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Childhood asthma is a major public health concern and has
significant adverse impacts on the lives of the children and their
families, and on society. There is an emerging link between air
pollution, which is ubiquitous in our environment, particularly in
urban centers, and incident childhood asthma. Here, using data
from 3 successive cohorts recruited from the same 9 communities in
southern California over a span of 20 y (1993 to 2014), we estimated
asthma incidence using G-computation under hypothetical air
pollution exposure scenarios targeting nitrogen dioxide (NO2) and
particulate matter <2.5 μm (PM2.5) in separate interventions. We
reported comparisons of asthma incidence under each hypothetical
air pollution interventionwith incidence under the observed natural
course of exposure; results that may be more tangible for policy-
makers compared with risk ratios. Model results indicated that child-
hood asthma incidence rates would have been statistically
significantly higher had the observed reduction in ambient NO2

in southern California not occurred in the 1990s and early 2000s,
and asthma incidence rates would have been significantly lower
had NO2 been lower than what it was observed to be. For exam-
ple, compliance with a hypothetical standard of 20 ppb NO2 was
estimated to result in 20% lower childhood asthma incidence (95%
CI, −27% to −11%) compared with the exposure that actually
occurred. The findings for hypothetical PM2.5 interventions, al-
though statistically significant, were smaller in magnitude com-
pared with results for the hypothetical NO2 interventions. Our
results suggest a large potential public health benefit of air pol-
lutant reduction in reduced incidence of childhood asthma.
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The impact of pediatric asthma on children, their family mem-
bers, and society is significant. Asthma is one of the leading

chronic diseases among children in the United States, where an
estimated 1 in 12 children has asthma (1). In addition to potential
long-term health impacts, such as chronic lung disease in adulthood
(2), asthma affects children’s school attendance: children with
asthma missed an average of 2.2 school days per year due to asthma
(3). The economic burden of pediatric asthma includes both the
medical costs, an estimated $833 to $1,121 per child annually across
the United States, as well as costs of absenteeism due to missed
school and workdays, which in 2012 totaled $5.9 billion (3).
Childhood asthma has long been identified as a major public

health concern (4, 5), and there is increasing recent evidence
supporting a role for air pollution in the development of asthma.
In a recent systematic review and meta-analysis of traffic-related
air pollution and childhood asthma incidence, Khreis et al. (6)
reported asthma risk estimates of 1.05 (95% CI, 1.02 to 1.07) per
4 μg/m3 nitrogen dioxide (NO2) and 1.03 (95% CI, 1.01 to 1.05)
per 1 μg/m3 particulate matter ≤2.5 μm (PM2.5). These estimates
are generally small, but given the ubiquity of ambient exposure
to NO2 and PM2.5 the implications for health at the population
level may be considerable. In addition, several studies have at-
tributed substantial proportions of childhood asthma (6% to
38% in different localities) to traffic-related air pollution (7–11).

Developments in the last several decades in epidemiologic
methods, along with computational advances, have provided re-
searchers with new analytical tools to strengthen estimation of
causal effects and characterization of the burden of disease (12–
17). Application of causal inference methods in air pollution ep-
idemiology is limited but has been recently increasing (17–21).
With G-computation, 1 of the causal inference methods, we can
estimate the disease outcomes that would have been observed had
exposure been different from what was actually experienced (i.e.,
different counterfactual scenarios) (12–15). In a previous report
from the Southern California Children’s Health Study (CHS), in
which we used data from a 20-y period of air quality improvement,
we observed that declining asthma incidence rates were associated
with declining regional NO2 and PM2.5 concentrations (22). Using
these same data, coupled with the G-computation method (12–
15), a substitution estimator, we now explore what would have
happened to asthma rates in this population under several hypo-
thetical interventions (i.e., counterfactual scenarios) on these 2 air
pollutants. G-computation in the current analysis was performed
with the aim of computing a standardized mean outcome across
the observed covariate distribution, which allows us to obtain
marginal rather than conditional estimates. Comparing health
outcomes under the observed natural course of exposure with
those under counterfactual (i.e., possibly contrary to the fact)
exposures can provide results that may be more intuitive for reg-
ulators compared with risk or rate ratios, commonly used mea-
sures of association in epidemiologic studies. For results to have a
causal, rather than an associative, interpretation, several assump-
tions are required, which we discuss here.

Significance

Asthma is one of the leading chronic diseases among children,
and there is increasing evidence that air pollution plays a role
in the development of this disease. We found that had NO2 or
PM2.5 concentration in 9 southern Californian communities
been lower than observed in the 1990s and early 2000s, there
would have been a corresponding reduction in childhood
asthma incidence, with larger effect estimates for NO2. Our
findings may have implications for air quality regulations, as all
communities examined in this study had ambient concentra-
tions well below the current US Environmental Protection
Agency annual standard of 53 ppb for NO2.
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Results
Among the 4,140 children in this study, the mean age at study
entry was 9.5 y, and there was a fair balance of boys (47%) and
girls (53%) overall and in each of the 3 cohorts from the CHS
from 1993 to 2001, 1996 to 2004, and 2006 to 2014 (SI Appendix,
Table S1). Participants were followed for an average of 5.9 y to
identify 525 incident asthma cases over the study period. Over
the course of the study during which these 3 cohorts were
recruited, NO2 and PM2.5 concentrations declined in the 9 study
communities based on community-specific central-site monitor-
ing. In 1993, the mean NO2 concentration was 24.0 ppb (range,
8.0 to 41.7 ppb), which declined to 21.7 ppb (range, 7.6 to 38.0
ppb) in 1996, and then to 17.8 ppb (range, 7.2 to 30.9 ppb) in
2006. Similarly, the mean PM2.5 concentration declined from
20.8 μg/m3 (range, 8.9 to 32.9 μg/m3) in 1993 to 19.8 μg/m3

(range, 9.0 to 31.6 μg/m3) in 1996, and then to 13.7 μg/m3 (range,
7.1 to 23.6 μg/m3) in 2006. The distributions of NO2 and PM2.5
under the 7 hypothetical interventions for each pollutant are
shown in Figs. 1 and 2, as well as SI Appendix, Table S2. The
same 9 concentrations (for the 9 communities) are repeated 3
times (for the 3 cohorts) under the first hypothetical in-
tervention, where 1993 concentrations levels are maintained. As
expected, the mean air pollutant concentrations under this in-
tervention are higher than observed mean concentrations be-
cause we did not allow levels to decline. Under hypothetical
interventions in which we lowered air pollution, either by per-
centage reductions (−10%, −20%, and −30%) or threshold in-
terventions (30, 20, and 10 ppb for NO2; 15, 12, and 10 μg/m3 for
PM2.5), the mean and range of air pollutant concentrations were
lower for these scenarios than the natural course of exposure (i.e.,
observed exposure). For the threshold interventions, the maxi-
mum possible air pollutant concentrations were the threshold
values (i.e., hypothetical air quality standards); therefore, multiple
communities had the same concentration value, as seen in Figs. 1
and 2. The numbers of participants and cohort-communities (3
cohorts each with 9 communities equates to a total of 27 cohort-

communities) affected by the interventions are displayed in SI
Appendix, Table S2.
Estimates of the effect of the hypothetical NO2 and PM2.5 in-

terventions on asthma incidence rates along with their 95% CIs
are displayed in Table 1 and Fig. 3. Had NO2 concentrations
remained at their 1993 levels, and the observed decline not oc-
curred, the asthma incidence rate among our study population was
estimated as 19.3% higher (95% CI, 8.9% to 31.6%) compared
with the natural course. Had all communities experienced NO2
concentrations 30% lower than levels observed, we estimated the
asthma incidence rate would have been 27.6% lower (95% CI,
−39.3% to −14.6%) compared with the natural course. Statisti-
cally significant reductions in asthma incidence rates were ob-
served for more moderate percentage reduction in NO2, although
the effect estimates were smaller, as would be expected. The
asthma incidence rate would have been 39.2% lower (95% CI,
−50.4% to −23.3%) in our study population compared with the
natural course, had there been complete adherence to a hypothetical
air quality standard of 10 ppb NO2. For a more moderate hypo-
thetical air quality standard of 20 ppb NO2, incidence rates would
have been 19.6% lower (95% CI, −27.0% to −10.7%) compared
with the natural course. Results were not markedly different in
sensitivity analyses with additional covariates in the prediction model.
Estimates for hypothetical interventions on PM2.5, while

reaching statistical significance, were smaller compared with the
results for NO2. Had PM2.5 concentrations remained at their 1993
levels, and the observed decline not occurred, the asthma in-
cidence rate among our study population would have been 9.8%
higher (95% CI, 0.9% to 20.4%) compared with the natural
course. Had all communities experienced PM2.5 concentrations
30% lower than levels observed, the asthma incidence rate would
have been an estimated 12.8% lower (95% CI, −23.9% to −1.3%)
compared with the natural course of exposure.
Parameter estimates from the main air pollution models were

robust in sensitivity analyses, as shown in SI Appendix, Table S3.
Restricting to subjects with longer follow-up and adjusting for
additional covariates did not markedly change the point estimates.

Table 1. Estimated effects of hypothetical air pollutant interventions on asthma incidence rates in the CHS, 1993
to 2014

Air pollutant intervention
Asthma incidence

rate (95% CI)
Absolute incidence rate
difference (95% CI)

Percentage incidence rate
difference (95% CI)

NO2

Natural course 21.6 (19.6 to 23.3) Reference Reference
Remain at 1993 levels 25.8 (22.7 to 29.3) 4.2 (1.9 to 6.9) 19.3% (8.9% to 31.6%)

Percentage reduction
10% 19.4 (17.4 to 21.4) −2.3 (−3.5 to −1.1) −10.5% (−16.0% to −5.2%)
20% 17.4 (14.9 to 20.0) −4.2 (−6.3 to −2.1) −19.6% (−28.9% to −10.1%)
30% 15.7 (12.8 to 18.8) −6.0 (−8.6 to −3.1) −27.6% (−39.3% to −14.6%)

Hypothetical standards
30 ppb 20.1 (18.2 to 22.0) −1.6 (−2.4 to −0.8) −7.3% (−11.2% to −3.5%)
20 ppb 17.4 (15.2 to 19.9) −4.2 (−5.9 to −2.3) −19.6% (−27.0% to −10.7%)
10 ppb 13.2 (10.5 to 16.8) −8.5 (−11.0 to −5.0) −39.2% (−50.4% to −23.3%)

PM2.5

Natural course 21.6 (19.6 to 23.3) Reference Reference
Remain at 1993 levels 23.7 (20.9 to 26.8) 2.1 (0.2 to 4.4) 9.8% (0.9% to 20.4%)

Percentage reduction
10% 20.6 (18.6 to 22.7) −1.0 (−1.9 to −0.1) −4.5% (−8.9% to −0.4%)
20% 19.7 (17.3 to 22.2) −1.9 (−3.6 to −0.2) −8.8% (−16.8% to −0.9%)
30% 18.9 (16.0 to 21.9) −2.8 (−5.2 to −0.3) −12.8% (−23.9% to −1.3%)

Hypothetical standards
15 μg/m3 19.2 (16.7 to 21.9) −2.4 (−4.3 to −0.2) −11.0% (−20.1% to −1.2%)
12 μg/m3 18.4 (15.5 to 21.7) −3.2 (−5.7 to −0.3) −14.9% (−26.5% to −1.6%)
10 μg/m3 17.8 (14.6 to 21.5) −3.8 (−6.6 to −0.4) −17.6% (−30.7% to −1.9%)

Estimated incidence rates (cases per 1,000 person-years) and 95% CIs based on multilevel Poisson regression models with an offset
term for person-time, a random effect for cohort nested within community, and adjusted for community, age, sex, ethnicity, race,
presence of gas stove in the home, participation in team sports, and baseline year mean ambient temperature.
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Results for time-varying air pollution exposure, based on Cox
proportional hazards models with no random effect, were slightly
attenuated compared with the main models. There was no evi-
dence of heterogeneity of results by sex, ethnicity, race, exposure
to smoking in utero, exposure to secondhand smoke, parental
education, parental history of asthma, or high/low 1993 air pol-
lution level, as demonstrated in SI Appendix, Table S4.

Discussion
There is mounting evidence that exposure to air pollution causes
childhood asthma, but there has been limited assessment of the
benefits of reducing exposure. We used G-computation tech-
niques to estimate the effect of counterfactual scenarios of the
pollutant exposure on the rate of asthma incidence in participants
of the Southern California Children’s Health Study. Had regional
NO2 not declined in the 1993 to 2006 period, estimates of asthma
incidence rates in this study population would have been almost
20% higher than what was observed, quantifying a positive pub-
lic health impact of air quality improvements in the southern
California region. Furthermore, had the NO2 concentration been
lower than observed, asthma incidence rates would have been
markedly lower. Similar results were estimated for hypothetical
interventions on PM2.5, although estimated reductions in asthma
incidence were not as large as those estimated for NO2.
Several studies have examined the burden of pediatric asthma

attributable to air pollution (7–11). All have focused specifically
on traffic-related air pollution, and all but 1 of these studies used
a crude proxy, living within close proximity to a major roadway,
as the exposure. Using a full-chain atmospheric dispersion model
and a pollutant-specific meta-analytic exposure–response func-
tion, Khreis et al. estimated that 18% (95% CI, 8% to 24%) of
all childhood asthma cases in Bradford, England, were attribut-
able to NO2; this estimate increased slightly when exposure was
instead based on a land-use regression model, to 24% (95% CI,
11% to 29%). The remaining studies evaluated near-roadway air

pollution, which we did not evaluate in the current study. Three
studies have examined asthma burden in southern California lo-
calities. In 2008, Kunzli et al. estimated 9.3% of all asthma cases in
Long Beach to be attributable to living with 75 m of a busy road
(11). The following year, Perez and colleagues reported a similar
9.2% (95% CI, 8.6% to 10.3%) in Long Beach and 6.1% (95% CI,
5.5% to 6.6%) in Riverside of asthma cases attributable to traffic
proximity (8). A later study found that 8% (95% CI, 2% to 16%)
of asthma cases in Los Angeles County was attributable to resi-
dential proximity to a major roadway, and when dispersion-
modeled near-roadway NOX was used instead for exposure,
this estimate increased slightly to 12% (95% CI, 2% to 20%)
(7). The authors also investigated the effect of a 20% decrease in
the proportion of children currently living within 75 m of a major
roadway and reported a 2% reduction (95% CI, −4% to −0.3%)
in asthma cases. In a study of 10 European cities, 14% (95% CI,
3% to 25%) of childhood asthma cases were attributable to near-
road traffic-related pollutants. All the aforementioned studies,
with the exception of Khreis et al., relied on the same odds ratio
linking living <75 m of a major road to prevalent asthma (23). We
cannot directly compare results from these attributable risk
models to the current study’s results, since here we compare the
natural course of exposure to hypothetical nonzero air pollution
levels rather than no exposure. Furthermore, in contrast to these
past studies, which focused exclusively on traffic-related air pol-
lution, either based on a binary proxy or modeled exposure, the
current study examined the impact of regional air pollutant con-
centrations. This may, however, be a reason why our results for
NO2 seem generally larger compared with these previous studies.
The study has several strengths. First, we use data from a well-

established, long-term prospective cohort study of cardiopul-
monary outcomes in children. Second, using the rich data
available in the CHS, we are evaluating the impact of air pol-
lution on asthma incidence rather than on prevalence, which
better captures the etiologic relation. Third, the exposure assessment
is based on quantitative data from ambient air pollutant monitoring

Fig. 1. Distribution of nitrogen dioxide (NO2) annual average concentrations among the 27 cohort-communities under the natural course of exposure and 7
hypothetical exposure interventions.

Fig. 2. Distribution of particulate matter ≤2.5 μm (PM2.5) annual average concentrations among the 27 cohort-communities under the natural course of
exposure and 7 hypothetical exposure interventions.
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stations in each of the study communities that have been contin-
uously measuring regional air pollution since the inception of the
first CHS cohort (24, 25). Fourth, using a natural experiment
design leveraging improvements in air quality during the study
period, regional pollutant effects were identified based on changes
in air pollutant levels and asthma rates in different cohorts within
each community, which controls for spatial confounding. As a final
strength, we utilized a causal inference method, G-computation,
to estimate asthma incidence rates under several hypothetical air
pollution scenarios, allowing for estimates of the answer to the
intuitive question, “How would the incidence rate of asthma in our
participants change if we could modify their exposure to regional
NO2 (or PM2.5)?” Often in epidemiology, the choice of measure
of association is dictated by the regression model employed (e.g.,
odds ratios from logistic regression for binary outcomes) rather
than the research question of interest (26). In the current study,
instead of simply presenting conditional incidence rate ratios for a
1-unit change in air pollution exposure, we chose to present a
population intervention measure that estimates asthma incidence
rates had exposure been, for example, no higher than 30 ppb NO2.
This presentation of the results moves beyond the report of
point estimates and may improve the translation of this study to
policymakers (26).
This study has limitations. First is that we used baseline, rather

than time-varying, community-level annual average pollutant
concentration as the exposure. Although we present a sensitivity
analysis using time-varying exposure fitted with Cox proportional
hazards regression, this was not used as the model basis for our
G-computation approach because it was not possible to obtain
estimates with our multilevel modeling approach (e.g., when we
included a fixed effect for community and a random effect of
cohort nested within community). Point estimates from the time-
varying Cox models were similar, although slightly attenuated,
compared with those from the main model. This may be due to
missing air pollution data across time, which were imputed and
may have resulted in more exposure misclassification bias com-
pared with the use of baseline exposure. Another consideration
is the restriction to a 1-y lag on these time-varying data due to
limited study central site monitoring data before 1993, which
may not capture the most relevant time window of exposure. For
these reasons, baseline community-level air pollution was used as
the exposure metric. Second, these effect estimates are specific
to this population, particularly because the interventions we
employed, and their contrast with the natural course, are depen-
dent on the observed exposure levels for the 27 cohort-
communities (e.g., the estimated effect of a 10% reduction in
NO2 will depend upon the starting concentrations: 50 ppb de-
creased to 45 ppb would have a different effect estimate com-
pared with 20 ppb decreased to 18 ppb). Although the exposure
distribution comes from southern California communities,
these exposures reflect almost the full range of exposure ob-
served across the United States. Results are also dependent on
the covariate distribution in our study population and may affect
the generalizability of these findings, which is a concern in any
epidemiologic study. We did, however, examine potential inter-
actions and did not find results to differ by any subgroups, lending

more plausibility for the generalizability of the results. For ex-
ample, there is a larger proportion of Hispanic children in the
study population compared with the US child population, but
there was no significant interaction between Hispanicity and NO2,
indicating results are expected to be similar between Hispanics
and non-Hispanic children. Last, there is a possibility of outcome
misclassification bias due to a reliance on a questionnaire-based
assessment of physician-diagnosed asthma in the definition of in-
cident asthma, rather than a clinical evaluation of asthma. In
validation studies of questionnaire-based asthma diagnosis in
children, using similar questions to those in the present study,
specificity compared with a clinical assessment as the reference
standard was 87% (27), and compared with a previously validated
health claims data diagnosis as the standard was 96% (28).
The method used in this study allowed for the estimation of the

effect on asthma incidence of several different air pollutant in-
tervention scenarios. For these findings to be interpreted as causal,
several assumptions are required (12, 14). These assumptions are
not exclusive to causal inference methods; most are common to
many if not all empirical analytic approaches, but often are not
expressly evaluated in the literature. By explicitly considering them
here, we provide important information to the reader as to the level
of interpretation of these results. We assumed exchangeability,
which implies adequate control for confounders and selection
bias (29, 30). Our multilevel modeling approach with an addi-
tional fixed-effect for community means we are making within-
community (over time) comparisons that may help control for
unmeasured community-level (i.e., spatial) confounding. Adding
more individual-level covariates to the model did not markedly
change effect estimates. Bias may be induced when selection of
participants is informed by both the exposure and outcome of in-
terest, thereby distorting the relation between exposure and outcome
(31). Previous analysis of this cohort found that while participation
rates varied by community (range, 65% to 86%), they did not cor-
relate with either pollution concentrations or disease prevalence
(25), indicating selection bias may not be of major concern.
The assumption of counterfactual consistency asserts that exposure

levels correspond to a well-defined intervention (32). While exposure
to a specified level of NO2 or PM2.5 is, arguably, well-defined, exactly
how a community changes their air pollution levels may affect asthma
incidence through pathways besides air pollution. Which and how
upstream factors are targeted to reduce air pollutant levels may have
ramifications for the health outcome of interest, which would violate
the counterfactual consistency assumption. For example, if efforts
were made to switch from vehicles to biking and walking for all short-
distance trips, air quality would improve, but the population’s physical
activity would also improve, which may lead to lower childhood
obesity and subsequently less asthma (33). There are, however,
few established modifiable risk factors for incident childhood
asthma, beyond exposure to tobacco smoke and possibly obesity
(33–35), meaning few other pathways through which the exposure
intervention can affect the outcome. Nonetheless, we assume that
the specific intervention that changes the air pollutant concen-
tration does not matter, only that it was changed.
We also assume positivity, which means that in every con-

founder subgroups, all exposure values must be experienced

A B

Fig. 3. Estimated asthma incidence rate (cases per
1,000 person-years) and 95% CIs based on G-computation
for nitrogen dioxide (NO2) (A) and particulate matter
≤2.5 μm (PM2.5) (B), separately, under the natural
course of exposure and 7 hypothetical pollutant
interventions.
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(36). Because we include a community as a confounder in our
model, there are violations of the positivity assumption because
not all communities can experience all levels of the exposure,
particularly very high or very low concentrations. This is why we
employed dynamic interventions that imposed plausible hypo-
thetical exposure level based on the community’s observed air
pollutant level (e.g., remaining at observed 1993 levels, a per-
centage reduction from observed levels, etc.) and chose to contrast
the estimated standardized mean outcomes under the interven-
tions with the mean outcome under natural course of exposure
(i.e., observed exposure), which is well-supported by the data. The
dynamic intervention assigns exposure in response to a subject’s
observed air pollution value, thereby assigning counterfactual ex-
posures that were possible/realistic given a subject’s covariate
values (37). In this manner, G-computation is less affected by vi-
olations of the positivity assumption (13). Counterfactual out-
comes among some restricted range of possible values of air
pollution concentration weakens the positivity assumption by re-
quiring sufficient variability only in the assignment of treat-
ment levels within the target range (37). It is important to note,
however, that among the examined hypothetical interventions, the
threshold-based (dynamic) interventions, particularly those with
lower thresholds, are more susceptible to bias due to positivity
violations. Our estimator, the air pollution-asthma model, allows
for the G-computation estimator to extrapolate based on covariate
strata with sufficient exposure levels, such as low concentrations of
air pollution. This extrapolation in the G-computation depends
greatly on the underlying Poisson model, and effect estimates will be
biased if this model is misspecified (37).
In addition, we assumed a correctly specifiedmodel.Misspecification

of the underlying Poisson model would produce biased results.
Variations of the model produced similar results, and the model-
based prediction of the natural course almost exactly estimates the
observed incidence rate (modeled 21.649 compared with observed
21.646 per 100,000 person-years), both indicating no gross model
misspecification. Nevertheless, this evidence cannot completely
rule out model misspecification (38). In addition, while this model
may adequately capture the exposure–response relationship at this
range of air pollution concentrations, it should not be extended to
concentrations beyond the support of the data. With this analytical
method, we would also have to assume it is the pollutant itself (i.e.,
NO2 or PM2.5) that is the causal agent. We know, however, that air
pollutants are neither produced nor experienced in isolation: they
are complex, correlated mixtures, and a single pollutant often serves
as an index of these mixtures. Therefore, we conceptualize this as-
sumption to mean the causal agent is captured by the processes
represented by the quantitative measure of the air pollutants.

Conclusion
Our study demonstrated a large potential public health benefit of
air pollution reduction, both realized and hypothetical im-
provements, in reduced asthma incidence in children. Because
regional air pollution levels are experienced by all community
members, albeit with some variation in individual exposure due
to differences in behavior and microenvironments’ concentra-
tions, shifts in exposure at the population level have the potential
for large benefits in reduced incidence rate of an outcome (39).
These findings were observed in communities at NO2 concen-
trations well below the current US Environmental Protection
Agency annual standard of 53 ppb (40), indicating that there may
be public health benefits in reevaluating air quality standards.

Materials and Methods
The CHS is a cohort study of cardiopulmonary outcomes in children recruited
from public schools starting in 1993 in 12 southern California communities.
Data from 3 consecutive cohorts of the CHS, recruited in 1993, 1996, and 2002,
are used in this analysis. In the parent study, follow-up for 2 of the cohorts began
in fourth grade (1993 and 1996), while follow-up for the most recent cohort
began in K/first grade (2002), and all cohorts were followed until graduation
from high school. To have comparable data between the 3 cohorts for the
current analysis, we restricted analysis to the 9 communities participating in all 3

cohorts and for the 2002 cohort set follow-up to begin in 2006, the year when
most participants in this cohort were in the fourth grade. These 3 cohorts are
hereafter referred toas the 1993 to2001, 1996 to 2004, and2006 to 2014 cohorts.
Of the 6,858 participants, we excluded 892 (13.0%) with prevalent physician-
diagnosis asthma at baseline and 1,348 (19.7%) with missing baseline asthma
status, and an additional 478 (7.0%) had no follow-up questionnaires, leaving a
sample of 4,140 children for analysis. All parents or guardians of participating
childrenprovidedwritten informed consent. The studyprotocolwas approvedby
the Institutional Review Board of the University of Southern California.

Incident asthma was defined as first reported physician-diagnosed case of
asthma on an annual questionnaire during follow-up (i.e., first time answered
“yes” to the question “Has a doctor ever diagnosed this child as having
asthma?” when parent or guardian asked, or “Has a doctor ever said you have
asthma?” when child asked). Date of diagnosis was imputed by using the mid-
point between the date of the questionnaire onwhich asthma diagnosis was first
reported and the date of the questionnaire before reporting asthma status.

Regional Air Pollutant Exposure. Since the start of the CHS study, air pollutant
monitoring stations in each study community have been continuously
measuring regional air pollutants, including NO2 and PM2.5, as previously de-
scribed (24, 25). We calculated community-specific annual average concen-
trations in the baseline year for each cohort (i.e., 1993, 1996, and 2006) based
on 24-h averages for NO2 and PM2.5. Data were not available for 1993 on PM2.5

in any community; therefore, 1994 concentrations were used instead.

Covariates. In all models we included child’s sex, age, ethnicity, race, partici-
pation in team sports, and presence of a gas stove in the home, as reported by
the parent on the baseline questionnaire, as well as community-specific average
temperature for the cohort-baseline year, based on data collected at monitor-
ing stations. Additional variables collected at baseline used in sensitivity anal-
yses include exposure to maternal smoking in utero, exposure to secondhand
smoke, parental education, parental income, child’s insurance status, pests and
pets in the home, carpet in the child’s bedroom and parental history of asthma.

Statistical Analysis. We used G-computation, an imputation-based causal
inference method, to estimate the potential effects of hypothetical inter-
ventions on regional NO2 and PM2.5 concentrations (separately). G-computation
builds on a regression model of the outcome as a function of exposure and
covariates to predict the outcome distribution under different, and possibly
contrary to the fact (i.e., counterfactual), exposure scenarios (12–15). In the
present analysis, this allowed us to ask, “What would have been the incidence
rate of asthma if participant exposure to regional NO2 (or PM2.5) had been
higher or lower?” To estimate the marginal asthma incidence rate under the
natural course of exposure (no intervention) and hypothetical interventions we
estimated the parameter coefficients for the observed exposure and covariate
using a Poisson model with asthma incidence rates as the outcome, used the
estimated coefficients to predict the asthma incidence rates in a Monte Carlo
sample of 10,000 study participants under the natural course of exposure and
the hypothetical exposure interventions, calculated the marginal asthma inci-
dence rate for each exposure scenario (i.e., the natural course and interventions)
by averaging the predicted outcome across participants, and contrasted the
averaged outcomes to estimate the population-standardized asthma incidence
rate difference. Confidence intervals were estimated by bootstrapping with
replacement 10,000 times (41). We contrasted the hypothetical interventions
with the natural course, using incidence rate differences.

The regression model used in step 1 above was developed as part of a prior
study of regional air quality and asthma incidence in the CHS (22). This model
was a multilevel Poisson regression of asthma incidence on regional air
pollutant exposure and covariates with an offset term for person-time
(natural log-transformed) and a fixed effect for community. Regional air
pollutant exposure was defined as the community-level annual average
concentration of said pollutant in the baseline year for each cohort. Using
the directed acyclic graph shown in SI Appendix, Fig. S1 and directed acyclic
graph theory (42), we decided a priori on a set of variables considered to be
sufficient for confounding adjustment. The covariates were baseline age
(continuous), sex (female, male), ethnicity (Hispanic, Non-Hispanic), race
(Asian/Pacific Islander, Black, Native American Indian/other, White, mixed),
presence of gas stove in the home (yes, no), physical activity defined here as
team sports participation (yes, no), and community-specific mean ambient
temperature for baseline year (continuous). In addition, to account for
clustering effects of children by cohort and community, a random effect for
cohort nested within community was included. Follow-up time was calculated
as the number of days between joining the cohort (i.e., baseline questionnaire
date) and either imputed date of asthma diagnosis or date of last completed
questionnaire (either 12th grade or earlier if lost to follow-up), whichever
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came first. All hypotheses were tested assuming a 0.05 significance level and a
2-sided alternative hypothesis. All analyses were conducted using SAS software
version 9.4 (SAS Institute, Cary, North Carolina).

Interventions Examined. For each pollutant, we examined 3 sets of inter-
ventions (i.e., counterfactual scenarios): maintain air pollutant concentrations at
their community-specific 1993 levels, thehighest levels in the studybeforeobserved
air pollution declines in the 1990s and early 2000s; an overall percentage reduction
in pollutant concentration (−10%, −20%, and −30%); and a dynamic intervention
using a threshold whereby only communities with a pollutant concentration
above the threshold were “intervened” upon and set to the threshold value (30,
20, and 10 ppb for NO2; 15, 12, and 10 μg/m3 for PM2.5). We considered this last
intervention to be dynamic because the threshold rule depends on the value of
observed community-specific pollutant concentration, in contrast to a static in-
tervention, which does not depend on the value of other variables (43). The first
intervention examined what would have happened to rates of asthma incidence
had air pollution not improved over the course of the study. Interventions 2 and 3
examined what would have happened to rates of asthma incidence had air pol-
lution been lower than what was observed, with intervention 3 more closely
mimicking scenarios of compliance with hypothetical air quality standards. Single-
pollutant interventions were selected to be studied, as these most closely align
with air quality standards, which are set for 1 pollutant at a time (e.g., US Envi-
ronmental Protection Agency National Ambient Air Quality Standards).

Sensitivity Analysis. To evaluate the robustness of the main models, the fol-
lowing sensitivity analyseswere conducted: restricting to participantswith longer
follow-up (followed to year 5 or later, or to year 7 or later), including additional
covariates to control for potential confounding, and using a time-varying air
pollution exposure variable. This last sensitivity analysis was conducted using Cox
proportional hazards regression, based on the same modeling approach as the

main fully adjusted model, but with no random effect. No apparent violation of
the underlying assumption of proportional hazards was detected based on in-
clusion of a time-dependent covariate for air pollution. Due to missing air pol-
lution data for PM2.5 in all communities in 1993 and in 1 community in 2005, and
no air pollution data for PM2.5 or NO2 after 2011, air pollution for these years
was imputed by extending the closest years’ air pollution data (i.e., 1994 for
1993, 2006 for 2005, and 2011 for 2012 and later years). Heterogeneity of the air
pollution point estimates were assessed by comparing nested models using a
partial likelihood ratio test with and without interaction terms for the following
variables: sex, ethnicity, race, exposure to smoking in utero, secondhand smoke
exposure, parental education, parental history of asthma, and designation of
high versus low air pollution community, based on whether community was
above or below corresponding median annual mean concentration in 1993.

Data Availability. Due to the limitations in the original consent forms and HIPAA
requirements, the data from the CHS cannot be freely available in the manuscript,
supplemental files, or in a public repository. However, we are committed to sharing
the data and results acquired as part of this study. The CHS has a process in place for
data sharing that involves approval of proposals by a Data Sharing Committee.
Investigatorswhowant access to datawill be required to submit a researchprotocol,
whichwill be reviewedby theCHSHealthData Release Committee and theUSC IRB.
Please send requests to access this dataset to Dr. Frank Gilliland (gillilan@usc.edu).
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