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In eukaryotes, N-degron pathways (formerly “N-end rule path-
ways") comprise a set of proteolytic systems whose unifying fea-
ture is their ability to recognize proteins containing N-terminal
degradation signals called N-degrons, thereby causing degrada-
tion of these proteins by the 26S proteasome or autophagy.
Gid4, a subunit of the GID ubiquitin ligase in the yeast Saccharo-
myces cerevisiae, is the recognition component (N-recognin) of the
GID-mediated Pro/N-degron pathway. Gid4 targets proteins by
recognizing their N-terminal Pro residues or a Pro at position 2,
in the presence of distinct adjoining sequence motifs. Under condi-
tions of low or absent glucose, cells make it through gluconeogenesis.
When S. cerevisiae grows on a nonfermentable carbon source, its
gluconeogenic enzymes Fbp1, Icl1, Mdh2, and Pck1 are expressed
and long-lived. Transition to a medium containing glucose inhibits
the synthesis of these enzymes and induces their degradation by
the Gid4-dependent Pro/N-degron pathway. While studying yeast
Gid4, we identified a similar but uncharacterized yeast protein
(YGR066C), which we named Gid10. A screen for N-terminal peptide
sequences that can bind to Gid10 showed that substrate specificities
of Gid10 and Gid4 overlap but are not identical. Gid10 is not expressed
under usual (unstressful) growth conditions, but is induced upon star-
vation or osmotic stresses. Using protein binding analyses and degra-
dation assays with substrates of GID, we show that Gid10 can
function as a specific N-recognin of the Pro/N-degron pathway.
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ellular proteolytic systems mediate selective destruction of
misfolded, aggregated, and otherwise abnormal proteins, and
also regulate the levels of proteins that evolved to be short-lived
in vivo. Proteins that fold too slowly, misfold, or do not satisfy
other requirements of quality control, are also selectively elimi-
nated. Two multithreaded mechanisms, the ubiquitin (Ub)-
proteasome system (UPS) and autophagy-lysosome pathways,
mediate the bulk of intracellular protein degradation, with mo-
lecular chaperones playing specific roles in both systems (1-20).
The UPS consists of pathways that have in common at least
2 kinds of enzymes: Ub ligases (E2-E3 enzymes) and deubiquitylases
(DUBs). Proteins are recognized by a Ub ligase through their
cognate degradation signals (degrons). In the next step, a Ub
ligase conjugates the 9-kDa protein Ub to an amino acid resi-
due of a targeted substrate (usually an internal Lys residue),
forming, in most cases, a substrate-linked poly-Ub chain. The
functions of DUBs include deubiquitylation of Ub-conjugated
proteins (2, 9, 11, 21-27). The 26S proteasome, a multisubunit
ATP-dependent protease, recognizes a substrate-linked poly-
Ub chain, binds to it, and unfolds the target protein through
activities of proteasome’s ATPases. The target protein is then
processively destroyed by the protease part of the 26S protea-
some, yielding short (~10-residue) peptides (20, 28-35).
N-degron pathways (previously called “N-end rule pathways”)
are a set of proteolytic systems whose unifying feature is their ability
to recognize proteins containing N-terminal (Nt)-degradation sig-
nals called N-degrons, thereby causing the degradation of these
proteins by the 26S proteasome and/or autophagy in eukaryotes,
and by the proteasome-like CIpAP protease in bacteria (2, 20, 25,
36-75). (N-degron pathways are Ub-dependent in eukaryotes but
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not in bacteria.) The main determinants of an N-degron comprise a
destabilizing Nt-residue of a protein substrate, an internal Lys res-
idue (or residues) that acts as the site of polyubiquitylation, and a
conformationally disordered region that mediates the start of
processive degradation (2, 37).

Initially, most N-degrons are pro-N-degrons. They are con-
verted to active N-degrons either constitutively (e.g., during the
emergence of a protein from a ribosome) or conditionally, via
regulated steps. Among the routes to N-degrons are cleavages of
proteins by nonprocessive proteases (e.g., by caspases, calpains,
separases, or aminopeptidases) that act as initial targeting
components of N-degron pathways by cleaving a prosubstrate
protein and generating a destabilizing neo-Nt-residue in a resulting
C-terminal (Ct) fragment (20, 40, 57, 70, 71, 76-81). A different and
mutually nonexclusive route to N-degrons is through enzymatic Nt-
modifications of proteins, including Nt-acetylation, Nt-deamidation,
Nt-arginylation, Nt-leucylation, or Nt-formylation of Nt-residues.
Recognition components of N-degron pathways, called N-recognins,
are E3 Ub ligases or other proteins (e.g., bacterial ClpS or mam-
malian p62) that can target specific N-degrons (2, 14, 41). In cognate
sequence contexts, all 20 amino acids of the genetic code can act as
destabilizing Nt-residues (Fig. 1). Consequently, a number of cel-
lular proteins (and their protease-generated Ct-fragments as well)
are either constitutively or conditionally short-lived N-degron
substrates.

Eukaryotic N-degron pathways comprise the Arg/N-degron
pathway (it recognizes, in particular, specific unacetylated Nt-
residues); the Ac/N-degron pathway (it recognizes, in particular,
the N®terminally acetylated [Nt-acetylated] Nt-residues); the
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Pro/N-degron pathway (it recognizes, in particular, the Nt-Pro
residue or a Pro at position 2, in the presence of distinct adjoining
sequence motifs); and the fMet/N-degron pathway (it recognizes
Nt-formylated cellular proteins) (Fig. 1) (2, 20, 38, 41-45).

Regulated degradation of proteins and their natural fragments
by N-degron pathways (Fig. 1) has been shown to mediate a
multitude of processes, including the sensing of heme, oxygen,
and nitric oxide; the control of subunit stoichiometries in protein
complexes; the elimination of misfolded proteins and of proteins
retrotranslocated to the cytosol from other compartments; the
repression of neurodegeneration and regulation of apoptosis; the
regulation of DNA repair, transcription, replication, and chro-
mosome cohesion/segregation; the regulation of chaperones, G
proteins, cytoskeletal proteins, autophagy, gluconeogenesis, pep-
tide import, meiosis, circadian rhythms, fat metabolism, cell mi-
gration, immunity (including inflammation), the cardiovascular
system, spermatogenesis, and neurogenesis; and the regulation of
many processes in plants (refs. 2, 20, 25, 38, and 40-75 and
refs. therein).

Under conditions of low or absent glucose, the yeast Saccha-
romyces cerevisiae and other eukaryotes synthesize it through glu-
coneogenesis. In yeast, the main gluconeogenesis-specific cytosolic
enzymes are the Fbpl fructose-1,6-bisphosphatase, the Icll isocitrate
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lyase, the Mdh2 malate dehydrogenase, and the Pckl phospho-
enolpyruvate carboxykinase (20, 46, 82-95). When S. cerevisiae (Sc)
grows on a nonfermentable carbon source such as, e.g., ethanol,
gluconeogenic enzymes are expressed and long-lived. Transition to a
medium containing glucose inhibits the synthesis of these enzymes
and induces their degradation. As shown by Wolf, Chiang and col-
leagues, under experimental conditions encompassed in the present
study, the degradation of yeast gluconeogenic enzymes is mediated
by the multisubunit GID Ub ligase and the 26S proteasome (20, 86,
87, 90, 96, 97).

A notable aspect of GID-mediated processes is the dichotomy
between the GID/proteasome-mediated degradation of gluco-
neogenic enzymes and the “alternative” degradation of these
enzymes through an autophagy-related pathway called vacuolar
import and degradation (VID) (87, 90, 93, 95, 98-100). The VID
pathway may also involve a GID-mediated polyubiquitylation of
gluconeogenic enzymes. Whether these enzymes are destroyed
(after a return of yeast cells to glucose-containing media) largely
by the GID/proteasome pathway or largely by the VID pathway
depends, among other things, on the duration of glucose starva-
tion and the nature of a nonglucose carbon source (84, 101). The
functions of this remarkable dichotomy, the regulation of transitions
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between the GID/proteasome and VID pathways, and molecular
mechanisms of VID remain to be understood (46, 96).

The S. cerevisiae 41-kDa Gid4 is a subunit of the GID Ub li-
gase that is conserved from yeast to mammals. Our previous
work has shown that Gid4 is the N-recognin of the GID-
mediated proteolytic system termed the Pro/N-degron pathway
(Fig. 1C) (46). Gid4 was shown to recognize a protein substrate
through its Nt-Pro residue or a Pro at position 2, in the presence
of distinct adjoining sequence motifs (46, 48). The S. cerevisiae
gluconeogenic enzymes Fbpl, Icll, Mdh2, and Pckl bear either
Nt-Pro (Fbpl, Icll, Mdh2) or a Pro at position 2 (Pckl), and are
conditionally short-lived substrates of the Gid4-dependent Pro/
N-degron pathway (Fig. 1C) (46, 48).

The crystal structure of human Gid4, recently determined by
Min and colleagues (47, 48), comprises an antiparallel p-barrel
that contains a deep and narrow substrate-binding cleft. The
substrate specificity of human Gid4, characterized through in
vitro binding assays with synthetic peptides (47), is similar to the
specificity of S. cerevisiae Gid4 that has been analyzed using in
vivo 2-hybrid (Y2H) assays (46). In mammals, the GID (also
called CTLH) Ub ligase has been shown to play a role in cell
proliferation, in the functioning of primary cilia, and in other
processes (96, 102-111). Mammalian proteins that contain Pro/
N-degrons and are targeted for degradation by the mammalian
Gid4 N-recognin remain to be identified.

The ~600-kDa S. cerevisiae GID Ub ligase comprises at least
the Gidl, Gid2, Gid4, Gid5, Gid7, Gid8, and Gid9 subunits, in
addition to the weakly associated Ubc8 (Gid3) E2 (Ub-
conjugating) enzyme (46, 86, 96). While studying yeast Gid4,
we found that an uncharacterized S. cerevisiae protein encoded
by the ORF YGR066C is significantly sequelogous (112) (similar
in sequence) to Gid4: 52% similar, 33% identical (Fig. 24).

Given this level of sequelogy between Gid4 and the previously
uncharacterized YGR066C (Fig. 24), we provisionally termed
the latter protein Gid10, and proceeded to analyze it.

[“Sequelog” denotes a sequence that is similar, to a specified
extent, to another sequence (112). Derivatives of “sequelog” include
“sequelogous” (similar in sequence) and “sequelogy” (sequence
similarity). The usefulness of “sequelog” and derivative notations
stems from the clarity and rigor of their evolutionary neutrality. In
contrast, “homolog,” “ortholog,” and “paralog,” which invoke, re-
spectively, common descent and functional similarity/dissimilarity,
are often imprecise, interpretation-laden terms. The sequelog ter-
minology is compatible with homolog/ortholog/paralog. The latter
terms can be used to convey an understanding about common de-
scent and biological functions, if this information (it is distinct from
sequence similarities per se) is actually present (112).]

We found that the 34-kDa §. cerevisiae Gid10 is a conditionally
expressed subunit of the GID Ub ligase that is functionally
similar to the Gid4 (N-recognin) subunit. The substrate speci-
ficities of Gid10 and Gid4 (surveyed through a genetic screen)
overlap but are not identical. We traced the evolution of
Gid10 among budding yeasts. S. cerevisiae Gid10 is not expressed
under usual (unstressful) growth conditions, but is induced upon
starvation or osmotic stresses. Using protein substrates of GID,
degradation assays, and protein binding analyses, we also show
that Gid10 can function as a specific N-recognin of the Pro/N-
degron pathway.

Results and Discussion

A Screen for N-Terminal Motifs That Bind to Gid10. This screen
employed the yeast-based Y2H technique (46, 113-115) to detect
interactions between S. cerevisiae Gid10 and short (~4 residues)
N-terminal sequence motifs. A Y2H-based Gidl0 construct

Gid10 1 MTSLNIMGRKFILERAKRNDNIEEIYTSAYVSLPSSTDTRLPHFKAKEEDCDVYEEGTNL
Gid4 1 MINNPKVDSVAEKPKAVTSKQSEQAASPEPTPAPPVSRNQYPITFNLTSTAPFHLHDRHR
GIdID 6] == == o e e e e e VGKNAKYTYRSLGRHL
Gida 61 YLOEQDLYKCASRDSLSSLOQLAHTPNGSTRKKYIVEDQSPYSSENPVIVTSSYNHTVCT
Gid10 77 DFLRPGLRFGGSQSSKYTYYTVEVKIDTVNLPLYKDSRSLDPHVTGTFTIKNLTPVLDKV
Gid4 121 NYLRPRMQFTGYQISGYKRYQVTVNLKTVDLPK-KDCTSLSPHLSGFLSIRGLTNQHPET
Gid10 137 VTLFEGYVINYNQFPLCSLHWPAEETLDPYMAQRESDCSHWKRFGHF - —-—--—-—-————-
Gid4 180 STYFEAYAVNHKELGFLSSSWKDEPVLNEFKATDQTDLEHWINFPSFRQLFLMSQKNGLN
Gid10 184 ——=——— GSDNW---—————————— SLTERNFGQYNHESAEF---MNQRY IYLKWKERFLLD
Gid4 240 STDDNGTTNAAKKLPPQQLPTTPSADAGNISRIFSQEKQFDNYLNERFIFMKWKEKFLVP
Gid10 223 DEEQENLMLDDNHHLEGASFEGFYYVCLDQLTGSVEGYYYHPACELFQKLELVPTNCDAL
Gid4 300 DA----LLMEG---VDGASYDGFYYIVHDQVTGNIQGFYYHQDAEKFQQLELVPSLKNKV
Gid10 283 NTYSSGFEIA
Gid4 353 ESSDCSFEFA
B Ct-DBD | Ct-AD S. cerevisiae

PTLV Gid4 1

PTLV | Gid10 2

PGIL Gid4 3

PGIL | Gid10 4

MYITV Gid4 5

MYITV | Gid10 6

VCFH Gid4 7

VCFH | Gid10 8

PGIL Gid10 9

PDLS | Gid10 10

PLIL Gid10 L X 11

pLrL | Gioto [N 12

Mo o o o K
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Fig. 2. Sequelogy between S. cerevisiae Gid4 and
Gid10 (Ygr066c¢), and the binding of these proteins
to specific Nt-polypeptide segments. (A) Alignment
of Gid4 and Gid10 amino acid sequences. Identical
residues are in red. Dissimilar residues are in black.
Similar residues are in green. The residues of (aligned)
Gid4 and Gid10 were classed as similar if they were
both basic, or both acidic, or both amides, or both
hydrophobic (defined as all hydrophobic residues in
the set of 20 amino acids, save for Ala, Cys, and Gly),
or, with Ser and Thr, both uncharged/hydrophilic.
(B) Two-hybrid (Y2H) binding assays with Gid4 and
Gid10 vs. specific Nt-sequences, which are indicated
on the Left using single-letter abbreviations for amino
acids. With the exception of Nt-PTLV (the first 4 resi-
dues of wild-type S. cerevisiae Fbp1) (46), all indicated
Nt-sequences were identified through the Y2H-based
genetic screen (see Results and Discussion). Note the
absence of a significant binding of Gid10 (but not
Gid4) to Nt-PTLV, and the opposite binding pattern
with (at least) the Nt-sequences Nt-MYITV and Nt-
VCFH. Ct-AD and Ct-DBD denote Y2H-specific pro-
tein domains linked to test proteins (see Materials and
Methods).
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comprised a fusion of Gid10 to a Ct-segment containing the yeast
Gal4 transcription activation domain (AD). The other component
of the screen was a PCR-generated library of MX,;X3XyXs-
GGGGGG-Dhfr-DBD fusions, in which the last (Ct) segment was
the Gal4 DNA-binding domain (DBD). “M” (in single-letter
amino acid abbreviations) denotes the Nt-Met residue of a Y2H
fusion. X,X3X4Xs denotes a quasirandom 4-residue sequence,
encoded by a PCR-generated DNA segment. That (randomized)
sequence was followed by the Glys linker segment, the 21-kDa
moiety of the mouse dihydrofolate reductase (Dhfr), and the
DBD domain. An in vivo interaction of the Gid10 protein with an
Nt-sequence from the library would induce the HIS3 reporter
gene, thereby making it possible to detect an interaction by
selecting for growth of Y2H yeast strains on a medium without
histidine (Fig. 2B) (see Materials and Methods).

Binding Specificities of Gid10 vs. Gid4. The screen identified several
Nt-sequences that bound to Gid10 tightly enough to be robustly
detected by Y2H assays (Fig. 2B, rows 4, 6, and 8 through 13).
The Nt-Met residue is cotranslationally removed from a nascent
polypeptide if a residue at position 2, to be made N-terminal
upon the cleavage, is either Pro, Gly, Ala, Cys, Ser, Thr, or
Val. Residues at position 2 that are larger than Val would be
made N-terminal either much more slowly or not at all (116,
117). Some Gid10-binding Nt-sequences were found to contain
proline (Pro) at the X, position. (As described above, the Pro-
occupied position X, would become N-terminal in vivo.) The Nt-
Pro aspect of the binding specificity of Gid10 resembled the
previously characterized (46) binding specificity of Gid4 (Fig.
1C). For example, we found that the Nt-sequence PGIL (in
single-letter amino acid notations), which was identified through
the above screen, was bound by Gid4 and Gid10 approximately
equally strongly in Y2H assays (Fig. 2B, rows 3, 4, and 9). These
and other results, including degradation assays (see below), in-
dicated that Gidl0 was, in fact, an N-recognin analogous
to Gid4.

The Y2H-based screen also showed that the binding speci-
ficities of Gid4 and Gid10 could be distinct. For example,
Gid10 did not significantly interact, in Y2H assays, with Nt-
PTLV, the Nt-sequence of the S. cerevisiae gluconeogenic en-
zyme Fbpl. In contrast, Nt-PTLV bound to Gid4, and the
binding required the Nt-Pro residue of PTLV (Fig. 2B, rows
1 and 2). Through its recognition of the Nt-PTLV sequence of
Fbpl, Gid4 mediates the degradation of Fbp1l upon a transition
from growth on ethanol to growth on glucose (46). Another
difference between interactions of Gid10 and Gid4 with Nt-sequences
involved a significant preference, by Gid10, for a hydrophobic
residue after the Nt-Pro residue (Fig. 2B).

An even stronger difference between the binding specificities
of Gid10 vs. Gid4 was exemplified by other Gid10-positive hits
from the Y2H library that have been examined, in addition, for
their binding to Gid4. These sequences included Nt-MYITV and
Nt-VCFH [in the former Nt-sequence, Nt-Met was retained in
vivo (116, 117)] (Fig. 2B, rows 5 through 8). Although neither
one of these Gid10-binding sequences contained a Pro residue, they
robustly bound to Gid10, but did not significantly bind to Gid4 (Fig.
2B, rows 5 through 8). In sum, the sequelogous Gid10 and Gid4
(Fig. 24) can recognize (bind to) the same Nt-sequences (one ex-
ample is Nt-PGIL), but can also exhibit different specificities, with
Gid10 (but not Gid4) recognizing Nt-MYITV and Nt-VCFH, and
with Gid4 (but not Gid10) recognizing Nt-PTLV, the natural Nt-
sequence of Fbpl, a physiological substrate of the Pro/N-degron
pathway (Fig. 2B, rows 1, 2, and 5 through 8) (46).

Gid10 as a Functional Analog of the Gid4 N-Recognin. Our initial
assessments indicated that GID10 mRNA was virtually absent in
S. cerevisiae under conditions of exponential growth on standard
media. To determine whether Gidl0, if it were ectopically
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expressed in yeast cells, might function as an N-recognin anal-
ogous to Gid4, we constructed a [gid4A Pgps~GIDI0] strain,
which contained 2 alterations: the GID10 gene was deleted, and
the GID4 ORF was replaced with the GID10 ORF, downstream
from the natural Pgp, transcriptional promoter. As a result,
Gid10 would be ectopically expressed (in cells that lacked the
Gid4 protein) in patterns similar to those of Gid4. Other S.
cerevisiae strains constructed for these assays included [gid4A
gid104] (lacking both GID4 and GID10); [gid4A gid2A] (lacking
GID4 and also GID2, an essential subunit of the GID Ub ligase)
(117); and gid10A (lacking GID10 but containing GID4).

For experiments described in Fig. 3, yeast cells were grown to
midexponential phase, with glucose as the carbon source. As
shown previously, the endogenous Gid4 Pro/N-recognin was
expressed and sufficiently active under these conditions to mediate
the degradation of (at least) the Fbpl, Mdh2, and Icll gluco-
neogenic enzymes (46). Protein degradation was assayed using the
promoter reference technique (PRT) (20). In this method, both a
protein of interest and a long-lived reference protein (a dihy-
drofolate reductase) (Dhfr) are expressed in S. cerevisiae from the
same plasmid, from identical constitutive promoters that contain
additional DNA elements. Once transcribed, these elements form
5’-RNA aptamers that can bind to the added tetracycline (Tc). As
a result, Tc, which does not affect global translation in the cytosol,
can selectively repress translation of the aptamer-containing
mRNAs that encoded the reference and the test proteins (20).
Advantages of PRT include a built-in, accuracy-increasing refer-
ence protein as well as avoidance of cytotoxic, artifact-prone
global translation inhibitors in chase-degradation assays (20).
Following the addition of Tc, a decrease, during a chase, in the
amount of a test protein relative to the reference protein would
signify degradation of the test protein.

We wished our first test protein to be recognized by both
Gid10 and Gid4. Therefore, the wild-type (WT) yeast Fbpl was
modified by replacing its first 4 residues (PTLV) with PGIL, an
Nt-sequence (identified through the Y2H-based screen) (Fig. 2B,
rows 3 and 4) that interacted with both Gid10 and Gid4. (In
contrast, only Gid4, but not Gid10, significantly interacted with
the Nt-PTLV sequence of WT Fbpl; Fig. 2B, rows 1 and 2.) The
resulting test protein, C-terminally triple ha-tagged, was denoted
as pgil-Fbplsp,, with the Nt-sequence “pgil” in lowercase, to
avoid confusion vis-a-vis an uppercase letter in the rest of the
protein’s name.

The pgil-Fbplsy,, protein was long-lived in [gid4A gid10A] cells
that lacked both Gid4 and Gid10, but short-lived in gid10A cells
that lacked Gid10 and contained the Gid4 Pro/N-recognin, in-
dicating that Gid4 could target pgil-Fbplsy,, for degradation (Fig.
3 A and F). Tellingly, pgil-Fbp1s;, protein was also short-lived in
[gid4A Pgips-GIDIO0] cells, which lacked Gid4 and ectopically
expressed Gid10 (Fig. 3 A and F). The latter and crucial result
indicated that Gid10 was a functionally active N-recognin that
could bind to pgil-Fbplsy, similarly to Gid4 and could couple
that recognition to the degradation of pgil-Fbp1sy,, by the GID-
mediated Pro/N-degron pathway.

Analogous PRT-based chase-degradation assays were carried
out with myitv-Fbplsy,,, in which the PTLV Nt-sequence of WT
Fbpl was replaced by Nt-MYITV. This Nt-sequence was iden-
tified through the Y2H-based screen as one of the Nt-sequence
motifs that interacted with Gid10 but did not significantly in-
teract with Gid4 (in contrast, Nt-PGIL interacted with both
Gid10 and Gid4) (Fig. 2B, rows 3 through 6). As shown in Fig. 3
B and G, myitv-Fbpls,, was degraded by the (ectopically)
expressed Gid10, in a Gid4-lacking strain. In contrast, and in
agreement with the absence of detectable Gid4 binding to Nt-
MYITV, the stability of myitv-Fbp1;,,, was essentially the same
either in Gid4-containing (but Gid10-lacking) gid10A cells or in
double-mutant [gid4A gid10A] cells (Fig. 3 B and G).
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Gluconeogenic Enzymes Are Targeted for Degradation by Gid4, Not
by Gid10. Gid10 and Gid4 were found to recognize nonidentical
but overlapping sets of Nt-sequence motifs (Fig. 2B). We asked,
using PRT-based chase-degradation assays and the [gid4A Pgips-
GIDI0] strain (lacking Gid4 and expressing Gid10 from the P py
promoter), whether C-terminally epitope-tagged Fbplay,,
Mdh2s;,,, and Iclls,, might be targeted for degradation by ec-
topically expressed Gid10 in cells growing in the presence of
glucose. The results clearly showed that while Fbplsy,,, Mdh23y,,
and Icll3,, were short-lived in Gid4-containing gid10A cells, these
proteins were stable in Gidl10-expressing, Gid4-lacking [gid4A
PGip+GID10] cells and also (predictably) in double-mutant [gid4A
gid10A] cells (Fig. 3 C-E). In sum, Gid10 does not significantly
contribute to the degradation of Fbplsy,, Mdh23y,,, and Icllsy,,
even if Gidl10 is ectopically expressed under conditions in which
Gid4 would mediate such a degradation.

Expression of Gid10 Is Induced by Osmotic Stress or Starvation. To
investigate physiological functions of S. cerevisiaze Gid10, we
began by identifying conditions under which the GID10 gene was
expressed. Earlier trancriptome-wide expression studies in-
dicated that osmotic stress and amino acid starvation were two
conditions that caused a significant increase in GIDI10 (YGR066C)
mRNA (118-121). However, quantitative assessments of this
information in databases were complicated by low levels of
GIDI10 expression. Therefore, we carried out independent ex-
periments, using reverse transcription of mRNAs followed by
quantitative PCR (RT-qPCR). These assays confirmed that S.
cerevisiae GID10 mRNA was transiently induced upon a high-salt
(1.4 M Na(l) or sorbitol (1 M) osmotic stress (Fig. 4 A and B).
GID10 mRNA was also induced upon transition from a medium
rich in amino acids (YPD medium) to a minimal medium with-
out amino acids, or upon starvation for individual amino acids
(Fig. 4B) (see Materials and Methods).

To detect expression of the Gid10 protein, we constructed a
strain in which Gid10 (expressed from its native Pgip;9 pro-
moter) was tagged with a triple-flag Nt-epitope, yielding a
functionally active 3¢Gid10 (SI Appendix, Fig. S1). Expression of
the 3¢Gid10 protein upon osmotic stress, while functionally rel-
evant, was still too low for detection by a direct immunoblotting
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degradation assays.

(IB). Nevertheless, 3¢Gid10 could be detected after its enrich-
ment on anti-flag beads, followed by its elution from the beads,
SDS/PAGE, and IB assays (Fig. 4C).

Gid10 Functions as a Part of the GID Ubiquitin Ligase. To address the
relevance of Gidl10 to protein degradation under conditions in
which this protein was naturally expressed, we carried out PRT-
based chase-degradation assays with pgil-Fbpls,, and endoge-
nous Gid10, with the latter naturally expressed during osmotic
stress mediated by 1.4 M NaCl. The results showed that under
these conditions (in cells that lacked Gid4) Gid10 was expressed
at levels sufficient to destabilize pgil-Fbplsy, (Fig. 5 C and D).
We also found that the Gidl0-mediated degradation of pgil-
Fbplsy, in the presence of 1.4 M NaCl required, in addition,
the rest of the GID ubiquitin ligase. Specifically, pgil-Fbplsp,
became stable in a double-mutant [gid2A gid4A] strain that
lacked not only GID4 but also GID2 (46, 86), an essential sub-
unit of GID (Fig. 5 E and G.).

Additional and independent evidence for a Gid10-GID asso-
ciation was provided by coimmunoprecipitation assays with ha-
tagged Gidlsy,, an essential subunit of GID (46) and flag-tagged
3¢Gid10 in extracts from S. cerevisiae expressing these test pro-
teins. Specifically, immunoprecipitation of 3¢Gid10 with a
monoclonal anti-flag antibody coimmunoprecipitated Gidlsy, as
well (Fig. 54). We also found that interactions of 3¢Gid10 with
Gidlsp, (and, by inference, with the rest of the GID complex)
were significantly weakened in the absence the GID subunit
Gid5 (in extracts from a [gid5A4] strain) (Fig. 54). An analogous
observation of the Gid5 dependence was previously made in
regard to interactions between Gidl and Gid4 (86).

We also verified the binding of Gid10 to its protein substrate
using a method other than Y2H. Specifically, in immunopre-
cipitation assays, 3;Gid10 was coimmunoprecipitated with pgil-
Fbplsh,, an in vivo physical ligand and degradation substrate of
Gid10, but not with the otherwise identical test protein sgil-
Fbplsp,, in which the Nt-Pro residue was replaced by Nt-Ser
(Fig. 5B). This requirement for Nt-Pro in a substrate for its
binding to Gid10 is analogous to the previously demonstrated
requirement for Nt-Pro in the Nt-PTLV sequence of WT
Fbpl for its binding to the Gid4 N-recognin (46).
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Gid4, the main N-recognin of the Pro/N-degron pathway, is a
short-lived protein. Gid4 is targeted for degradation largely
(though not solely) by the GID Ub ligase, of which Gid4 itself is
a subunit (86, 97). A GID-recognized degron of Gid4 remains to
be identified (Gid4 lacks both Nt-Pro and a Pro at position 2).
We found that, analogously to Gid4, the 3;Gid10 protein was also
a short-lived protein that was substantially (but incompletely,
similarly to Gid4) stabilized in a [gid2A] strain that lacks the
active GID Ub ligase (Fig. 5F). Together, independent lines of
evidence described in this study (Figs. 3-5) indicate that when the
endogenous Gid10 is naturally expressed, it can function as an
alternative N-recognin of the yeast Pro/N-degron pathway, i.e.,
as a substrate-recognizing subunit of GID. Analogies between
GID-associated Gid4 and GID-associated Gid10 include their
vulnerability to being targeted for degradation by the GID Ub
ligase (Fig. 5F).

Gid4 and Gid10 Diverged Early after Genome Duplication in Budding
Yeast. Sequelogs (see above, and ref. 112) of the Sc-Gid4 protein
are present in most eukaryotes, from fungi/yeasts to animals and
plants. While some eukaryotic genomes encode 2 Gid4-like
proteins, most encode only 1. Between 1 x 107 and 1 x 10®
years ago, an ancestor of a set of budding yeast lineages that
included ancestors of S. cerevisiae and other Saccharomyces
yeasts underwent a whole genome duplication, probably as a
result of interspecies hybridization (122-125). A plausible sce-
nario, therefore, is that Sc-Gid4 and Sc-Gid10 are descendants
of a pair of (initially) identical or nearly identical proteins that
underwent a sequence and functional divergence (including
divergence in their modes of expression), and became Gid4
and Gid10 of extant S. cerevisiae. In agreement with this
model, genomes of budding yeasts that did not undergo whole
genome duplication contain a single gene encoding a Gid4-
like protein.

Fig. 6 describes evolutionary relationships among 20 species of
budding yeasts (a subset of “sequenced” budding yeasts), in-
cluding Saccharomyces yeasts (126). All yeasts in Fig. 6 are de-
scendants of the whole genome duplication event. Their genomes
encode 1 or 2 proteins that are significantly sequelogous to
Sc-Gid4/Sc-Gid10. Our examination of the predicted amino acid
sequences of these proteins (Fig. 6 and SI Appendix, Fig. S2)
showed that the 20 yeast species could be classed as 3 sets in
regard to Sc-Gid4/Sc-Gid10, as indicated in Fig. 6:

1) Yeasts in which a genome encodes an Sc-Gid4-like protein
and an Sc-Gid10-like protein. S. cerevisiae and other indicated
Saccharomyces yeasts are the sole members of this set (Fig. 6).

2) Non-Saccharomyces yeasts in which a genome encodes an Sc-
Gid4-like protein and also a protein that is sequelogous (to
comparable extents) to both Sc-Gid4 and Sc-Gid10 (Fig. 6).

3) Non-Saccharomyces yeasts in which a genome encodes a sin-
gle Sc-Gid4-like protein (Fig. 6).

We conclude that after whole genome duplication, the
(eventual) Sc-Gid10 protein diverged relatively early from the
(eventual) Sc-Gid4 protein, and also that only Saccharomyces
yeasts, the ones that are closely related to S. cerevisiae, contain a
gene that encodes a clearly identifiable sequelog of the Sc-
Gid10 protein (Fig. 6). Given these evolutionary patterns,
while both Gid4 and Gid10 can function as N-recognins of the
GID Ub ligase (see above), it is Gid4 but not Gid10 that is the
functionally major and particularly highly conserved N-recognin
of the Pro/N-degron pathway (Figs. 1C, 24, and 6). A blend of
natural selection and quasirandom mutational drift (127) main-
tained Gid4-like proteins as universally present N-recognins of
the Pro/N-degron pathway, whereas unambiguously assignable
sequelogs of Sc-Gid10 were retained solely within the Saccha-
romyces clade. This conclusion is consistent with expression of
Sc-Gid4 under a variety of conditions. While the expression of
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Fig. 4. Expression of S. cerevisiae GID10 upon specific stresses. (A) Osmotic
shock was induced by 1.4 M NaCl. BY4741 (MATa his3 leu2 met15 ura3) cells
in midexponential growth were harvested at 1-h intervals after making the
medium 1.4 M in NaCl (time 0; indicated by a red arrowhead), followed by
measurements of GID70 mRNA (relative to 2 unrelated mRNAs) using RT-qPCR
(see Materials and Methods). (B) Changes in the relative levels of GID70 mRNA
were measured in BY4741 cells that had been subjected to a variety of 30-min
stresses (red rectangles). Specifically, transitions from a minimal (SD) media
containing all required supplements to SD lacking either Leu, or His, or Ura; or
a 30-min treatment with 1 M sorbitol in the complete SD; or a 30-min in-
cubation with H,0, (at 0.32 mM) in complete SD; or a 30-min incubation in
complete SD at 37 °C (heat stress). Alternatively, a yeast strain with a single
auxotrophy (yAM156, ura3) was subjected to a transition from a rich (YPD)
medium to a minimal medium (SC +Ura) for 30 min (blue rectangles). Standard
errors were calculated from results of 3 independent experiments. (C) S. cer-
evisiae cells in which the N-terminally triple-flagged Gid10 (3:Gid10) was
expressed from its endogenous locus and the native Pgpso promoter were
subjected to osmotic shock with 1.4 M NaCl (A). The 3¢Gid10 protein was de-
tected by SDS/PAGE and immunoblotting with anti-flag antibody, after a
partial enrichment of samples (uniformly across samples) for 3¢Gid10 using
anti-flag beads. Lane 1, a 37-kDa molecular mass marker. Lanes 2 through 8,
levels of 3;Gid10 as a function of time after the addition of NaCl. Lane 9, a
sample from cells that overexpressed 3:Gid10 (see Materials and Methods).

Sc-Gid4 was initially presumed to occur largely during a transi-
tion from gluconeogenesis to glycolysis, it became clear later that
Sc-Gid4 is also present, at varying levels, under other conditions
as well, including media containing glucose (46). In contrast, the
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natural expression of Sc-Gid10 is confined to specific stresses
(Fig. 4). We also note that the phylogenetic tree of clearly
identifiable sequelogs of Sc-Gid4 (but not of Sc-Gid10) is highly
similar to the evolutionary tree of budding yeasts in general.

In sum, a previously uncharacterized S. cerevisiae protein
(YGRO066C), termed Gid10 and sequelogous to the S. cerevisiae
Gid4 N-recognin of the Pro/N-degron pathway, has been shown
here to be naturally expressed under specific conditions such as
osmotic stress and starvation, in contrast to the relatively ubig-
uitously expressed Gid4. Using several experimental strategies,
we also showed that the substrate specificity of Gid10 is similar
but not identical to that of Gid4, and that Gid10 is a functionally
minor but bona fide alternative N-recognin of the Pro/N-degron
pathway (Figs. 2-6).

Materials and Methods

Antibodies and Other Reagents. Mouse monoclonal (clone M2) anti-flag an-
tibody (Sigma) was used for immunoblotting and coimmunoprecipitation of
flag-tagged proteins. Inmunoblotting of ha-tagged proteins was carried out
with rabbit polyclonal anti-ha antibody (Sigma), while myc-tagged proteins
were detected with mouse monoclonal (clone 9E10) anti-c-myc antibody
(Sigma). The following fluorescently labeled secondary antibodies were
used for detecting proteins after a Tc/PRT-based chase: IRDye 800 CW goat
anti-rabbit IgG and IRDye 680RD goat anti-mouse IgG (LI-COR Biosciences).
For detecting proteins after coimmunoprecipitation, we used IRDye 800CW
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goat anti-rabbit IgG and IRDye 800CW goat anti-mouse IgG. The following
medium components were used (they are listed below with their sources in
parentheses): yeast nitrogen base with ammonium sulfate (MP Biomedicals);
complete supplement mixtures of amino acids for S. cerevisiae growth (MP
Biomedicals), with appropriate nutrients omitted to maintain marker-bearing
plasmids; yeast extract (Difco); yeast peptone (Difco); glucose (Sigma); and
tetracycline (Sigma). A variety of restriction enzymes (used for plasmid con-
struction), T4 DNA ligase, and Q5 DNA polymerase were from New England
Biolabs.

Yeast Strains and Media. S. cerevisiae strains used in this study are described in
SI Appendix, Table S1. Standard techniques were used for constructing plasmids
and yeast strains (S/ Appendix, Tables S1 and S2) (128). All final DNA constructs
were verified by DNA sequencing. With the exception of the S. cerevisiae strain
(AH109), used for Y2H assays, yeast strains were derived from BY4741 (5288c
lineage, MATa his3A1 leu2A met15A ura3A). New yeast strains were constructed
by transformation of the parent strain with PCR products containing short
homology regions directed to the locus of interest (129). Yeast cultures were
grown either in YPD (1% yeast extract, 2% peptone, 2% glucose), SD (5 g/L
ammonium sulfate, 1.7 g/L yeast nitrogen base supplemented with complete
amino acid supplement mixture minus appropriate dropouts, 2% glucose), or
SC (5 g/L ammonium sulfate, 1.7 g/L yeast nitrogen base, 2% glucose). Yeast
shuttle vectors were usually transformed into DH5a competent Escherichia coli
(Invitrogen). Plasmids used in yeast-based PRT assays were transformed into
SURE 2 competent E. coli (Agilent Technologies).
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Gid4 and Gid10 in descendants of budding yeasts that underwent a genome duplication

Tetrapisispora blattae
Tetrapisispora phaffii
* Vanderwaltozyma polyspora

_:Kazacnstania africana
Kazachstania naganishii
_|— Naumovozyma dairenensis

Naumovozyma castellii

[ Nakaseomyces bacillisporus
Candida castellii

Candida glabrata*
Candida bracarensis
Candida nivariensis
Nakaseomyces delphensis

Saccharomyces uvarum
Saccharomyces eubayanus
Saccharomyces arboricola
Saccharomyces kudriavzevii
Saccharomyces mikatae
Saccharomyces cerevisiae
Saccharomyces paradoxus

One Sc-Gid4-like
protein

Sc-Gid4-like protein and
one protein comparably
similar to S¢-Gid4 and
Sc-Gid10

Sc-Gid4-like protein
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Fig. 6. Gid4, Gid10, and phylogenetic tree of bud-
ding yeasts that underwent a whole genome dupli-
cation. The latter is indicated by a red arrow on the
Left. The lengths of horizontal lines are approxi-
mately proportional to elapsed times (inferred from
coalescence-based analyses) (126) before divergences
of indicated yeast species. Alignments of Gid4/
Gid10 amino acid sequences encoded by the genomes
of these yeasts partitioned them into 3 sets, as in-
dicated on the Right. The phylogenetic tree of rele-
vant protein sequences is shown in S/ Appendix, Fig.
S2. The Saccharomyces set, in which yeasts contain
both an Sc-Gid4-like and an Sc-Gid10-like protein, is
highlighted in red. Candida glabrata (indicated by an
asterisk) is the only species in its group that contains a

Y2H Binding Assays and Screening for N-Terminal Gid10-Binding Peptide Motifs.
The AH109 yeast strain was used for all Y2H experiments. It was sequentially
transformed with pCSJ392 or pCSJ182, followed by transformation with
pAM1674 or an analogous plasmid (S/ Appendix, Table S2). S. cerevisiae
carrying both plasmids were grown to a near-stationary phase (ODggo ~ 2;
1 mL of yeast suspension with ODgoo = 1 contains ~107 cells), concentrated
by centrifugation, washed, resuspended in PBS buffer, and spotted on SD
[-Leu, —Trp, —His] plates (relative dilutions: 2.0, 0.67, 0.22, 0.074, and
0.025). Cultures on plates were imaged after 3 d of growth at 30 °C. To
construct Y2H-based Nt-peptide library, termed pAM1160, the Y2H cloning
vector pGBKCg (S/ Appendix, Table S2) was modified by PCR so that the
Papr1 promoter was followed by a Spel restriction site, a short linker
containing an EcoRl site, and ending with a Xhol site that is present nat-
urally in the sequence of a segment encoding the Gal4 DBD. A corresponding
DNA fragment was cut with Spel and Xhol, dephosphorylated, and gel puri-
fied. The insert to be ligated into this backbone [Spel-MX;X3X4X5-GGGGGG-
Dhfr-Gal4DBD(Nt-half)-Xhol] was obtained by PCR using primers 5'-
CACAactagtATGNNNNNNNNNNNNggt GGAGGAGGGGGTGGAGTTCG-3' and
5’-tcttctcgaggaaaaatcagtagaaatage-3’, and the plasmid pCSJ376 as a template
(“N” denotes a mixture of 4 nucleotides). The resulting PCR product was
digested with Spel and Xhol. Following ligation, the reaction mixture was
briefly treated with EcoRI to eliminate possible background from undi-
gested vector. Products of ligation were then transformed into DH5a E.
coli, resulting in ~16,000 colonies that comprised the library. Colonies
were scraped off the plates into PBS buffer, followed by purification of
total plasmid DNA using the Maxiprep plasmid isolation kit (Qiagen).
We also constructed a similar library (pAM1479) using a primer (5'-
CACAactagtATGNDNNNNNNNNNNggt GGAGGAGGGGGTGGAGTTCG-3')
that eliminated Pro (as well as Ala and Thr) from position X,. For library
screening, AH109 yeast cells growing in YPD in early exponential phase were
collected by centrifugation (30 mL of yeast suspension with ODgoo = 1;
corresponds to ~3 x 10® cells) and thereafter transformed with 1 ug of the
library plasmid. The resulting cells were incubated in a batch culture in SD
[-Leu, —Trp] for 1 h and thereafter plated on 2% agar SD[-Leu, —Trp, —His]
plates. After 3 d at 30 °C, several positive clones were selected for regrowth
on the same medium, plasmid extraction, and retesting in Y2H assays. Those
library-derived plasmids that conferred positive Y2H signals upon retesting
were analyzed by DNA sequencing.

Tc/PRT Chase-Degradation Assays and Immunoblotting. T¢/PRT protein deg-
radation assays were carried out as described in Results and Discussion (20).
Briefly, batch yeast cultures were grown to ODggo of 1.0 to 1.5, followed by
the addition of Tc to the final concentration of 0.5 mM. For those samples in
which expression of GID10 was to be induced, the growth medium was
made 1.4 M in NaCl at the time of Tc addition. At indicated time intervals, a
volume of cell suspension corresponding to ODggo Of 1.0 at the beginning of
the Tc chase was collected; this volume was kept constant throughout the
chase. Cells were collected by centrifugation, resuspended in 1 mL of 1 M
NaOH, and incubated at room temperature for 5 min. Cell were again col-
lected by centrifugation (at the top speed in a microcentrifuge for 1 min) and
resuspended in 50 pL of buffer HU (8 M urea, 5% SDS, 1 mM EDTA, 0.1 M
dithiothreitol, 0.005% bromophenol blue, 0.2 M Tris-HCl, pH 6.8). These pro-
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tein solutions were incubated at 70 °C for 10 min and fractionated by SDS/
PAGE on 4 to 12% NuPAGE Bis-Tris gels with MES running buffer (Thermo
Fisher), followed by electroblotting of proteins onto a nitrocellulose mem-
brane. The membrane was blocked with 5% nonfat milk in TBST (0.1% Tween-
20, 0.15 M NacCl, 20 mM Tris, pH 7.4) for 1 h at room temperature. Proteins of
interest were detected by incubation at 4 °C with primary antibodies over-
night. The membrane was then washed 3 times with TBST and probed with
secondary antibodies (described above) in TBST-5% nonfat milk for 1 to 4 h.
The membrane was washed 3 times with TBST and imaged using the Odyssey
9120 scanner (LI-COR Biotechnologies). Unless stated otherwise, T¢/PRT chases
as well as other key experiments were repeated at least twice.

Co-IP. Co-IP experiments with specific subunits of the GID Ub ligase were
carried out using yAM182, yAM184, and yAM199 yeast strains (S/ Appendix,
Table S1). Co-IP of Gid10 with its substrate such as pgil-Fbp13n, was carried
out with yAM220 transformed with pAM1830, and yAM231 transformed
with pAM1830 or pAM1836 (S/ Appendix, Table S2). Cell extracts were
prepared as previously described (86). Briefly, a 30-mL cell culture was grown
in SD medium to ODggo of 1.5. Cells were collected by centrifugation and
resuspended in 1 mL of buffer P3 (0.1% Triton X-100, 50 mM Nacl, 50 mM NaF,
5 mM EDTA, 50 mM Tris, pH 7.5) supplemented with the protease inhibitor
mixture for fungal use (Sigma). The cells were then disrupted by vortexing with
lysing matrix C beads (MP Biomedicals) over 20 cycles of 30 s (followed by 30 s
on ice). The resulting extracts were centrifuged for 20 min at 12,000 x g in a
microcentrifuge, and the supernatant was added to the magnetic beads
(Dynabeads Protein G [Thermo Fisher] bound to anti-flag antibody described
above). The resulting mixtures were incubated with rotation at 4 °C for 2 h,
followed by 3 washes with buffer P3 and elution of proteins with HU buffer.

RT-gPCR. It was carried out with RNA samples from BY4741 and yAM156 S.
cerevisiae strains, as described in Results and Discussion. Total RNA from yeast
cultures was purified using the Quick-RNA Fungal/Bacterial Miniprep Kit
(Zymoresearch), and 500-ng samples of RNA were used in a reverse tran-
scription reaction with NxGen M-MuLV reverse transcriptase (Lucigen) and
oligo(dT).g primer. gPCR was then carried out on the resulting cDNA using 2x
gPCR master mix without ROX (Bioland Scientific) on a Mastercycler Ep Real-
plex apparatus (Eppendorf). Two reference yeast genes (ALG9 and TAF10)
were used for normalization/calibration of gPCR measurements (130).

Phylogenetic Analyses of Protein Sequences. Amino acid sequences of Gid4-
like proteins were obtained from databases of the Y1000+ Project (126).
Phylogenetic analyses of these sequences was carried out through the phylo-
geny.fr pipeline (131, 132) using the “one click” option. Briefly, the sequences
were aligned using MUSCLE (133), curated by Gblocks (134), and the phylo-
genetic tree was built by PhyML (135) and rendered by TreeDYN (136).
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