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Abstract

Allergic contact dermatitis (ACD) is a common skin disease that results in significant cost and 

morbidity. Despite its high prevalence, therapeutic options are limited. Allergic contact dermatitis 

is regulated primarily by T cells within the adaptive immune system, but also by natural killer and 

innate lymphoid cells within the innate immune system. The chemokine receptor system, 

consisting of chemokine peptides and chemokine G protein–coupled receptors, is a critical 

regulator of inflammatory processes such as ACD. Specific chemokine signaling pathways are 

selectively up-regulated in ACD, most prominently CXCR3 and its endogenous chemokines 

CXCL9, CXCL10, and CXCL11. Recent research demonstrates that these 3 chemokines are not 

redundant and indeed activate distinct intracellular signaling profiles such as those activated by 

heterotrimeric G proteins and β-arrestin adapter proteins. Such differential signaling provides an 

attractive therapeutic target for novel ACD therapies and other inflammatory diseases.

Allergic contact dermatitis (ACD) is a common skin condition that is associated with lost 

productivity and significant medical cost.1 This review discusses the pathophysiology of 

ACD and describes the role of chemokines and their receptors in ACD. Improved 

understanding and appreciation for the role of chemokines in ACD combined with advances 

in our understanding of chemokine receptor (CKR) signaling highlight the chemokine 

system as an attractive therapeutic target for treating ACD.

Allergic contact dermatitis is mediated by many cell types within the immune system. Major 

cell types that propagate inflammation in ACD include dendritic cells, TH1 and TH17 cells, 

whereas regulatory T cells (Tregs) act to suppress inflammation.2–5 Effector and memory T 

lymphocytes are the key adaptive immune mediators of ACD.6 This differs from irritant 

contact dermatitis (ICD), which is a more rapid and nonspecific inflammatory dermatitis 

brought about by activation of the innate immune system by the proinflammatory properties 

of chemicals or other small molecules.7 Natural killer (NK), NK variant, and innate 

lymphoid cells of the innate immune system are also recognized to contribute to ACD.8,9
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In ACD, dendritic cells, including epidermal Langerhans cells and other dermal dendritic 

cell populations, are critical to sensitizing individuals to foreign antigens. Dendritic cells are 

responsible for antigen capture, transport of antigens to draining lymph nodes, and activation 

of naive T cells. Naive T cells are then expanded into effector and/or memory T-cell 

populations, which are subdivided into 4 main categories: TH1, TH2, TH17, and Tregs. 

Interferon γ signaling10 polarizes T cells toward the TH1 phenotype, which is responsible 

for targeting and destroying intracellular pathogens. It is thought that the TH1 phenotype of 

T cells is the primary mediator of ACD inflammatory responses, but evidence suggests that 

certain haptens, such as fluorescein isothiocyanate and certain metals, also activate TH2 

pathways that regulate the pathophysiology of ACD.11,12 TH9 cytokines can also be 

identified in positive patch test reaction sites and are thought to regulate allergic TH1 

responses.13 TH1-polarized T cells can be distinguished from other T-cell populations by 

distinct surface markers and receptors, including distinct CKRs.14

HAPTEN ACTIVATION OF THE ADAPTIVE IMMUNE SYSTEM INITIATES ACD

Development of ACD requires the activation of T cells that have antigen-specific acquired 

immunity to small molecules known as haptens or contact allergens. Haptens are common in 

many household and workplace materials, as well as in personal care products and jewelry. 

Haptens are most commonly less than 500 d,15,16 more than 100-fold smaller than the 

receptor-protein complexes that recognize them to activate an allergic response. Hapten is 

derived from Greek “to fasten,” and in order to stimulate an allergic response, these small 

molecules must be covalently bound to a protein.17 Exceptions to the requirement of a 

hapten-protein covalent bond include metallic salts, such as cobalt and nickel, which instead 

form an ionic complex with a protein. After a hapten-protein association, this complex can 

then be presented to T-cell receptors via the major histocompatibility complex (MHC) 

encoded by human leukocyte antigen genes. Peptides presented on MHC class I are 

recognized by CD8+ cytotoxic T cells, whereas peptides presented on MHC class II are 

recognized by CD4+ T helper cells. Because haptens can bind to peptides that are presented 

either in the context of MHC class I, MHC class II, or both, they have the potential to 

activate both cytotoxic and helper subsets of T cells.

Although both patient-specific immune responses and hapten-specific features contribute to 

ACD, it remains unclear why some individuals, but not others, become sensitized to specific 

allergens. Wide genetic variation in human leukocyte antigen haplotypes contributes to 

differential allergic responses between individuals through differing affinities of the MHC 

for specific hapten-peptide pairings.18 The amount of antigen necessary for sensitization 

varies considerably between different haptens and is dependent on a variety of factors 

inherent to the molecule, including epidermal permeability, chemical stability, and reactivity. 

For example, loss-of-function mutations in the filaggrin gene that disrupt epidermal integrity 

increase a patient’s risk of nickel contact allergy.19 It is important to note that hapten-peptide 

presentation in the context of MHC to a T-cell receptor (signal 1) is not usually sufficient to 

activate T cells and drive the clonal expansion necessary for allergy development. A 

costimulatory signal (signal 2), such as activation of Toll-like receptor(s) (TLR), is also 

necessary.20 Costimulatory signals, including CD80 and CD86 (also known as B7–1 and 

B7–2, which are the ligands for CD28 and CTLA-4) and CD40 (the receptor for CD40L 
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found on T cells), regulate a complex cross-talk between antigen-presenting cells and T 

cells. The combination of hapten presentation on an MHC of an antigen-presenting cell and 

costimulatory signal(s) can be sufficient for T-cell activation, expansion, and development of 

an allergic response. Toll-like receptor 4 in humans binds nickel, the most common contact 

allergen worldwide. Interestingly, mice do not develop an allergy to nickel, which may be 

due to differences in nonconserved histidine residues in the mouse Tlr4 sequence that 

impairs nickel binding relative to the human sequence.20 The necessity of a costimulatory 

signal, such as those caused by hapten-induced activation of TLRs, explains why not all 

small molecules that are presented to T cells in the context of the MHC induce an allergic 

response.

Given the necessity for a hapten to be attached to a carrier protein to elicit an allergic 

response, it is not surprising that low molecular weight is a common property of haptens. 

Many haptens also have lipophilic and electrophilic residues that increase affinity for 

covalently binding to proteins.21 Some molecules require oxidation or other modifications 

before they are directly reactive. “Pre haptens” form protein-reactive products through 

spontaneous ambient air oxidation, whereas “pro haptens” are oxidized via metabolic 

processes. For example, urushiol, the allergic component of poison ivy, is a “pro hapten” and 

does not stimulate an allergic response. However, once urushiol comes in contact with the 

skin, urushiol is oxidized and can stimulate an immune response. Hapten stability can 

influence patch testing, as the active form of the allergen must be present at a sufficient 

concentration to elicit a measureable reaction.22

T CELLS ARE CRITICAL REGULATORS OF ACD

Allergic contact dermatitis is divided into 3 main phases: sensitization, elicitation, and 

resolution.23 All of these phases are regulated in part by different populations of T cells. In 

the sensitization phase, haptens are collected by resident dendritic cells in the skin. Dendritic 

cells then migrate to the regional lymph nodes and present a hapten-peptide antigen complex 

to naive T cells. Presentation of an antigen (signal 1) and costimulation (signal 2) activate 

and clonally expand antigen-specific CD4+ and CD8+ T cells. This results in the maturation 

and expansion of T-cell populations that specifically recognize the hapten-protein complex 

in the context of MHC. Reexposure to the relevant hapten initiates transmigration of the 

expanded effector memory T-cell population to the dermis and epidermis, resulting in a 

clinical manifestation of ACD at the sites of hapten challenge. Finally, resolution of 

inflammation occurs, which is mediated in part by Treg secretion of interleukin 10, which 

prevents extravasation of circulating effector T cells into inflamed skin.24

In ACD, T cells cause injury to the skin via 3 major mechanisms: (1) producing cytokines 

that induce inflammation, (2) directly killing cells, and (3) activating other immune cell 

populations, such as NK cells and macrophages, which potentiate T-cell–driven 

inflammatory signals and promote tissue destruction. These 3 pathways require the presence 

of effector T cells in the skin.

Following differentiation, T cells acquire the capacity to produce effector cytokines and exit 

the lymph nodes. Egress of T cells from the lymphatic system into the skin occurs in 4 main 
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steps: (1) rolling along the vessel endothelium, (2) activation of integrins on the endothelium 

that slow T-cell migration, (3) firm adhesion of a T cell to the endothelium (stopping the 

cell), and (4) transmigration, or extravasation, of a T cell from the vessel and into the skin. 

Reducing T-cell activation and infiltration improves symptoms and reduces inflammation. 

This can be achieved by blocking T-cell costimulatory signals or by enhancing T-cell 

coinhibitory signals.25 Although monoclonal antibodies that reduce T-cell signaling can 

blunt T cell–mediated responses, they are not commonly used because of cost, burden of 

infusion, and potential adverse effects. Topical or oral steroids, the most widely used 

treatments of ACD, broadly inhibit T-cell function, including T-cell chemotaxis.26,27 

However, corticosteroids are associated with a plethora of adverse effects when used for an 

extended duration. A theoretically more attractive treatment method for ACD is selectively 

inhibiting the egress of activated T cells at the site of inflammation. Notably, chemokines 

mediate the 4 steps critical for T-cell egress from the vasculature to the skin. Specifically 

targeting T-cell signals that promote activation and extravasation has the potential to treat 

ACD without the adverse effects of nonspecific T-cell inhibitors.

THE CKR SYSTEM AS A THERAPEUTIC TARGET FOR ACD

The chemokine system is necessary for all aspects of ACD, from trafficking of antigen-

presenting cells to the lymph node to the recruitment and polarization of cells such as Tregs 

and macrophages to attenuate the inflammatory response. Indeed, chemokines and CKRs 

play a central role in inflammatory diseases, including ACD. Chemokines are small proteins 

that range from approximately 8 to 13 kd in mass. Chemokines are partitioned into 4 main 

families based on the relative location of cysteine within their primary structure. These 

families are termed XC, CC, CXC, and CX3C, respectively, where “C” denotes a cysteine 

and “X” refers to any amino acid.28 Chemokines bind to and activate the CKR subclass of G 

protein–coupled receptors (GPCRs).29 For many CKRs, activation by an endogenous 

chemokine leads to integrin expression, which is necessary for appropriate lymphocyte 

trafficking. In addition, a chemokine gradient is necessary for the transmigration of T cells 

from vessels and into the skin. This transendothelial migration relies on a complex process 

of signaling factors and protein intermediaries promoting chemokine attraction, adhesion, 

and motility. Chemokines regulate a variety of transcription factors, including NF-κB (nuclear 

factor κ/light-chain enhancer of activated B cells)30 and NFAT (nuclear factor of activated T 

cells),31 which are key to T-cell activation and polarization.

As GPCRs, CKRs are attractive drug targets. More than 30% of US Food and Drug 

Administration (FDA)–approved drugs target GPCRs, which have both extracellular and 

intracellular binding surfaces that can interact with small molecules.32 Despite the 

therapeutic potential of CKRs, currently only 3 FDA-approved medications target the CKR 

family: maraviroc (Selzentry or Celsentri) for human immunodeficiency virus (targeting 

CCR5), plerixafor (Mozobil) for hematopoietic stem cell mobilization (CXCR4), and the 

recently approved mogamulizumab (Poteligeo) for mycosis fungoides and Sézary syndrome 

(CCR4). It is interesting to note that, despite the role of chemokines and CKRs in nearly 

every inflammatory process, none of the CKR drugs currently approved by the FDA is for a 

primary inflammatory indication. One common theory about the exceptional challenge of 

therapeutically targeting CKRs relative to other GPCRs is the promiscuity and redundancy 
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of the CKR system. In the CKR system, nearly 50 chemokine peptides bind to more than 20 

CKRs.33 Many CKRs bind multiple endogenous chemokines with similar affinities.34 For 

example, the CKR CXCR3, which is highly expressed in T cells found in ACD skin lesions, 

binds 3 endogenous ligands, CXCL9, CXCL10, and CXCL11. All 3 of these chemokines are 

sufficient to induce chemotaxis of CXCR3-expressing T cells.35 Binding of multiple 

endogenous ligands to the same GPCR is uncommon; most GPCRs display high-affinity 

binding to a single endogenous ligand. Adding to the complexity of CKR signaling, distinct 

contact allergens can activate different cellular responses that result in differential 

chemokine signaling patterns.

BIASED SIGNALING WITHIN THE CHEMOKINE SYSTEM

Previously, the importance of immune cell migration was thought to account for the putative 

ligand redundancy within the chemokine system.36 Although the concernment of correct and 

controlled trafficking has remained unchallenged, it is now appreciated that different 

chemokine ligands for the same receptor can activate divergent intracellular signaling events.
37,38 Such divergent intracellular signaling events at the same receptor suggest distinct 

chemokine roles. This phenomenon of different ligands binding to the same receptor but 

activating distinct signaling pathways is referred to as biased agonism.39 At GPCRs, a 

peptide or small molecule may preferentially signal through a heterotrimeric G protein 

signaling pathway, whereas a different peptide or small molecule may preferentially signal 

through a β-arrestin signaling pathway. Differential activation of these G protein and β-

arrestin pathways can lead to distinct physiological events. Biased signaling, or functional 

selectivity,40 not only offers an alternative explanation for the “redundancy” within the 

chemokine system but also offers a therapeutically attractive method to more selectively 

target promiscuous GPCRs while reducing adverse effects.

CXCR3 AS A THERAPEUTIC TARGET IN ACD

The CXCR3 signaling pathway, mediated by its endogenous chemokines CXCL9 (also 

known as monokine induced by interferon γ), CXCL10 (also known as interferon-induced 

protein 10), and CXCL11 (interferon-inducible T-cell α chemoattractant), is the most 

consistently up-regulated chemokine signaling pathway in ACD. In both human and mouse 

models, CXCR3 is up-regulated in ACD, but not ICD.10,41–44 Interferon γ, the classic TH1-

polarizing cytokine, increases expression of CXCR3 and its ligands CXCL9, CXCL10, and 

CXCL11. This is in contrast to other chemokines, such as CCL2, where application of either 

an irritant or an allergen increases transcript levels. One study examining skin specimens 

after patch testing found that CXCL10 was most abundant and predominantly expressed by 

epidermal cells (mostly keratinocytes), whereas CXCL9 was expressed in both the epidermis 

and the dermis.41 This study demonstrated that more than 50% of infiltrating T cells in ACD 

expressed CXCR3, whereas only 20% of T cells expressed CXCR3 in ICD. Both mouse 

models and humans patch tested with allergens show that CXCL9 and CXCL10 are 

selectively up-regulated in a hapten-specific manner (Table 1). A separate study 

demonstrated that CXCL9, CXCL10, and CXCL11 were time dependently induced in 7 of 8 

nickel-sensitized patients upon nickel sulfate exposure, with peak chemokine expression 

noted 48 hours after nickel elicitation.49
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CXCL9, CXCL10, and CXCL11 have been shown to activate distinct signaling pathways at 

CXCR3 (Fig. 1). For example, CXCL9 acts as a partial agonist at both G protein and β-

arrestin signaling pathways, the 2 appreciated major signaling pathways regulated by 

GPCRs.59 In contrast, CXCL10 acts as a full agonist at the G protein pathway but as a 

partial agonist at the β-arrestin pathway. CXCL11 is a full agonist for both pathways. These 

relative differences in signaling efficacy between the endogenous ligands for CXCR3 

demonstrate that CXCL11 acts as a β-arrestin–biased ligand relative to CXCL9 and 

CXCL10.60–62

This divergence between G protein and β-arrestin signaling induced by different CXCR3 

ligands may have important physiological consequences in ACD. First, patients patch tested 

for contact allergy show coexpression of CXCR3 and β-arrestin in T cells in patch test–

positive, but not negative, skin (Smith et al, personal communication). Unlike the 

endogenous peptide ligands, which are too large to penetrate the skin, such small molecules 

can diffuse through the epidermis and allow for a dissection of the signaling pathways 

critical to ACD. A recent study used small-molecule compounds with an identical affinity 

but divergent G protein and β-arrestin efficacy to study the physiological effects of G protein 

and β-arrestin signaling in ACD. In a mouse model of ACD, topical application of a small-

molecule CXCR3 β-arrestin–biased agonist, but not a CXCR3 G protein–biased agonist, 

potentiated inflammation after elicitation of the allergic response (Smith et al, personal 

communication). The β-arrestin–biased agonist induced greater chemotaxis of effector/

memory T cells relative to the G protein–biased agonist. Differences in chemotaxis effects 

were lost in T cells isolated from β-arrestin knockout mice, and chemotaxis was eliminated 

in T cells isolated from CXCR3 knockout mice, demonstrating the role of β-arrestin 

signaling in CXCR3-mediated chemotaxis. β-Arrestin activation of Akt (a key signaling 

kinase that mediates many cellular functions) downstream of CXCR3 is critical to the 

regulation of T cells, and ongoing preclinical work is examining this pathway as a possible 

therapeutic target for ACD.

Differences in the chemotactic response of CD4+ and CD8+ T-cell populations to CXCR3 

chemokines have also been noted in ACD models, suggesting that different signaling 

transducers could tune the T migratory response of specific T-cell populations. For example, 

CXCL10 is nearly 2-fold more potent in attracting nickel-specific CD8+ T cells relative to 

CD4+ T cells,47 suggesting that the signaling transducers downstream of CXCR3 expressed 

in cytotoxic and helper T-cell populations may also differ. Whereas CXCL9 and CXCL10 

appear necessary for the recruitment of CXCR3-expressing effector memory T cells that 

mediate the inflammatory response in ACD, the role of CXCL11 is less clear. CXCL11 has 

been shown to drive Treg activity in other disease processes,63,64 and mouse models suggest 

that CXCR3 expression on Tregs is essential for the resolution of inflammation.65 Further 

studies are necessary to dissect the physiological roles of biased signaling at CXCR3 and the 

function of T-cell subsets in ACD. Taken as a whole, these data highlight nonredundant roles 

for different CXCR3 endogenous chemokines with distinct signaling pathways and provide 

compelling evidence that biased agonists can impact the clinical utility of drugs targeting 

CXCR3 and likely other CKRs.
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CCR4 SIGNALING IN ACD

CCR4 is expressed on essentially all skin-homing memory T cells and is highly correlated 

with the cutaneous inflammatory T-cell response. CCR4 binds 2 chemokines implicated in 

ACD, CCL17 and CCL22. CCL17 is also known as thymus and activation-regulated 

chemokine. It is expressed constitutively in the thymus and is also produced by 

keratinocytes, cutaneous venules, fibroblasts, and dendritic cells. CCL17 promotes the arrest 

and migration of skin-homing memory T cells and is associated with ACD.66 In a human 

study comparing nickel-induced inflammation with nickel-sensitive normal skin, a 50-fold 

increase in CCL17 protein and a 6-fold increase in CCR4 expression were observed,67 

highlighting the role of this chemokine signaling axis. In addition, CCL17 genes were up-

regulated in the epidermis of ACD lesions, but not in control patients.56 CCR4 is expressed 

to a greater degree on TH2 cells relative to TH1 T cells,68 and the involvement of CCR4 

expressing cells in an ACD lesion likely depends on the populations of T cells activated by 

the specific hapten, which depends on whether it is presented by the MHC class I or II 

pathway. Notably, the canonical TH1-polarizing cytokine interferon γ can increase CCL17 

expression,69 which sensitizes dendritic cells for CCR4-dependent migration to lymph nodes 

under inflammatory conditions. Thus, in addition to mediating T-cell migration, CCL17 

plays an important role in cutaneous dendritic cell migration.70 Of note, serum CCL17 levels 

are also associated with disease activity in atopic dermatitis.71 Interestingly, the role for 

CCR4 in mouse models of ACD appears to differ from that in human samples. Global CCR4 

knockout mice show a paradoxical increase in inflammation,72 similar to a paradoxical 

increase observed in global CXCR3 knockout mice.65 Compensatory changes in both 

immune polarization, as well as the expression of these receptors on multiple cell types 

(such as Tregs that promote resolution of inflammation), confound interpretation but 

nevertheless implicate these receptors in mediating ACD.

CCR4 binds another chemokine, CCL22, which is implicated sporadically in ACD. CCL22 

is also known as macrophage-derived chemokine and is a TH2 response–associated 

chemokine. Transcripts of CCL22 are increased in nickel-induced allergy relative to irritant 

dermatitis. Although ACD is classically considered a TH1 T-cell response, nickel allergy in 

particular can induce a TH2 response,73 and responding T cells up-regulate CCR4, CXCR3, 

and CCR10.74 Similar findings of increased CCL22 and subsequent induction of a TH2-type 

response were observed in mice responding to natural rubber latex challenge.48 Such results 

further highlight that certain haptens can induce allergen-specific chemokine expression 

patterns. CCL17 signals through both G proteins and β-arrestins; however, the degree of 

biased signaling that exists between CCL17 and CCL22 (if any) is currently unknown.

OTHER CHEMOKINES IMPLICATED IN THE PATHOGENESIS OF ACD

Additional chemokines and CKRs noted consistently throughout the literature to be 

correlated or causative with the pathogenesis of ACD are shown in Table 1. We highlight 2 

additional chemokines that are often up-regulated in ACD, CCL5 and CCL11. However, this 

expression is not specific to ACD per se, as inflammatory dermatoses induce CCL5 and 

CCL11 transcription to similar degrees. CCL5, also known as RANTES (regulated on 

activation, normal T-cell expressed and secreted signaling), is implicated in both ICD75 and 
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ACD.53 CCL5 and CXCL8 are induced by the TH2-promoting cytokine tumor necrosis 

factor α and play a role in the initial chemokine response to an allergen.46 A mouse model 

that uses systemic treatment with a modified CCL5 antagonist at both CCR1 and CCR5 

showed reduced inflammation in both irritant and allergic models of cutaneous 

inflammation.54 These findings support the human data suggesting that CCL5-mediated 

CCR1/CCR5 signaling is important in the pathogenesis of ACD but that this signaling 

pathway is not specific for contact allergy. CCL5 induces both β-arrestin and G protein 

signaling at CCR5.76,77

CCL11, also known as eotaxin-1, is a promiscuous chemokine with endogenous agonist 

activity for the CKRs CCR3 and CCR5. Similar to CCL17 and CCL22, the expression is 

regulated by type 2 effector cytokines such as interleukin 4. CCL11 was originally named 

for its ability to stimulate the chemotaxis of eosinophils and basophils through CCR3 and 

CCR5.78 CCL11 has also been found to signal through CCR3 expressed by TH2-polarized T 

cells.79 Although some studies have correlated CCL11 expression with ACD inflammation,
48,49 others have found minimal expression of CCL11 in ACD lesions.10 Inflammation 

induced by different haptens and/or the timing of sample acquisition may explain the 

differences noted between these studies.

TARGETING CKR SIGNALING USING BIASED AGONISTS

By preferentially activating beneficial signaling cascades while reducing activity at 

deleterious pathways, biased agonists are promising therapeutic tools that may not only 

improve clinical efficacy but also reduce adverse effects. The clinical benefit of biased 

agonists has been recently established at other GPCRs. For example, at the μ-opioid GPCR, 

G protein–biased agonists show comparable analgesic efficacy to morphine, but with a 

reduced on-target effect of respiratory depression.80,81 Chemokine receptors are particularly 

attractive GPCRs to target with biased agonists because endogenous chemokines activate 

distinct signaling pathways, such as G proteins and β-arrestins. Endogenous bias at CKRs 

suggests an evolutionarily conserved mechanism to preferentially signal through certain 

signaling cascades, although many of the distinct physiological functions regulated by 

specific signaling pathways remain unknown. With many CKRs binding multiple 

endogenous ligands, traditional antagonists that inactivate all receptor signaling may have 

deleterious effects. For example, broad pathway antagonism may silence beneficial cell 

signaling events in addition to pathologically activated pathways. Precisely targeted drugs, 

such as negative allosteric modulators of the β-arrestin pathway (which would theoretically 

reduce CXCR3-mediated chemotaxis while preserving G protein signaling), might be more 

useful therapeutic tools within the CKR pathway. However, more research is needed to test 

these hypotheses.

CONCLUDING REMARKS

T cells are the primary mediators of inflammation in ACD. The CKR system is a critical 

regulator of T-cell movement, and many different chemokines and CKRs are involved in the 

complex interplay of hapten sensitization, allergy elicitation, and inflammatory resolution. 

Because of the essential role of the CKR system in ACD, it offers an attractive therapeutic 
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target. Chemokine signaling through CXCR3 in particular appears to play an important role 

in the pathophysiology of ACD, although a number of different chemokines and receptors 

are necessary to regulate T cell–mediated inflammation. The specific chemokines involved 

in ACD appear to be both hapten dependent and, in some cases, patient specific. The recent 

discoveries that different chemokines can activate distinct signaling pathways through the 

same receptor suggest that therapeutic blockade or activation of specific signaling pathways 

may offer efficacious treatments for a system that has been notoriously difficult to 

therapeutically target. Chemokine receptor–biased agonists offer an attractive opportunity 

for treating ACD. Given the complex interplay of chemokines in directing immune cell 

movement and function, systemic administration of either small molecules or peptides (such 

as monoclonal antibodies) targeting CKRs is likely to produce undesirable clinical effects. 

Topically applied, small topical small-molecule CKR antagonists, or biased agonists that 

antagonize certain signaling pathways while maintaining activity at other pathways, offer 

attractive options for treating ACD.
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Figure 1. 
Biased signaling at CXCR3. The 3 endogenous ligands for CXCR3–CXCL9, CXCL10, and 

CXCL11–differentially signal through heterotrimeric G protein and β-arrestin pathways. G 

protein and β-arrestin pathways activate distinct signaling cascades that produce different 

physiological effects. In this example, CXCL9 (A) is taken as the reference agonist and 

signals equivalently through G proteins and β-arrestins. B, Relative to CXCL9, CXCL10 

exhibits greater G protein signaling but equivalent β-arrestin signaling. C, CXCL11 exhibits 

greater β-arrestin signaling relative to both CXCL9 and CXCL10. Although β-arrestin 

signaling appears necessary for full-efficacy T-cell chemotaxis, the biological consequences 

of biased signaling are at early stages of investigation and remain to be fully elucidated. 

GRK indicates G protein receptor kinase.
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