase) and 58% decline from 2017 to 2018 (95% CRI 86% decline to 3%
increase) (corresponding estimates of 4 are shown in table 1). The annual average decline between 2011
and 2018 has a posterior mean of 47% annually (95% CRI 54% decline to 40% decline), corresponding
to a total decline of 99% over the 7-year period. While the actual rate of decline is uncertain, it is
certain that the level of acoustic activity has declined since 2011 (posterior probability = 1), and there is
a greater than 99% chance that the decline has averaged greater than 33% yr~'. Moreover, the annual
rate of decline seems to have increased over time, as evidenced by decreasing estimates of A (table 1).

The marginal predictive checks indicated no systematic departures of model predictions from data
values (see the electronic supplementary material).

3.3. Population size and trend

Projecting forwards from the estimated population size in 2015 without accounting for the minimum
count data, the posterior median estimate of population size in autumn 2018 (i.e. the end of the
acoustic monitoring period) was just four animals. However, accounting for the seven animals seen in
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Figure 3. Number of acoustic loggers active in the 46 core monitoring sites by Julian day from 2011 to 2018. Vertical red lines
indicate the core sampling period from Julian day 170-231.

2017 and six in 2018, the estimated population size was around nine (posterior mean 9, posterior median
8, 95% CRI 6-19). The full posterior distribution for each year is shown in figure 5 (together with
historical estimates of population size, for context). We conclude that fewer than 19 vaquitas remained
as of autumn 2018.

The knowledge of minimum known alive in 2017 and 2018 slightly changes the estimates of trend
from the acoustic data (table 1), making them a little less negative. The posterior mean rate of decline
is 48% in 2017 (95% CRI 78% decline to 9% increase) and 47% in 2018 (95% CRI 80% decline to 13%
increase). However, the overall conclusion of a catastrophic long-term decline is unchanged: posterior
mean total population decline since 2011 is 99%, with a probability of greater than 0.99 that this
decline is greater than 33% yr~'. There is no evidence that the decline slowed after the introduction of
the gillnet ban in 2015: the posterior mean annual rate of decline from the periods 2015-2016,
20162017 and 2017-2018 is 45.8% (95% CRI 57.9% decline to 36.3% decline).

The minimum numbers known alive also retrospectively inform the 2015 estimate. For example, we
can say that given there being at least seven animals alive in 2017 and six in 2018, then it is unlikely for
the population size in 2015 to have been in the lower half of the estimated distribution reported by Taylor
et al. [2]. Our updated estimate for the 2015 survey is a posterior mean of 100 vaquitas (posterior median
93, 95% CRI 47-191). This supersedes the value of ~60 previously reported [2].

8650619 s tado 205 sosyjewmol/bobunsyqndfaanosiedor |



2017 O 2018 O clicks d-!

1200 days of
sampling
® o

100 o 1-15
O 16-30

10 O 31-45

. (O 46-63
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data for at least 1 year. Values in legend are posterior medians (note log scale). Some sites, circles with crosses, were missing in the
indicated year. Size of circles indicates the number of sampling days on each year (see legend).

4. Discussion and conclusion

From the acoustic data alone, using the statistical models, the estimated decline in detection rate since
monitoring started in 2011 is 99%. Although this estimate should be more reliable than a raw count,
because it corrects for missing data, the change in raw acoustic detection rate is remarkably similar:
an average of 4.37 clicks were detected per sensor per day of monitoring in 2011, and 0.052 in 2018, a
decline of 99%. This gives us confidence that the acoustic trend estimates are robust.

To infer that vaquita population trends match the acoustic trends, we must assume that the acoustic
behaviour of the vaquita and the underwater sound propagation conditions have not changed over time.
This was investigated by Thomas et al. ([3], the electronic supplementary material), who found no
evidence for any changes large enough to bias the trend estimates. We must also assume that the
proportion of the population within the Vaquita Refuge has not changed over time, an assumption that is
not directly testable with the data to hand. Taylor et al. [2] found that approximately 20% of
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Figure 5. (a) Population size estimates from surveys conducted in 1997 [18], 2008 [19] and 2015 [2], and projected population size
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Table 1. Estimated per-year change (1) in acoustic activity from the geospatial trend model applied to acoustic monitoring data
both before and after incorporation of the additional sightings of vaquita in 2017 and 2018. Quantities are posterior means with
95% posterior credible intervals in brackets.

before incorporation after incorporation probability
of 2017 and 2018 of 2017 and 2018 probability declining
sightings sightings dedclining (%) >20% yr~" (%)
2011-2012 0.67 (0.22-1.43) 0.66 (0.22-1.43) 88.2 74.5
s T (043 277). e (044 274). e ey
vt .v,049(015 154)”.' ”050(016 118)..H o e
s T 027129 e 020 113). s T e
2015-2016 041 (0.18-0.76) 0.43 (0.20-0.81) 99.2 97.2
e 021107 e (022 109). s
2017-2018 042 (0.14-0.97) 0.53 (0.20-1.13) 95.1 87.6
”geometnc o per year change .....053 (045 060)”” s (047 062)'“”” “~100 R “m~100

the population (12 of the estimated 59) were outside the refuge area during the time of the 2015 survey,
so population trends would have to be very different outside the refuge for this to affect the overall
population trend. If anything, given the lower levels of protection outside the refuge, population trends
there are likely to be even more negative. Thomas et al. [3] found few detections on additional
hydrophones placed at the periphery of the refuge; given the numbers in our current population estimate,
it seems most likely that the vaquita population is now almost exclusively restricted to the refuge area.

Given our knowledge that at least seven vaquitas were alive in 2017 and at least six in 2018, and
assuming the acoustic trend matches the trend in vaquita population size, then we conclude there
were probably more vaquita in 2015 than the original estimate suggested. If this is correct, then the
original underestimation for 2015 could have been due to sampling error (noting that the revised 2015
estimate falls comfortably within the original CRI) or due to some negative statistical bias. Taylor et al.
[2] include a lengthy discussion of potential biases in their supplementary material and each of these
biases could have contributed some small amount to any underestimation.

We see clear evidence that vaquita continue to decline precipitously despite the gillnet ban. Gillnet
use continues [20] (Comité Internacional para la Recuperaciéon de la Vaquita (CIRVA) 2017, 2018
unpublished data). In the 2018 totoaba season, there were 400 active totoaba nets recovered by a
combined effort of the Mexican government, Sea Shepherd Conservation Society, Museo de la Ballena
y Ciencias del Mar and WWEF-Mexico. Most of these were from within an area recommended by the
Comité Internacional para la Recuperacién de la Vaquita (CIRVA) for increased enforcement because
of the overlap between the vaquita distribution and past totoaba gillnet recovery (figure 1). Three
dead vaquitas were found in 2016, five more in 2017, one in 2018 and one in 2019 (after the
abundance estimate given in this paper and, therefore, not accounted for in the 2018 abundance
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estimate). Of these 10, cause of death could be determined for eight, and all these deaths resulted from
entanglement in gillnets [20] (CIRVA 2017, 2018 unpublished data).

With at most 19 vaquitas remaining in August 2018 and with their distribution contracted to a small
area where a high amount of illegal totoaba fishing has occurred in the past and is continuing in the
2018-2019 totoaba spawning season (typically from December through May, peaking in March), the
primary hope for this species is to guard the remaining individuals during the totoaba season. A dual
approach combines the permanent presence of enforcement in the middle of the vaquita distribution
and the active removal of illegal gillnets from the area and provides the most direct and immediate
chance of survival for the remaining individuals. In addition, providing access, training and support
to develop legal alternatives for fishers requires a longer time frame but is critical for increasing
compliance with the gillnet ban in local communities. An effort to photograph and potentially biopsy
vaquitas occurred in September 2018 and found the animals to be in robust health with two calves
and evidence that vaquitas could calve annually [5]. This finding gives optimism for recovery if the
killing could be halted immediately.
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