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Abstract
Suboptimal conditions during prenatal ontogeny can impair development of several phys-

iological systems and result in cardiometabolic diseases in adulthood. The kidney has been

identified as one of the most sensitive organs for developmental programming, but under-

lying mechanisms are not fully understood. Therefore, in our study we explored the con-

sequences of prenatally increased angiotensin II (Ang II) on the structural development of

the kidney and its damage by infiltrated immune cells under normal diet and after an

increased salt intake, as a second insult representing a lifestyle factor in humans.

Female rats were implanted with osmotic mini-pumps continuously releasing Ang II of

dose 2 mg/kg/h during last two weeks of pregnancy, whereas control females were sham

operated. Immunohistological and ultrastructural evaluations of the kidneys and their infil-

tration with immune cells were performed in mature male progeny kept either on a standard

or increased salt (2% NaCl) diet. Glomerular volume decreased and the cortical tubulointer-

stitial injury increased in the offspring prenatally exposed to Ang II with no additional effect

of increased salt. Ultrastructural examination demonstrated degenerative changes in prox-

imal tubules, mainly fewer and shorter microvilli in the brush border, enlarged mitochondria,

and an increased number of lysosomes in the epithelial cells in the progeny prenatally

exposed to Ang II. Moreover, the treatment resulted in increased infiltration of T-cells and

macrophages in the renal cortex compared to controls. These changes paralleled with

reduced numbers of cytotoxic T-cells in circulation and higher oxidative burst of neutrophils in the progeny of Ang II-treated

mothers compared to controls. Altogether, results suggest that prenatally increased Ang II promoted infiltration of immune cells in

the kidney and subsequent oxidative stress, which induced a damage of renal glomerular and tubular system entailing negative

consequences on the cardiovascular system.
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Introduction

Inadequate environment during ontogeny can induce
changes in the development of several organs involved
in blood pressure (BP) regulation and an increased
incidence of hypertension and ischemic heart disease

in adulthood.1,2 The kidney plays an important role in

BP control in adulthood and is highly affected by a subnor-

mal intrauterine environment.3 Several environmental

variables, such as malnutrition, hypoxia, and stress

during pregnancy can lead to lower nephron numbers
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and a decreased filtration rate and can result in increased

BP in offspring.4,5

Effective functioning of the kidney depends highly on
events occurring during the organ development, which
requires the coordinated spatiotemporal expression of
genes and signaling pathways.6 One of the key regulatory
systems is the renin-angiotensin-aldosterone system
(RAAS), which components are highly expressed in the
developing kidney. RAAS influences nephrogenesis and
vascularization and guarantees the structural and function-
al development of the kidney.7 These effects are primarily
mediated by the angiotensin receptors AT1 and AT2. AT1

receptors are present in the crust of developing glomeruli,
proximal tubules and vasculature, and their expression is
the highest during the kidney maturation.8 These receptors
stimulate growth and proliferation of embryonic renome-
dullary interstitium,9 ensure proper communication
between the cells and the extracellular matrix,10 and
induce production of different growth factors.11 AT2 recep-
tors are much more abundant in the fetal kidney than in
adulthood. During nephrogenesis, AT2 receptors are
mainly expressed in undifferentiated mesenchyme12 and
can mediate apoptosis, which is an important mechanism
to counterbalance growth-stimulatory effects of AT1

receptors.11

Up-regulation of RAAS can be observed in response to
different maternal conditions such as dehydration,13

reduced salt intake,14 gestational diabetes,15 or disordered
renal function.16 Deregulation of RAAS during pregnancy
and early postnatal period can alter fluid and ion homeo-
stasis resulting in a deregulation of BP and subsequent
hypertension in mature offspring. For example, experimen-
tally induced gestational hypertension has been shown to
sensitize male offspring to Ang II-elicited hypertension and
upregulate the central RAAS components and proinflam-
matory markers in the brain.17 Moreover, in our previous
study we demonstrated that exposure of pregnant rats to
increased Ang II altered postnatal development and
increased BP in offspring.18 These changes were associated
with increased aldosterone levels and decreased renin
activity in the circulation,18 but physiological mechanisms
behind this phenomenon are not fully explained.
Angiotensin II increases expression of cytokines, inflamma-
tory and fibrotic factors that affect renal hemodynamics,
and leads to the development of glomerular damage. In
addition, Ang II directly stimulates the accumulation of
macrophages in glomerular and tubular cells.19

Hypertensive individuals exhibit an increased incidence
of renal fibrosis, glomerulosclerosis as well as T-lympho-
cyte and macrophage infiltration compared to normoten-
sive individuals.20 Thus, we hypothesize that dysregulated
RAAS during pregnancy induces pro-inflammatory condi-
tions in the progeny, infiltration of immune cells into the
kidney and subsequent inflammation, which can at least
partially explain negative maternal effects on hypertension
development in adulthood.

Therefore, the aim of our study was (1) to evaluate con-
sequences of prenatally increased Ang II on development
and ultrastructure of the kidneys; (2) to examine the degree

of renal damage due to infiltration of immune cells into
tubular interstitium in adult male offspring; (3) to analyze
whether the effects of prenatally increased Ang II on kid-
neys can be exacerbated by an increased salt intake, as a
secondary insult.

Materials and methods

Parental Wistar rats were obtained from Velaz (Prague,
Czech Republic). Animals were housed in a temperature
controlled room (21� 2�C) under a light:dark regime
12:12 h with lights on at 7:00 h. Upon confirmation of
mating by the presence of sperm in vaginal smears, females
were housed in separate cages. Pregnant female rats were
fed with standard laboratory chow and weighed weekly.
On day 6 of pregnancy, osmotic mini-pumps (ALZET,
Cupertino, California, USA, model 2002) were implanted
in five females (group ANG), releasing Ang II continuously
for two weeks with a dosage of 2 mg/kg/h (Angiotensin II,
Calbiochem, San Diego, California, USA). The vehicle for
Ang II was saline. Mini-pumps were implanted interscapu-
lary under ketamine/xylazine anesthesia. Four females
were sham operated at the same time and served as a con-
trol group (CONT). Sham operated rats were implanted
with an inert object of the same size and weight as the
mini-pumps. After delivery, the litter size, birth weight,
and sex ratio of the offspring were assessed. Litters were
culled to eight animals (four males, four females) per dam.
Offspring were fed with standard laboratory chow (0.5%
NaCl) until week 15 of age. Afterwards, half of the animals
were provided with chow containing increased salt (2%
NaCl) until the end of the experiment. Therefore, we had
four groups and each consisted of at least of one and max-
imally two rats from the same litter per treatment: CONTc
(offspring from sham-operated females on standard diet;
n¼ 6); CONTs (offspring from sham-operated females on
diet with increased salt content; n¼ 6); ANGc (offspring
from females exposed to Ang II on standard diet; n¼ 7);
ANGs (offspring from females exposed to Ang II on diet
with increased salt content; n¼ 7). Data for BP, body
weight, relative organ weights, plasma aldosterone levels,
and plasma renin activity were published in our previous
paper.18 In the present study, we focused especially on the
renal morphology and an evaluation of the renal damage in
males, since we found that Ang II treatment of pregnant
rats caused a more pronounced increase of BP in the male
progeny. At the end of the experiment (age of 18 weeks),
rats were anaesthetized with carbon dioxide and killed by
decapitation. For histological and immunofluorescence
analyses, the kidneys were removed, fixed in 4% parafor-
maldehyde, and embedded in paraffin. Renal coronal sec-
tions of 4 lm were prepared and deparaffinized before
further processing.

Histological analyses

On deparaffinized sections stained with hematoxylin-
eosin, the total number of glomeruli was determined in
15 images per section and calculated per mm2.21 The
mean glomerular volume was estimated according to the
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Weibel-Gomez method as previously published.22,23 The
glomerulosclerosis index (GSI) and the cortical tubulointer-
stitial injury (CTI) were evaluated on sections stained with
Mowry’s combined Alcian blue-periodic acid-Schiff
method24 according to the published protocol.25 For GSI,
50 glomeruli per kidney were examined and graded on a
scale: Grade 0 – normal glomeruli; Grade 1 – sclerotic area
up to 25%; Grade 2 – sclerotic area 25–50%; Grade 3 – scle-
rotic area 50–75% and Grade 4 – sclerotic area 75–100%.
Cortical tubulointerstitial injury was evaluated as inflam-
matory cell infiltration, tubular dilatation, atrophy or inter-
stitial fibrosis and analyzed on 15 non-overlapping fields in
the renal cortex using a scale; Grade 0 – no abnormal find-
ings; Grade 1 – mild (<25% of the cortex); Grade 1 – mod-
erate (25–50% of the cortex) and Grade 3 – severe (> 50% of
the cortex).

Immunofluorescence analyses

Deparaffinized sections were boiled at 95�C for 15 min in
0.01 M citrate buffer for antigen retrieval and blocked in 5%
donkey serum in phosphate-buffered saline (PBS) with
0.05% saponin. Sections were stained with anti-CD43
(AbD Serotec, Bio-Rad Laboratories, Hercules, California,
USA) to evaluate T-cell infiltration and with anti-CD68
(Abcam, Cambridge, UK) to detect renal infiltration by
macrophages. Overnight incubation with primary antibod-
ies (1:100 diluted in PBS) was at 4�C. Thereafter, the sections
were incubated with the secondary antibody (Rhodamine
TRITC, Jackson Immunoresearch, Philadelphia, USA)
diluted 1:1000 in PBS for 1 h at room temperature. The
nuclei were counterstained with DAPI (1:10,000, Roche,
Indianapolis, USA). Analysis of CD43 and CD68 positive
cells was performed using the fluorescence microscope
Zeiss Axioscope (Carl Zeiss, Zaventem, Belgium). The
cells were counted in 20 randomly selected images of the
renal cortex and averaged from two sections per each indi-
vidual. Cell numbers are calculated per mm2.

Transmission electron microscopy

Renal tissue samples (1–2 mm3) were fixed in 3% glutaral-
dehyde (Sigma Aldrich, Germany) in 0.2 M phosphate
buffer (pH 7.3). Samples were then rinsed three times in
0.1 M sodium phosphate-buffered solution (pH 7.3) and
post-fixed in 1% osmium tetroxide (Serva, Germany) at
4�C. Dehydration was performed using a graded ethanol
series, followed by tissue clearing in epoxypropane. Tissues
were placed in a mixture of resin (Durcupan ACM, Fluka,
Switzerland) and epoxypropane (1:1) at room temperature
for several hours. Samples were embedded in Durcupan
ACM and polymerized at 60�C for 72 h. After polymeriza-
tion, the embedded samples were cut into sections of 0.7–
1.0 mm and stained with 1% toluidine blue dissolved in 1%
of sodium borate. Ultrathin sections (600–900 nm thick)
were cut with the Reichert ultramicrotome, placed onto
copper meshes, and contrasted with uranyl acetate and
lead acetate (Serva, Germany) for 10 min. Samples were
then imaged on an FEI Morgagni 268D transmission

electron microscope (100 kV tungsten filament, Czech
Republic) and imaged using a 4 MPxCCD digital camera.

Blood collection and flow cytometry analyses

Rats were immobilized in a restraint chamber and blood was
withdrawn from a lateral tail vein. Fluorochrome-conjugated
monoclonal antibodies used for immunophenotyping were
as follows: PE-Cy5.5 anti-rat CD45 (clone OX-1; Invitrogen);
FITC anti-rat CD3 (clone G4.18; eBiocience); APC anti-rat CD4
(clone OX-35; eBiocience); PE anti-rat CD8a (clone OX-8;
eBiocience); PE anti-rat CD45RA (clone OX-33; Invitrogen);
APC anti-rat NKR-P1A (clone 10/78; Invitrogen) and FITC
anti-rat Granulocytes (clone HIS48; eBiocience). Briefly, ali-
quots of whole blood (50 mL) were quadruple- or double-
stained with a mixture of antibodies for 30 min at 4�C in
the dark. Thereafter, erythrocytes were lysed with 0.5 mL of
lysis buffer (eBioscience) for 10 min at room temperature. The
lysis was stopped by adding 1 mL of PBS supplemented with
0.5% bovine serum albumin and 0.1% sodium azide and sam-
ples were immediately analyzed on the flow cytometer. Rat
leukocyte subsets were identified on the base of their surface
markers in the gate for total leukocytes (CD45þ): T-cells
(CD3þ), helper T-cells (CD3þCD4þ), cytotoxic T cells
(CD3þCD8aþ), B cells (CD45RAþ), NK cells (CD3-NKR-
P1Aþ), neutrophils, and monocytes (HIS48þ and side scatter
gating). To analyze the functional activity of neutrophils, 50
mL of whole blood was diluted 20 times with PBS containing
20 mM of 20,70-dichlorodihydrofluorescein diacetate (H2-DCF-
DA, Sigma, USA) and incubated for 30 min at 37�C in the
dark. Thereafter, each sample was divided into two equal
parts; one part was stimulated with 1 mM of phorbol-12-
myristate-13-acetate (PMA; Sigma, USA) and one served as
unstimulated control. After incubation (for 30 min at 37�C in
the dark), cells were washed with PBS and erythrocytes were
lysed as described above. After the erythrocyte lysis, cells
were washed, resuspended in 0.3 mL of PBS, and analyzed
on the flow cytometer. Within the cell, H2-DCF-DA is con-
verted to 20,70-dichlorofluorescein (DCF) and fluorescence of
this product represents a measure of H2O2 production and
this is linearly related to the oxidative burst of stimulated
neutrophils.26 Functional activity of neutrophils was
expressed as a fold increase of mean DCF fluorescence
between unstimulated and PMA-stimulated samples. Flow
cytometry was performed on the BD Accuri C6 cytometer
and data were analyzed using FlowJo v10.0.6 software
(TreeStar Inc., Ashland, USA).

Statistical analyses

Statistical analysis was performed using STATISTICA 7.0
(Statsoft Inc., USA). All data fit a normal distribution as
evaluated with Kolmogorov–Smirnov test. Data for renal
morphometric parameters and renal infiltration were
examined by two-way analysis of variance (fixed factors:
prenatal treatment, type of postnatal diet and interaction
between both factors) followed by Fisher least significant
post hoc tests if the interaction was significant. Data for
blood leukocytes were compared between CONT and
ANG rats by Student t-tests.
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Results

Renal structure and ultrastructure

The total number of glomeruli was not affected either by
prenatally elevated Ang II (F(1,22)¼3.73, P¼ 0.066) or
increased salt intake in adulthood (F(1,22)¼0.00; P¼ 0.990;
Figure 1(a)). Mean glomerular volume decreased in the
progeny of Ang II-treated mothers compared to controls
(F(1,22)¼14.28, P¼ 0.001) and was not affected by salt diet
(F(1,22)¼0.77, P¼ 0.391; Figure 1(b)).

The progeny of Ang II-treated mothers did not differ in
glomerular sclerosis compared to control group (F(1,18)¼0.00,
P¼ 0.993; Figure 2(a)). On the other hand, the CTI index was
higher in rats prenatally exposed to Ang II compared to
controls (F(1,18)¼8.02, P< 0.05). Increased salt intake did
not affect both parameters (F(1,18)¼3.07, P¼ 0.097 for GSI
and F(1,18)¼0.15, P¼ 0.704 for CTI).

The filtration membrane of the Malpighian renal corpus-
cle of the ANG group was nonuniform, as documented by a
variable size at certain loci, where the fused basal laminae of
endothelial cells and podocytes were considerably thicker in
comparison to the control group (Figure 3). The apical
domain of the proximal tubule epithelial cells of CONT

rats contained abundant, densely packed, and regularly
organized microvilli with a length up to 3–4 mm. Rats of
the ANG group had markedly less developed microvilli,
which were also shorter (Figure 4). Mitochondria in the cyto-
plasm of the proximal tubule epithelial cells of ANG group
were enlarged with irregularly arranged and less abundant
cristae (Figure 5). Moreover, the cytoplasm of ANG rats con-
tained a considerably higher number of lysosomes and
dense residual bodies. In ANG rats, we frequently observed
the process of fusion between lysosomes and mitochondria,
resulting in the formation of autophagosomes. On the con-
trary, the CONT group showed only a sporadic distribution
of lysosomes within the cytoplasm of the proximal tubule
epithelial cells (Figure 6).

Renal infiltration

Prenatal exposure to Ang II significantly increased renal
infiltration of T-cells (F(1,18)¼6.04, P< 0.05; Figure 7(a))
and macrophages (F(1,18)¼6.53, P< 0.05; Figure 7(b)) com-
pared to control groups. No effects of increased salt intake
on renal infiltration were found for both T-cells
(F(1,18)¼0.21, P¼ 0.655; Figure 7(a)) and macrophages
(F(1,18)¼0.30, P¼ 0.588; Figure 7(b)).

Figure 1. Number of glomeruli (a) and glomerular volume (b) in the adult male progeny of control (CONT) and angiotensin II treated (ANG) rat mothers. Both groups

were provided either with standard chow (CONTc, n¼ 6 and ANGc, n¼ 7) or increased salt diet (CONTs, n¼ 6 and ANGs, n¼ 7) for three weeks. Data are given as

means�SEM. ***P< 0.001.

Figure 2. Renal glomerulosclerosis index (a) and index of tubulointerstitial injury (b) in the adult male progeny of control (CONT) and angiotensin II-treated (ANG) rat

mothers. Both groups were provided either with standard chow (CONTc, n¼ 5 and ANGc, n¼ 4) or increased salt diet (CONTs, n¼ 6 and ANGs, n¼ 7) for three weeks.

Data are given as means�SEM. *P< 0.05.
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Number and functional activity of blood leukocytes

Reduced numbers of cytotoxic CD8þ T-cells were found in
the circulation of ANG compared to CONT rats, while no
differences between ANG and CONT rats were recorded in
total count of leukocytes and in both numbers and percen-
tages of other immune-cell subsets as shown in Table 1.
Progeny of Ang II-treated mothers displayed a higher oxida-
tive burst of neutrophils in response to PMA stimulation com-
pared to CONT rats (t¼ 2.241, P< 0.05, df¼ 10; Figure 8).

Discussion

Our data proved the important effects of prenatally
increased Ang II on kidney development and subsequent
renal injury in adult offspring. Prenatally increased Ang II
led to decreased glomerular volume, higher cortical inter-
stitial damage, and increased infiltration of immune cells
into the renal interstitium. Ultrastructural images showed
profound changes in the brush border of proximal tubules,
glomeruli, and mitochondria.

Figure 3. Electron micrograph of the rat glomerulus in the male progeny of angiotensin II-treated rat mothers (aþb) and controls (c). For the filtration membrane,

asterisks indicate thickenings of glomerular basement membranes in experimental groups of rats. In the control group, the glomerular basement membrane is without

thickenings. 1 – fenestrated endothelia; 2 – body of the podocyte with euchromatic nucleus, rough endoplasmic reticulum and Golgi; 3 – numerous pedicles of

podocytes abutting the glomerular basement membrane; 4 – erythrocyte.

Figure 4. Electron micrograph of the rat proximal tubule in the male progeny of angiotensin II-treated rat mothers (aþb) and controls (c). In experimental group,

microvilli at the apical surface of epithelial cells of proximal tubules are less numerous in comparison to control group of rats.

Figure 5. Electron micrograph of mitochondria from the rat proximal tubule in the male progeny of angiotensin II-treated rat mothers (aþb) and controls (c). The

experimental group mitochondria are bulged (enlarged) with irregularly arranged and less abundant cristae in comparison with the control group.
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In our previous paper, we reported increased BP and
decreased relative kidney weight of offspring prenatally
exposed to elevated Ang II levels.18 Because the kidney
has an important role in several developmental models of

hypertension,27,28 we investigated in more detail the con-
sequences of prenatally increased Ang II on the structure
and function of the kidney in male offspring. In the present
study, we focused only on males because previously we
showed that male offspring of Ang II treated mothers dis-
played more distinct increase in BP than females.18

Likewise, published data demonstrate more serious nega-
tive effects of maternal programming in males than
females.17 RAAS plays an essential role in the development
of the kidney in all stages of organogenesis,29,30 and dereg-
ulation of RAAS during intrauterine development leads to
permanent changes in the kidney, such as reduced total
number of the glomeruli.27,28 Reduction of nephron num-
bers at young age can lead to hyperfiltration in remaining
nephrons with subsequent proteinuria, progressive renal
damage, and hypertension.31

Increased Ang II levels during the prenatal period may
result in changes in the kidney development and increase
the susceptibility to hypertension in adulthood. Our mor-
phological analyses revealed decreased mean glomerular
volume in the offspring after prenatal exposure to Ang II.
Together with the lower relative kidney weight,18 all these
changes can result in a reduced filtration area and glomer-
ular filtration rate. The decreased glomerular filtration rate

Figure 6. Electron micrograph of the cytoplasm of the rat proximal tubule in the male progeny of angiotensin II-treated rat mothers (aþb) and controls (c). The

cytoplasm of experimental groups contains a high number of lysosomes (electron dense, black, round structures on electron micrographs). Fusion of lysosomes with

mitochondria is present on Figure b.

Figure 7. Renal infiltration of T-cells (CD43) (a) and macrophages (CD68) (b) in the adult male progeny of control (CONT) and angiotensin II-treated (ANG) rat mothers.

Both groups were provided either with standard chow (CONTc, n¼ 5 and ANGc, n¼ 4) or increased salt diet (CONTs, n¼ 6 and ANGs, n¼ 7) for three weeks. Data are

given as means�SEM. *P< 0.05.

Figure 8. Oxidative burst of neutrophils in response to phorbol myristate acetate

(PMA) stimulation in the male progeny of control (CONT, n¼ 6) and angiotensin II

treated (ANG, n¼ 6) rat mothers. Oxidative burst was calculated as fold increase

of mean dichlorofluorescein (DCF) fluorescence between unstimulated and PMA

stimulated samples. Data are given as means�SEM.* P<0.05.
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may lead to increased vascular resistance and hyperten-
sion.32 Since the increased salt intake in either group
induced changes of these parameters, we assume organiza-
tional effects of Ang II during the kidney development
instead of a direct effect on BP regulation.

We found increased CTI in offspring of ANG mothers
with no additional effect of increased salt. Moreover, dis-
tinct ultrastructural changes were observed in proximal
tubules. Animals prenatally exposed to Ang II had fewer
microvilli, which were also often shortened and less dis-
tributed along brush border. This phenomenon was also
observed in SHR rats33 and suggests impaired reverse
resorption of proximal tubules. These findings are consis-
tent with our previous results, which showed an impaired
function of renal Na, K-ATPase localized on basolateral
membranes of tubules in the progeny of Ang II treated
mothers.34 Moreover, Ang II is known to increase glomer-
ular damage in models with genetic up-regulation of
RAAS, such as TGR(mRen2)27 rats.35

In our experiment higher salt diet was applied as a
second insult to mimic postnatal life style factors in a
human population.5 It was expected that such a “second
hit” may exacerbate predispositions, which were induced
by the prenatal Ang II treatment. However, we did not find
significant changes in the kidney after increased salt intake
and this finding is in agreement with data on BP in our
previous study.18 Surprisingly, the progeny of Ang II
treated mothers displayed a decreased sensitivity of BP to
salt. The absence of negative effects of higher salt diet was
not expected but can be explained by a moderately
increased (2%) salt content, which is still in a physiological
range. Therefore, we assume that the dose and/or duration
of salt treatment were not sufficient for induction of nega-
tive changes.

Clinical and experimental studies indicate that Ang II
recruits inflammatory cells, induces the release of cyto-
kines, and directly stimulates intracellular signaling mech-
anisms related to kidney inflammation and fibrosis
contributing to the progression of chronic kidney dis-
eases.36 In our experiment, prenatal exposure to Ang II
led to a significant increase of infiltrated T-cells and macro-
phages. This process is related to kidney damage such as
nephropathy37 or hypertension.38 Immune cell infiltration

can further exacerbate kidney damage because of enhanced
production of reactive oxygen species and cytokines, there-
by increasing oxidative stress and via the cytokines vaso-
constriction of the capillary vessels of the kidney occurs.39

The recruitment of monocytes into the kidney is not a
random process and is stimulated by chemoattractant pro-
teins such as monocyte chemoattractant protein-1.
Angiotensin II has been shown to induce the production
of this protein in glomerular endothelial cells via AT1 recep-
tors and nicotinamide-adenine dinucleotide phosphate
(NADPH) oxidase-dependent reactive oxygen species
(ROS) generation.40 In the same way, Ang II can stimulate
an oxidative burst in neutrophils.41 This is in line with our
results as the progeny of Ang II-treated mothers displayed
an increased oxidative burst of stimulated neutrophils indi-
cating potential priming effects on these immune cells.
Kidney damage and increased ROS production in hyper-
tension are often associated with mitochondrial dysfunc-
tion.42 This was suggested also in our study based on
ultrastructural changes in the mitochondria in renal tissues
of prenatally exposed Ang II animals. Moreover, we found
a large number of lysosomes and frequent fusion of lyso-
somes with mitochondria in epithelial cells of the proximal
tubules in ANG rats indicating that damaged mitochondria
may be removed by lysosomes. All these morphological
changes confirm deregulation of RAAS in animals prena-
tally exposed to Ang II.

Conclusions

Increased Ang II in pregnant female rats resulted in
changes of renal morphology and infiltration of immune
cells into the kidney of mature male offspring. These pro-
cesses were accompanied by degenerative changes, espe-
cially in proximal tubules of nephron. Our results suggest
that the deregulated RAAS in mothers is involved in devel-
opmental programming of hypertension in adult male off-
spring via deterioration of kidney morphology
and function.

Authors’ contributions: All authors participated in the
design of experiments, analysis of the data and writing of
the manuscript.

Table 1. Total count of leukocytes and both counts and percentages of individual leukocyte populations in the male progeny of control (CONT, n¼ 6)

and angiotensin II-treated (ANG, n¼ 6–7) rat mothers.

Counts (No/ mL) Percentages (%)

CONT ANG t-test P-value df CONT ANG t-test P-value df

Leukocytes 9551� 623 8899� 763 �0.646 0.531 11

Neutrophils 1289� 65 1267� 114 �0.162 0.874 10 13.8� 1.1 15.4� 1.7 0.800 0.442 10

Monocytes 1262� 40 1138� 157 �0.770 0.459 10 12.9� 1.1 13.8� 1.5 0.447 0.664 10

T cells 4347� 462 3558� 349 �1.385 0.193 11 46.1� 1.8 40.7� 3.2 �1.418 0.184 11

Th cells 2987� 343 2568� 260 �0.989 0.344 11 69.3� 1.4 72.4� 1.8 1.311 0.216 11

Tc cells 1248� 104 930� 83* �2.417 <0.05 11 29.6� 1.4 26.6� 1.8 �1.259 0.234 11

NK cells 326� 47 320� 70 �0.071 0.944 11 3.4� 0.4 3.5� 0.6 0.170 0.868 11

B cells 1937� 171 1650� 240 �0.942 0.367 11 20.7� 1.2 18.8� 2.5 �0.641 0.534 11

Note: Data are presented as means�SEM. Percentages are calculated as proportions of total number of leukocytes, except helper (Th) and cytotoxic (Tc) T cells,

which are calculated as proportions of the number of T cells. Differences between CONT and ANG rats are compared by Student t-tests; df: degrees of freedom.
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