
Biometrika (2019), 106, 3, pp. 724–731 doi:10.1093/biomet/asz023
Printed in Great Britain Advance Access publication 13 May 2019

Nonidentifiability in the presence of factorization
for truncated data

By B. VAKULENKO-LAGUN

Department of Biostatistics, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue,
Boston, Massachusetts 02115, U.S.A.

blagun@hsph.harvard.edu

J. QIAN

Department of Biostatistics and Epidemiology, University of Massachusetts, 715 N. Pleasant Street,
Amherst, Massachusetts 01003, U.S.A.

qian@schoolph.umass.edu

S. H. CHIOU AND R. A. BETENSKY

Department of Biostatistics, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue,
Boston, Massachusetts 02115, U.S.A.

schiou@hsph.harvard.edu betensky@hsph.harvard.edu

Summary

A time to event, X , is left-truncated by T if X can be observed only if T < X . This often results
in oversampling of large values of X , and necessitates adjustment of estimation procedures to avoid
bias. Simple risk-set adjustments can be made to standard risk-set-based estimators to accommodate
left truncation when T and X are quasi-independent. We derive a weaker factorization condition for
the conditional distribution of T given X in the observable region that permits risk-set adjustment for
estimation of the distribution of X , but not of the distribution of T . Quasi-independence results when the
analogous factorization condition for X given T holds also, in which case the distributions of X and T are
easily estimated. While we can test for factorization, if the test does not reject, we cannot identify which
factorization condition holds, or whether quasi-independence holds. Hence we require an unverifiable
assumption in order to estimate the distribution of X or T based on truncated data. This contrasts with the
common understanding that truncation is different from censoring in requiring no unverifiable assumptions
for estimation. We illustrate these concepts through a simulation of left-truncated and right-censored data.

Some key words: Constant-sum condition; Kendall’s tau; Left truncation; Right censoring; Survival data.

1. Introduction

Truncated survival data arise when observation of the time to event, X , occurs only when it falls within
a subject-specific interval. Left truncation occurs when X is observed only if T < X , where T is the time
to sampling, i.e., the truncation variable. It often arises in longitudinal cohort studies in which a subcohort
is sampled on the basis of having had a post-baseline assessment prior to the event of interest. Another
example is when the time origin of interest, such as onset of cognitive impairment, may occur prior to
entry into the cohort, and the endpoint of interest is time from onset of cognitive impairment to death.
Estimation must account for the truncation to avoid bias due to the selection based on the magnitude
of X . A critical condition that enables simple risk-set adjustment to standard risk-set-based estimators
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(Lynden-Bell, 1971; Woodroofe, 1985; Wang et al., 1986) was described by Tsai (1990) as quasi-
independence, or independence in the observed region, i.e., T < X . In particular, this means that
H (x, t) = ∫ t

0

∫ x
0 dF(u) dG(v)I (v < u)/α, where H (x, t) = pr(X � x, T � t | T < X ), F(x) = pr(X � x),

G(t) = pr(T � t), α = pr(T < X ), and I (A) = 1 if the event A holds and 0 otherwise. For simplicity of
presentation, we assume that X and T are continuous random variables and that H , F and G have densities
h, f and g with respect to Lebesgue measure. Nonetheless, all of our results apply also to discrete random
variables, as they are based on nonparametric maximum likelihoods (Vardi, 1989). The quasi-independence
assumption expressed in terms of densities is

h(x, t) = f (x)g(t)I (t < x)/α. (1)

This does not imply that the sampled random variables are conditionally independent given T < X ; it is
not equivalent to H (dx, dt) = pr(X ∈ dx | T < X ) × pr(T ∈ dt | T < X ) for t < x, where we use the
notation pr(X ∈ dx) as a shorthand for pr(x � X < x + dx).

Examination of the likelihood based on left-truncated data elucidates the simplification in estimation
that arises from quasi-independence, and reveals that weaker conditions also admit this simplification for
estimation of the distribution of X or T , but not of both. The factorization condition that enables estimation
of the distribution of X is

pr(T ∈ dt | X = x) = dA(t) = a(t) dt (t < x), (2)

where a(t) � 0 need not equal g(t) and is defined on the support of T in the observable region T < X . In
the unobservable region, we define c(t, x) dt = pr(T ∈ dt | X = x) for x < t. For (x, t) in the support of
(X , T ), a(t) and c(t, x) are constrained by∫ ∞

0
pr(T ∈ dt | X = x) =

∫ x

0
a(t) dt +

∫ ∞

x
c(t, x) dt = 1,

g(t) =
∫ ∞

x=t
a(t) dF(x) +

∫ t

x=0
c(t, x) dF(x).

In the Supplementary Material we derive an explicit expression for a(t) as a function of G(t), F(x) and
c(t, x), under the factorization condition (2). We also discuss the special cases of overall independence
and quasi-independence. The factorization condition is similar to the condition of Keiding (1992) that
h(x, t) = f (x)g∗(t), upon identifying g∗(t) as a(t)/α. The factorization condition is reminiscent of the
constant-sum condition for right-censored data (Williams & Lagakos, 1977; Betensky, 2000), under which
dependent censoring can be ignored and the Kaplan–Meier estimator is valid.

Proposition 4 shows that the distribution of T is not identifiable under (2) alone; it also requires a comple-
mentary factorization condition. The two factorization conditions together constitute quasi-independence
(1), under which both distributions can be estimated. We explain in § 3 that the observed data can be used
to test whether neither factorization condition holds, but cannot be used to identify which condition holds
if either does. Therefore, we require unverifiable assumptions in order to estimate the distribution of X or
T based on truncated data. This contrasts with the common understanding that truncation is distinct from
censoring and requires no unverifiable assumptions for estimation.

2. Nonparametric likelihood estimation

2.1. Estimation in the absence of censoring

First we consider estimation in the absence of right censoring. The likelihood of the observed data
{(ti, xi) : i = 1, . . . , n, ti < xi} under left truncation and no censoring is

n∏
i=1

pr(X ∈ dxi, T ∈ dti | T < X ) = L1L2L3 (3)

where
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L1 =
n∏

i=1

pr(T ∈ dti | X = xi)I (ti < xi)

pr(T ∈ dti | X > ti)
, L2 =

n∏
i=1

pr(X ∈ dxi)I (ti < xi)

pr(X > ti)
,

L3 =
n∏

i=1

pr(X > ti) pr(T ∈ dti | X > ti)∫ ∞
0 pr(X > u) pr(T ∈ du | X > u)

.

Proposition 1. Under the factorization condition (2), the nonparametric maximum likelihood estimator
of S(x) = 1 − F(x) is the risk-set-adjusted Kaplan–Meier estimator

Ŝ(x) =
∏
xi�x

{
1 −

∑n
j=1 I (xj = xi)∑n

j=1 I (tj � xi � xj)

}
. (4)

Proof. Under (2), L1 is equal to 1 since its denominator is equal to its numerator, dA(t):

pr(T ∈ dt | X > t) =
∫ ∞

x=t
pr(T ∈ dt | X = x, X > t) pr(X ∈ dx | X > t)

= dA(t)
∫ ∞

x=t
pr(X ∈ dx | X > t) = dA(t).

Thus, L2L3 effectively constitutes the full likelihood, with unknown parameters pr(X ∈ dx) and pr(T ∈ dt |
X > t). The standard risk-set-adjusted Kaplan–Meier estimator given by (4) is the maximum likelihood
estimator of S(x) based on L2, and also equals that based on L2L3 (Wang, 1991). This is because, in the
absence of parametric assumptions on pr(T ∈ dt | X > t), L3 is a multinomial likelihood with maximum
value n−n if there are no ties in t1, . . . , tn, which is attained when each factor in its product is set to the
corresponding sample proportion. A similar argument holds in the presence of ties. �

Since (4) is the maximizer of L2, if it also maximizes the full likelihood (3), then L1L3 must be constant
with respect to S(x). If this latter condition implies factorization (2), then it would follow that (2) is a
necessary condition for (4) to be the nonparametric maximum likelihood estimator of S(x). We conjecture
that this is false.

Under complete independence between T and X , (4) was shown to be uniformly consistent byWoodroofe
(1985). Since the likelihoods that contribute to estimation of S(x) are identical and equal to L2 under any of
the three conditions of complete independence between T and X , quasi-independence (1), or factorization
(2), the uniform consistency of (4) under (1) or (2) can be proved in the same way as under complete
independence between X and T .

The likelihood (3) can also be expressed as L∗
1L∗

2L∗
3 where

L∗
1 =

n∏
i=1

pr(X ∈ dxi | T = ti)I (ti < xi)

pr(X ∈ dxi | T < xi)
, L∗

2 =
n∏

i=1

pr(T ∈ dti)I (ti < xi)

pr(T < xi)
,

L∗
3 =

n∏
i=1

pr(T < xi) pr(X ∈ dxi | T < xi)∫ ∞
0 pr(T < u) pr(X ∈ du | T < u)

.

A complementary factorization condition to (2) for X given T is

pr(X ∈ dx | T = t) = dA∗(x) = a∗(x) dx (t < x), (5)

where a∗(x) � 0 need not equal f (x). Conditions (2) and (5) together are equivalent to quasi-independence,
as stated in the following proposition.

Proposition 2. Under conditions (2) and (5), a(t) = g(t) and a∗(x) = f (x), which implies quasi-
independence (1). Conversely, quasi-independence (1) implies both (2) and (5).
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Proof. Under (2) and (5), h(x, t) = f (x)a(t)I (t < x)/α = a∗(x)g(t)I (t < x)/α, implying a(t) = g(t)
and a∗(x) = f (x), i.e., quasi-independence. Under (1), h(x, t) = f (x)g(t)I (t < x)/α, implying (2) and (5)
with a(t) = g(t) and a∗(x) = f (x). �

Under (5), the likelihood for estimation of G(t) effectively reduces to L∗
2, and its estimation is dual to

that of S(x) (Wang, 1991). This is summarized in the following proposition.

Proposition 3. Under (5), the nonparametric maximum likelihood estimator of G(t) is

Ĝ(t) =
∏
ti�t

{
1 −

∑n
j=1 I (tj = ti)∑n

j=1 I (tj � ti � xj)

}
.

Proof. This follows from Proposition 1 via reversal of time, by treating −T as left-truncated by −X .�

Propositions 1–3 lead to the following corollary.

Corollary 1. Quasi-independence yields the standard risk-set-adjusted estimators of the distributions
of both X and T as the nonparametric maximum likelihood estimators.

Assumptions (1), (2) and (5) are indistinguishable given the observed data. We formalize this conclusion
in Propositions 4 and 5 and Corollary 2. Proposition 4 shows that the likelihood under (2) is equivalent
to that under (1), implying that these conditions cannot be distinguished. Proposition 5 shows that (5) and
(1) cannot be distinguished.

Proposition 4. Assuming factorization (2), quasi-independence (1) cannot be determined from the
observed data. As a consequence, while f (x) is identifiable under (2), g(t) is not.

Proof. This follows from the equivalence of the likelihood functions under quasi-independence (1) and
factorization (2). Under the latter, the likelihood (3) is

L2L3 =
n∏

i=1

dF(xi)I (ti < xi)

S(ti)

n∏
i=1

S(ti) dA(ti)∫ ∞
0 S(u) dA(u)

.

Under quasi-independence (1), the likelihood (3) is

L2L3 =
n∏

i=1

dF(xi)I (ti < xi)

S(ti)

n∏
i=1

S(ti) dG(ti)∫ ∞
0 S(u) dG(u)

.

Since a(t) is defined only on the observable region, it is unique only up to a constant factor. Assuming
that A(t) and G(t) have positive mass at the observed times t1, . . . , tn only, but not assuming their func-
tional forms, the contributions to the likelihood from L3 are identical under (1) and (2). Hence G(t) is
nonidentifiable from the data. �

Proposition 5. Assuming factorization (5), quasi-independence (1) cannot be determined from the
observed data. Thus, while g(t) is identifiable under (5), f (x) is not.

Corollary 2. Quasi-independence (1) cannot be distinguished from the factorization condition (2)
only, or from the factorization condition (5) only, based on the observed data.
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2.2. Estimation under right censoring

The nonidentifiability problem persists in the presence of right censoring. There are two practical models
for right censoring in the presence of left truncation (Qian & Betensky, 2014): one is on the residual time
scale, i.e., censoring of X − T , and the other is on the original time scale, i.e., censoring of X . We extend
the likelihood decomposition (3) to accommodate these models.

We first consider the independent residual censoring assumption. Suppose that D is a residual censoring
time such that D ⊥⊥ (T , X ) | T < X , where ⊥⊥ denotes independence, and that censoring of X occurs
at C = T + D, the total censoring time starting from the time origin. The observed data then comprise
Y = min(X , C), T and δ, where δ = 1 if T < X � C and δ = 0 if T < C < X . This model is appropriate
when censoring occurs only after entry into the study. The likelihood contribution for an uncensored
observation is the same as that in (3):

pr(Y ∈ dy, δ = 1, T ∈ dt | T < X )

= pr(X ∈ dy, T + D > y, T ∈ dt | T < X )

= pr(X ∈ dy, T ∈ dt | D > y − t, T < X ) pr(D > y − t | T < X )

∝ pr(X ∈ dy, T ∈ dt | T < X ),

where the final relation follows from D ⊥⊥ (T , X ) | T < X and the noninformativeness of the distribution
of D for that of X . The contribution for a censored observation is

pr(Y ∈ dy, δ = 0, T ∈ dt | T < X )

= pr(X > y, T + D ∈ dy, T ∈ dt | T < X )

= pr(X > y, T ∈ dt | D = y − t, T < X ) pr(D ∈ d(y − t) | T < X )

∝ pr(X > y, T ∈ dt | T < X ).

The probability pr(X > y, T ∈ dt | T < X ) can be expressed as

pr(T ∈ dt | X > y)

pr(T ∈ dt | X > t)
× pr(X > y)

pr(X > t)
× pr(X > t) pr(T ∈ dt | X > t)∫ ∞

0 pr(X > u) pr(T ∈ du | X > u)
I (t < y),

where the first term is unity under the factorization condition (2).
We next derive the likelihood decomposition under the censoring scheme on the original time scale,

where C is measured from the time origin, with C ⊥⊥ X | T assumed, and pr(T < C) = 1 as in Tsai
(1990). The condition pr(T < C) = 1 ensures that censoring can occur only for the sampled individuals.
The overall likelihood under this censoring scheme equals that under the residual censoring model, given
the assumed noninformativeness of C given T for X and that of D given T < X . Thus, under both models
for censoring, the overall likelihood for left-truncated and right-censored data is

n∏
i=1

pr(Y ∈ dyi, δ = δi, T ∈ dti | T < X ) ∝ L̃1L̃2L̃3

where

L̃1 =
n∏

i=1

pr(T ∈ dti | X = yi)
δi pr(T ∈ dti | X > yi)

1−δi I (ti < yi)

pr(T ∈ dti | X > ti)
,

L̃2 =
n∏

i=1

pr(X ∈ dyi)
δi pr(X > yi)

1−δi I (ti < yi)

pr(X > ti)
,

L̃3 =
n∏

i=1

pr(X > ti) pr(T ∈ dti | X > ti)∫ ∞
0 pr(X > u) pr(T ∈ du | X > u)

.
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Under (2), L̃1 = 1. As in the uncensored case, L̃2 is the only component of the likelihood that contributes
to estimation of S(x) by the risk-set-adjusted Kaplan–Meier estimator (Wang, 1991)

Ŝ(x) =
∏
yi�x

{
1 −

∑n
j=1 I (yj = yi)δi∑n

j=1 I (tj � yi � yj)

}
. (6)

As in Proposition 4, under (2) the data cannot inform whether pr(T ∈ dt | X > t) equals dG(t) or dA(t).
Nonetheless, the nonparametric maximum likelihood estimator of pr(T � t | X > t), assuming that it is a
distribution function, is

{ n∑
j=1

1

Ŝ(tj)

}−1 n∑
i=1

1

Ŝ(ti)
I (ti � t). (7)

In the setting of independent X and (T , C) with pr(T < C) = 1, (7) estimates G(t) (Wang, 1991). Under
factorization (2) without quasi-independence, (7) maximizes the likelihood L̃3 given Ŝ(x) and estimates a
normalized version of A(t) and not G(t). Under factorization (5) without quasi-independence, an alternative
decomposition of the likelihood with similar arguments yields the analogous result for estimation of G(t)
and A∗(x), as shown in the Supplementary Material.

3. Testing for the factorization condition

A statistic commonly used to test for quasi-independence is the conditional Kendall’s tau (Tsai, 1990;
Martin & Betensky, 2005). In the presence of censoring, this is defined as τc = E[sgn{(Yi − Yj)(Ti − Tj)} |
�ij], where sgn(a) = I (a > 0) − I (a < 0) and �ij = {max(Ti, Tj) � min(Yi, Yj)} ∩ {δi sgn(Yj − Yi) =
1 ∪ δj sgn(Yi − Yj) = 1} denotes the event that the pair (i, j) is comparable and orderable. A consistent
estimator of τc is the basis of a test for the null hypothesis of (2) or (5), versus the alternative of neither
(2) nor (5). This is justified by τc = 0 under (2) or (5). We derive this for (2); the calculations are similar
under (5):

pr(�ij)τc = E[sgn{(Y1 − Y2)(T1 − T2)}I (�12)]
= pr(δ1 = 1, T1 < T2 < X1 < Y2) − pr(δ2 = 1, T1 < T2 < X2 < Y1) (8)

+ pr(δ2 = 1, T2 < T1 < X2 < Y1) − pr(δ1 = 1, T2 < T1 < X1 < Y2).

Under the residual censoring model and factorization condition (2), and upon defining SD(u) = pr(D > u)

as the survival function of D, we can express pr(δ1 = 1, T1 < T2 < X1 < Y2) as

α2

∫ ∞

t=0

∫ ∞

u=t
pr(T2 ∈ dt, T1 < t, X1 ∈ du, C1 > u, X2 > u, C2 > u | T1 < X1, T2 < X2)

=
∫ ∞

t=0

∫ ∞

u=t

{∫ t

s=0
SD(u − s) dA(s)

}
S(u)SD(u − t) dF(u) dA(t).

The second term of (8) can be expressed similarly, and the remaining two terms are trivially equivalent to
the first two terms upon relabelling the indices. A similar result applies under the original-scale censoring
model. This demonstrates that τc = 0 under either factorization condition, and the conditional Kendall’s
tau provides a valid test for the null of either (2) or (5). If the test does not reject the null hypothesis, then
under (2), Proposition 4 states that a(t) cannot be distinguished from g(t) in the observable region, and so
quasi-independence cannot be distinguished from factorization. This holds for any test of factorization in
the absence of external information.

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asz023#supplementary-data
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Fig. 1. Simulation results for the estimation of: (a) pr(X > x | X > 1), with a grey solid line depicting the
true curve and a black dashed line depicting the average of Kaplan–Meier estimates; (b) pr(T � t), with a grey
solid line depicting the true A(t), a black dotted line depicting the average of the estimates of Wang (1991),

and a black dashed line depicting G(t) = pr(T � t).

4. Simulation

We conducted a simulation study to illustrate empirically that the factorization condition (2) alone,
without quasi-independence (1), is sufficient for the validity of the risk-set-adjusted Kaplan–Meier esti-
mator for the distribution of X , as stated in Proposition 1. We also demonstrate that Kendall’s tau yields a
valid test of the factorization condition even in the absence of quasi-independence. Finally, we illustrate
Proposition 4, that under (2) without the complementary condition (5), we may not be able to estimate the
truncation distribution G(t). Let

pr(T ∈ dt | X = x) =
{

0.5 I (1 � t � 3) dt, x < 1,

0.25t I (1 � t � 3) dt, x � 1,

where X ∼ Ex(θ) and we set θ = 1.1. It follows that g(t) = {0.5 − 0.5 exp(−θ) + 0.25t exp(−θ)}I (1 �
t � 3), a(t) = 0.25t I (1 � t � 3), and c(t, x) = 0.5 if x < 1 and c(t, x) = 0.25t if 1 � x < t � 3. Since
a(t) |= g(t), quasi-independence does not hold. We generated right censoring through an independent
residual censoring time D ∼ Un[0, 3]. Each sample consisted of n = 200 triples {min(X , T + D), T , δ =
I (X � T + D)} | T < X . This yielded 88% truncation and 30% censoring based on 1000 replications.

Our first aim is to check the validity of the risk-set-adjusted Kaplan–Meier estimator of the conditional
distribution, pr(X > x | X > 1). The full marginal pr(X > x) is not estimable because there is no
information for X < 1. Figure 1(a) displays the averaged adjusted Kaplan–Meier estimate, which is
indistinguishable from its target, confirming that the adjusted Kaplan–Meier estimator is valid under
condition (2) and does not require the stronger condition (1). We also applied the conditional Kendall’s
tau test of Martin & Betensky (2005) and obtained an estimated Type I error of 0.041, which supports the
validity of the test for either factorization condition even in the absence of quasi-independence. Figure 1(b)
shows that the estimator (7) estimates A(t) and not G(t), as expected from Proposition 4.

5. Discussion

We have shown that the commonly accepted requirement of quasi-independence of T and X is stronger
than the factorization condition (2) that is actually needed for nonparametric estimation of the distribution
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of X . While we can test for factorization, the observed data do not allow us to distinguish between quasi-
independence (1) and the two factorization conditions (2) and (5). This highlights an identification problem
that has not been recognized in the literature; an unverifiable assumption is therefore required in order to
estimate the distribution of X based on truncated data. In some observational studies, the origin may be
observed for all subjects and the delayed study entry time may be externally determined, such as by calendar
date. In this case, T is known for the whole population and so G(t) is known. If factorization is not rejected
via Kendall’s tau test, knowledge of G(t) enables the factorization condition (2) to be distinguished from
quasi-independence (1) and the factorization condition (5). In particular, if factorization holds and Â(t)
does not estimate G(t), it follows from Proposition 3 that condition (5) does not hold, which means that
(2) must hold and, importantly, we can estimate F(x).

Acknowledgement

The first two authors contributed equally. We thank Micha Mandel and Richard Cook for helpful
comments. We acknowledge funding from the U.S. National Institutes of Health.

Supplementary material

Supplementary material available at Biometrika online includes the derivation of an explicit expression
for a(t) given G(t), F(x) and c(t, x) under factorization condition (2); it also contains a proof that under (5)
and for both censoring models, although S(x) is nonidentifiable, G(t) is identifiable and its nonparametric
maximum likelihood estimator is similar to the estimator (7).
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