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Abstract

Objective: Despite progress in treating relapsing multiple sclerosis (MS), effec-

tive inhibition of nonrelapsing progressive MS is an urgent, unmet, clinical

need. Animal models of MS, such as experimental autoimmune

encephalomyelitis (EAE), provide valuable tools to examine the mechanisms

contributing to disease and may be important for developing rational therapeu-

tic approaches for treatment of progressive MS. It has been suggested that mye-

lin oligodendrocyte glycoprotein (MOG) peptide residues 35-55 (MOG35-55)-

induced EAE in nonobese diabetic (NOD) mice resembles secondary progres-

sive MS. The objective was to determine whether the published data merits

such claims. Methods: Induction and monitoring of EAE in NOD mice and lit-

erature review. Results: It is evident that the NOD mouse model lacks validity

as a progressive MS model as the individual course seems to be an asyn-

chronous, relapsing-remitting neurodegenerative disease, characterized by

increasingly poor recovery from relapse. The seemingly progressive course seen

in group means of clinical score is an artifact of data handling and interpreta-

tion. Interpretation: Although MOG35-55-induced EAE in NOD mice may pro-

vide some clues about approaches to block neurodegeneration associated with

the inflammatory penumbra as lesions form, it should not be used to justify tri-

als in people with nonactive, progressive MS. This adds further support to the

view that drug studies in animals should universally adopt transparent raw data

deposition as part of the publication process, such that claims can adequately

be interrogated. This transparency is important if animal-based science is to

remain a credible part of translational research in MS.

Introduction

Multiple sclerosis (MS) is an immune-mediated, demyeli-

nating disease of the central nervous system (CNS).1 This

typically follows a relapsing-remitting disease course often

followed by the accumulation of progressively worsening

neurological disability.1 Active neurological disease in MS 2

and disease in the experimental autoimmune

encephalomyelitis (EAE) model of MS is driven by the

consequences of the peripheral, adaptive immune

response entering the CNS.3 This is supported not only

by radiological and pathological findings, but most

importantly, by the response to therapy.4–7 Although pro-

gressive MS may also respond to similar immunotherapy

provided there is sufficient neurological reserve in the

nerve-tracks affected,8–10 other factors such as innate

immune responses are thought to be of central impor-

tance in progressive neurodegeneration.11 This concept

underpins the perceived treatment-failure of immunother-

apy in advanced (progressive) MS, where replacement of
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peripheral immunity, which stops relapses, does not

always halt accumulation of disability.8,9,12,13 Therefore,

there is an urgent need for model systems that can be used

to identify the pathological mechanism operating in

progressive disease as well as to design and test new

therapeutics.

Experimental autoimmune encephalomyelitis in animals

is a group of experimentally induced autoimmune diseases

with some similarities to MS.14,15 Some of the EAE models

are associated with the development of relapsing,

immune-mediated demyelination disease14,16 and may

show slow accumulation of disability that is independent

of relapses and peripheral autoimmunity.17–20 The nonob-

ese diabetic (NOD) mouse develops spontaneous or

induced diabetes and other endocrine gland-associated

autoimmunities.21–23 This mouse strain has also been

reported to develop progressive neurological disease that

mimics progressive MS.24,25 Progressive worsening appears

to develop within 20–30 days postinduction following

immunization with myelin oligodendrocyte glycoprotein

(MOG) peptide residues 35-55 (MOG35-55).24–31 Thus, this

EAE model could have significant utility for screening

potential neuroprotective and repair agents.24,27–31 Here,

we have investigated the response of NOD mice to various

autoantigens to assess the validity of this system to model

progressive MS. In contrast to some of the published liter-

ature indicating the progressive nature of early MOG35-55

induced EAE in NOD mice, we found no evidence that

this model exhibits a progressive worsening independent

of relapsing disease indicating that existing data are an

artifact of data handling and interpretation. Therefore, this

model should not be used to justify any human trials in

nonrelapsing progressive MS.

Methods

Animals

NOD/Lt (NOD), NOD.H2Ea (NOD-E) mice expressing a

transgenic H-2A alpha chain allowing expression of H-

2Eg7 and NOD.H2AbAsp (NOD-ASP) mice expressing a

modified H-2A beta with a serine to aspartic acid substi-

tution at position 57 were from stock bred at the Univer-

sity of Cambridge.22 These mice failed to develop diabetes

during the course of these studies. Animals were housed

and used according to the Animals (Scientific Procedures)

Act 1986, which induces review by the local Animal Wel-

fare and Ethical Review Body and the United Kingdom

Government, Home Office Inspectorate. In addition,

NOD/ShiLtJ mice were from stock bred at the La Trobe

University.32 Animal procedures were approved by the

Institutional Animal Care and Use Committee at the La

Trobe Institute, Australia.23,32

Experimental autoimmune
encephalomyelitis

Animals (11–15 week) were injected subcutaneously with

1 mg mouse spinal cord homogenate (SCH),16 200 lg
mouse proteolipid protein residues 56-70 (PLP56-70) pep-

tide33,34 or 200 lg MOG residues 8-22 (MOG8-22) pep-

tide34,35 emulsified in Freunds adjuvant supplemented

with 60 lg Mycobacteria tuberculosis and M.butyricum on

day 0 and 7.16 Animals were injected intraperitoneally

with 200 ng Bordetella pertussis toxin immediately and

24 h after each injection of antigen, as described previ-

ously.16,32,33 These are the immunodominant myelin pep-

tides associated with H-2Ag7 reactivity in ABH mice.33–35

Animals were scored as 0 = normal; 1 = limp tail;

2 = impaired righting reflex; 3 = hindlimb paresis;

4 = hindlimb paralysis; 5 = moribund (endpoint) as

described previously.16,33 Alternatively, animals (9–
12 week) were immunized with 200 lg MOG residues

35-55 (MOG35-55) peptide emulsified in Freunds complete

adjuvant supplemented with 4 mg/mL M. tuberculosis on

day 0 and 350 ng intravenous B. pertussis toxin on day 0

and day 2.23,32 These mice were scored as: 0 = no signs,

1 = limp tail, 2 = hindlimb weakness, 3 = hindlimb

weakness with at least one paralyzed hindlimb, 4 = paral-

ysis of both hindlimbs and weakness of one forelimb,

5 = moribund.23 Animals were randomly assigned to

treatments and the studies were scored blinded to induc-

tion agent. Groups contained a minimum of five animals/

group which was sufficient to perform statistical analysis

and experimental elements relevant to the ARRIVE guide-

lines have been reported previously.13,15 Raw data sup-

plied as Data S1.

Statistical analysis

Data were analyzed using Sigmplot (Systat Software Inc,

London) and expressed as mean � standard error of the

mean. For EAE group clinical scores and day of disease

onset were assessed by Mann–Whitney U tests. Group

EAE score represents the maximal neurological deficit in

all animals within the group and mean EAE score the

maximal neurological deficit developed by mice that ex-

hibited EAE, as previously described.33,36 P values < 0.05

were considered significant.

Results

Biozzi ABH mice (H2dq1: Kd, Ag7, E-, Dq) are susceptible

to a number of induced autoimmunities37 exhibit high-

susceptibility to SCH-induced EAE compared to NOD

(H2 g7:Kd, Ag7,E-, Db) mice, which share the diabetogenic

H-2Ag7 molecule.37,38 However, NOD mice can show
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comparable susceptibility to other induced autoimmuni-

ties when B. pertussis toxin is used as coadjuvant.39 The

immunodominant epitopes associated with the develop-

ment of EAE in ABH mice are proteolipid protein

(PLP56-70) and myelin oligodendrocyte glycoprotein

(MOG8-22) peptides.33,34 However, wild-type NOD

mice only exhibited modest susceptibility (n = 9/13) to

SCH-induced EAE (Fig 1; Table 1), with disease that had

poor consistency in severity (range of maximum severity

grade 0.5–4 n = 9) and day of onset (range 14–49.
n = 9). Of those mice that developed disease 6/9 devel-

oped relapses by day 63 and none showed a slow progres-

sive worsening of disease. Similarly, MOG8-22 peptide

induced disease in 13/14 mice, which largely relapsed

(n = 9/13), and again no escalating progressive disease

was evident. Interestingly, it was found that wild-type

mice poorly responded to PLP56-70 peptide and only 5/13

(38.5%) mice developed low-grade EAE (Table 1). Like-

wise, NOD.ASP mice developed low-grade EAE (Fig. 1).

However, NOD-E mice exhibited significantly (P < 0.001)

more severe disease than wild-type mice immunized with

PLP56-70, as described previously.40 This was evident when

the group score (2.1 � 0.3 vs. 0.5 � 0.2; P < 0.001) and

the EAE score (2.3 � 0.3 vs. 1.2 � 0.2; P < 0.05) were

analyzed (Table 1). Although some NOD-E mice re-

lapsed, there was no evidence of progressive worsening.

Previous studies have examined the encephalitogenic

response to MOG35-55 in NOD mice.24,41 This is a sub-

dominant MOG peptide in both the ABH (H-2 g7) and

C57BL/6 (H-2b) mice.34,42 This peptide tends to induce a

monophasic chronic EAE in ABH and C57BL/6 mice,

where there is poor recovery following a single attack.42–

44 This is consistent with the neurodegenerative nature of

the attacks.45 Therefore, the effect of MOG35-55 peptide

was not assessed in the initial studies (Fig. 1). An appar-

ent progressive worsening of neurological signs can be

observed when analyzing the group means of ABH ani-

mals with SCH-induced EAE,16 yet it is clear that in indi-

vidual mice the course of disease is relapsing-remitting

that responds to T-cell immunotherapy.16,17,46 The appar-

ent continuing worsening of disease is simply due to the

occurrence of asynchronous relapses with increasingly

poor recovery due to the neurodegenerative effects of the

inflammatory penumbra.16,19,20,46 This may explain the

disease course reported in NOD mice.24–31

Therefore, to avoid unnecessary use of animals, the lit-

erature was investigated further. Indeed, the first descrip-

tions of MOG35-55 reported that the disease in NOD mice

was relapsing and remitting.23,41,47 Importantly, when the

data from individual animals are examined it is clear that

disease was largely relapsing and remitting and not pro-

gressive48 and was confirmed here using available data

(Fig. 2). Thus the apparent progressive worsening was

largely due to asynchronous relapses with poor recovery

(Fig. 2). The relapsing nature of EAE in NOD mice was

reproducibly supported by the results from different labo-

ratories.23,47–49 Indeed, the literature (Fig. 3) indicates

that defining MOG-induced EAE in NOD mice as pro-

gressive, is a misinterpretation and misrepresentation of

what actually is a neurodegenerative, relapsing disease

profile.26,45

Discussion

This study demonstrates that MOG-induced EAE in NOD

mice induces a relapsing disease course that is not reflec-

tive of chronic, progressive MS in its early phases. This is

consistent with the original description of MOG35-55-in-

duced disease in NOD/Lt mice as being a relapsing-remit-

ting disease.41 However, when mice were followed for up

to several months longer it was reported that disease

might become chronically progressive as animals accumu-

late disability.47 However, with the urgent unmet clinical

need to develop treatment options for advanced MS,

MOG35-55 induced EAE has become used as a “progres-

sive EAE” model that purportedly resembles secondary

progressive MS.24,25,48 This clinical progression appears to

begin from about day 20 after immunization when it is

used to test therapeutics for use in progressive MS.24–31

However, through literature review and as shown here,

the same clinical course has been reported to be a form

of chronic relapsing EAE.23,48–50 At the cellular level, CD4

T cells from MOG35-55 T-cell receptor (TCRMOG)-specific

transgenic NOD mice, that select CD4 and CD8 T cells,

induce a phenotypic progressive disease in NOD.Scid

mice, similar to that reported using MOG35-55 immunized

wild-type NOD mice.51 However, based on the disease

occurring following active immunization in NOD.

TCRMOG mice, it is clearly evident that a relapsing-remit-

ting course developed.51 Indeed, the initial disease was

described to be of mild severity that completely resolved

followed by relapse of greater severity that did not resolve

completely.51 Histologically, every attack is associated

with the development of severe immune-infiltration52 and

thus lacks evidence of progression without significant

blood–brain barrier dysfunction similar to progressive

MS.53 Importantly, the pathology demonstrates that these

immune attacks cause significant neurodegeneration, con-

sistent with EAE in other mouse strains including C57BL/

6 mice,16,36,45 leading to persistent disability that often

increases with each cycle of neurological attack. Thus the

concept of progressive worsening in the clinical score of

NOD mice, is a misrepresentation of what is clearly an

asynchronous-neurodegenerative, relapsing EAE.

Such relapses, driven by T cells17,51 will of course

respond to immunotherapy. This could limit the
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Figure 1. Induction of EAE in NOD mice using myelin peptides. EAE was induced by subcutaneous injection of neuroantigen in Freunds adjuvant

and using B.pertusssis toxin as coadjuvant. The results represent the group mean daily � SEM.
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generation of neurodegeneration by prevention of lesion

formation or by inhibiting the consequence of the inflam-

matory penumbra that is associated with the formation of

lesions in the central nervous system.20,45,54 Indeed,

MOG35-55 induced NOD mouse EAE responds to prophy-

lactic and therapeutic T-cell tolerance induction and T-

cell immunotherapy.26,27 However, that these approaches

have largely failed to markedly influence nonactive, pro-

gressive MS, demonstrates that the model as used, proba-

bly has no or limited validity and predictive value for

efficacy in nonactive, progressive MS.12,13,55,56 Therefore,

the model should not be used to justify any clinical trials

in nonrelapsing, progressive MS.2

Any agent that diminishes the frequency of attacks and

reduces their severity will be potentially secondarily neu-

roprotective, as seen in both EAE and MS.3,57 In addition,

the inflammatory penumbra occurring during active EAE

and MS is damaging and can cause nerve loss.45,54,58,59 As

such, it is sometimes difficult to dissociate direct neuro-

protective effects against the inflammatory penumbra

from secondary neuroprotection due to immunomodula-

tion that prevents lesion formation. This is particularly

the case when treating during active paralytic disease and

monitoring recovery,3,54,60 such as that occurring in

monophasic, neurodegenerative MOG-induced EAE in

C57BL/6 mice.43,61 Although one can show that agents

are not immunosuppressive in vitro, drugs that interfere

with nervous system signaling can cause adverse effects

in vivo, although these are seldom reported in animal

studies.3,60,62 Such drugs that interfere with neuronal sig-

naling could induce a stress response that could be

immunosuppressive. Thus, it is imperative that these

influences are avoided if insight into neuroprotection is

required.3,60,62 This is because, while immunomodulation

of the adaptive immune response may be of benefit for

active progressive MS3,8–10 it cannot adequately inform

about effects operating in nonactive progressive MS.2

Until this aspect is appreciated by experimental biologists

and clinicians, we will fail to adequately model

progressive MS and continue to fail to translate ideas into

human benefit.

Although not reported here, our previous studies have

reported the histological profile of EAE in NOD mice.22

This is consistent with other mouse strains that demon-

strate a dynamic degree of adaptive immune cells infiltra-

tion as clinical disease develops and wanes.22,36 Glial cell

inflammation is thought to be part of the substrate for

slow progressive nerve loss in MS.11 However, the loss of

axons and myelin, accumulation of microglial activation

and gliosis reported in progressive EAE models,24–31 is

not qualitatively different from that found following the

accumulation of disability from relapsing EAE in

mice.20,36 This perhaps is not surprising as monophasic

or relapsing inflammatory disease activity probably creates

and conditions the neurodegenerative environment that

leads to the slow loss nerve loss, which does not respond

rapidly to agents that target relapsing disease.17–20 Pro-

gressive neurodegenerative pathology, driven by glial cells,

initially coexists with adaptive immune inflammation

driving active attacks, but becomes more dominant with

disease duration as relapses wain, as occurs in NOD mice

with long disease duration.22,47

Given the deficits that NOD mice accumulate due to

relapsing attacks, it is likely that slow progressive disease

eventually develops, as a similar disease course is

observed in SCH-induced EAE in ABH.17,18,23 Following

accumulation of deficit from relapsing attacks, animals

exhibit slow clinical worsening and nerve loss, weeks to

months after disease induction, which is not responsive

to peripheral immunosuppression.17–20 Although this

degenerative process is occurring following initial

attacks,20 this becomes notably evident during the

postattack period that occurs following monophasic EAE

that occurs in MOG35-55-induced EAE in C57BL/6,43,44

chronic relapsing EAE in ABH17,18 and possibly NOD

mice.23,47 It is possible that subtle differences in the

genetics of the animals, age, sex, microbiome content,

and breeding facility could account for the differences in

Table 1. Disease susceptibility of transgenic nonobese diabetic mice to myelin antigens

Strain Immunogen No. EAE Group Score EAE Score Day of Onset

NOD SCH 9/13 2.0 � 0.5 2.8 � 0.5 27.1 � 14.9

NOD MOG8-22 13/14 1.5 � 0.3 1.7 � 0.3 17.3 � 6.4

NOD PLP56-70 5/13 0.5 � 0.2 1.2 � 0.2 20.6 � 9.3

NOD-E PLP56-70 11/12** 2.1 � 0.3*** 2.3 � 0.3* 21.6 � 4.7

NOD MOG35-55 14/14 2.3 � 0.1# 2.3 � 0.1# 13.2 � 3.1

EAE was induced by subcutaneous injection of neuroantigen in Freunds adjuvant and using B. pertusssis toxin as coadjuvant. The results represent

the mean maximum group score of the first episode � SEM; the mean maximum score of animals that developed EAE during the first episode �
SEM and the mean day of onset � SD. The NOD mice immunized with SCH, MOG8-22 or PLP56-70 were from stock based in the United Kingdom.

The NOD mice immunized with MOG35-55 peptide were from different stock based in Australia and #the scoring system used was different.

*P < 0.05; **P < 0.01, ***P < 0.001 compared to wild-type mice.
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Figure 2. Individual disease courses in NOD mice. NOD mice were immunized with 200 lg MOG35-55 and 4 mg/mL complete Freunds adjuvant.

The results represent the group mean � SEM neurological score (n = 14) and the individual scores over time.

ª 2019 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. 1367

D. Baker et al. NOD Mouse EAE is a not Progressive MS Model



Figure 3. Progressive worsening of EAE disease in NOD mice is a misrepresentation of relapsing-remitting EAE. NOD mice were immunized with

150 lg MOG35-55 and 4 mg/mL complete Freunds adjuvant in the progressive EAE model. (A) The results demonstrating a progressive worsening

was shown using a mean daily group score � SEM. These mice were treated (arrow) with MOG35-55 nasal tolerance or bovine serum albumin

(BSA) peptide as control. Differences between the groups are shown. *P < 0.05 assessed using a Student’s t test. While a t test is not appropriate

for such nonparametric data,3,68 the lack of consistent statistical differences demonstrates the fluctuating nature of the individual data points that

form the group score. (B) As each mouse had a relapse and remission at different time points, the average clinical score of each relapse and

remission was calculated, clearly showing disease is relapsing remitting.26 Figures are reproduced from Levy Barazany H et al. Exp Neurol 2014;

255:63-7026; doi.org/10.1016/j.expneurol.2014.02.010 with permission from Elsevier.
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the clinical profile reported here and as shown previ-

ously by us23 and that reported by others.24–31 Indeed,

in some of our studies, male and older mice tolerate

inflammatory insults less well and accumulate nerve loss

and deficits leading to the slow accumulation of progres-

sive disability, even following a single attack.54,63,64 In

our experience this deficit accumulates slowly17,18 and

was reported to occur in NOD mice months, not weeks

after disease development.23,47 Age and sex, however, are

unlikely to account for differences in the clinical course

observed here, as they were comparable23 to those

reported for rapidly evolving secondary progressive

EAE.23–26 In our experience, this progressive worsening

is not readily captured by the typical subjective, nonlin-

ear, scoring of paralysis of the hindlimbs and tail often

used to assess the severity of EAE in animals.16,23,43,47 As

such, neurological disease eventually plateaus in mouse

EAE and remains stable over months.18,23,43,46,47 This

may change very slowly just as observed in

humans.8,17,65 However, other objective outputs such as

spasticity and mobility changes can detect slow, worsen-

ing over time.17,18 Similarly, although cuprizone-induced

demyelination and subsequent neurodegeneration was

widely assumed to be nonclinical, through analysis of

alternative objective outcome measures clinical deteriora-

tion can be detected.64,66 Therefore, it may be possible

that existing models, if used wisely, such as avoiding

treatment during the periods of active attacks, could be

used to identify candidate agents that may be of value

in controlling nonrelapsing progressive MS. Alternatively

models that mirror aspects of progressive MS can be

developed to facilitate a mechanism-based targeting of

neurodegenerative disease in MS.

The process of the refinement, reduction, and replace-

ment of animal use in research, which defines the ethical

use of animals in research, means that animal experi-

ments should have value in uncovering human biology

and we should particularly strive to limit the number of

animals used in severe procedures. EAE is such a severe

procedure and thus should not be used if less-severe sys-

tems, or shorter disease durations, can address the same

central hypothesis. We have already seen that there has

been poor translation of animal studies into the treatment

of relapsing MS.67 It is important that we do better in

finding treatments for progressive MS. The definition of

EAE in NOD mice as a progressive model appears to be

based on the trajectory of the mean disease scores, but it

is clear from this study that this description is a misrepre-

sentation of the disease course of individual mice. We

have made the case previously that it is essential that

more information such as maximum and minimum score

and number of animals with disease be presented such

that graphs of group disease scores can be better

interpreted.3,68 This, however, ultimately requires access

to the raw data.

Access to the source data is being requested of clinical

trials (www.clinicalstudydatarequest.com) to limit data

hacking and hiding.4,69 Although some journals are

requesting statements that data are accessible, in the elec-

tronic age there is now no barrier to depositing raw data

in workable spreadsheets. This is because a statement of

supply of raw data can be hollow and unenforced. With

deposition of raw data during submission of manuscripts

such data can be interrogated by the reviewers and the

readers. This would thus make the preclinical space more

responsive and reproducible, as poor quality data are less

likely to be submitted or published and can more quickly

be challenged, avoiding the need to replicate studies.3,15,68

This is important as there is sometimes a lack of quality

control in EAE studies where the data from control groups

may be highly inconsistent and appears to sometimes fluc-

tuate depending on whether an experimental-treatment

aims to find an augmentation or inhibition of disease.70,71

This, coupled with poor-reporting, notably of bias reduc-

tion, and data handling that can influence outcomes can

lead to overinterpretation of data that is probably of mar-

ginal biological significance.3,62,67,72,73 Experimental data

lacking quality control are not likely to be reproducible

between laboratories, let alone between other strains/spe-

cies and importantly have translational value for human

studies.3 There have been many translational failures and

only two of the 15 licensed treatments for MS had their

origins in preclinical MS studies, although the majority of

the other licensed treatments have subsequently been

found to reduced EAE severity.15,67,73 It is therefore

important that preclinical studies are used in a way to

reflect the clinical indication, if they are to have transla-

tional value.3,15,73 Given the drive to perform more

humane animal studies, notably to limit severe procedures

in animals, there is no place for science that causes unnec-

essary animal suffering. Learned societies and governments

need to lead journals to universally adopt transparent data

deposition if animal-based translational neuroscience is to

remain a credible part of research.
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