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Summary

Meta-analysis is widely popular for synthesizing information on common parameters of inter-
est across multiple studies because of its logistical convenience and statistical efficiency. We
develop a generalized meta-analysis approach to combining information on multivariate regres-
sion parameters across multiple studies that have varying levels of covariate information. Using
algebraic relationships among regression parameters in different dimensions, we specify a set of
moment equations for estimating parameters of a maximal model through information available
from sets of parameter estimates for a series of reduced models from the different studies. The
specification of the equations requires a reference dataset for estimating the joint distribution of
the covariates. We propose to solve these equations using the generalized method of moments
approach, with the optimal weighting of the equations taking into account uncertainty associated
with estimates of the parameters of the reduced models. We describe extensions of the iterated
reweighted least-squares algorithm for fitting generalized linear regression models using the pro-
posed framework. Based on the same moment equations, we also develop a diagnostic test for
detecting violations of underlying model assumptions, such as those arising from heterogeneity
in the underlying study populations. The proposed methods are illustrated with extensive simula-
tion studies and a real-data example involving the development of a breast cancer risk prediction
model using disparate risk factor information from multiple studies.

Some key words: Data integration; Empirical likelihood; Generalized method of moments; Meta-analysis; Missing
data; Semiparametric inference.

1. Introduction

In many areas of applications, including observational epidemiological studies, clinical trials
and modern genome-wide association studies, meta-analysis is widely used to synthesize infor-
mation on underlying common parameters of interest across multiple studies (Dersimonian &
Laird, 1986, 2015; Ioannidis, 2005; Kavvoura & Ioannidis, 2008). The popularity of meta-analysis
stems from the fact that it can be performed based only on estimates of model parameters and
standard errors, avoiding various logistical, ethical and privacy concerns associated with access-
ing the individual-level data required in pooled analysis. Moreover, in many common settings,
it can be shown that under reasonable assumptions, meta-analysed estimates of model parame-
ters are asymptotically as efficient as those obtained from pooled analysis (Olkin & Sampson,
1998; Mathew & Nordstrom, 1999; Lin & Zeng, 2010). In fact, meta-analysis methods are now
being used in divide-and-conquer approaches to big data, even when individual-level data are
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potentially available, because of the daunting computational task of model fitting with extremely
large sample sizes (Jordan, 2013; Fan et al., 2014; Chun et al., 2015).

In this article, we study the problem of multivariate meta-analysis in the setting of parametric
regression modelling of an outcome given a set of covariates. In standard settings, if estimates
of multivariate parameters for an underlying common regression model and their associated
covariances are available across all the studies, then meta-analysis can be performed by taking
the inverse variance-covariance weighted average of the vector of regression coefficients (van
Houwelingen et al., 2002; Ritz et al., 2008; Jackson et al., 2011). In many applications, a typical
problem is that different studies include different, but possibly overlapping, sets of covariates.
In a large consortium of epidemiological studies, for example, some key risk factors will be
measured across all the studies, but inevitably there will be potentially important covariates that
are measured only in some, but not all, of the studies. It is also possible that some covariates will
be measured at a more detailed level or with a finer instrument in some studies than in others.
Disparate sets of covariates across studies mean that standard meta-analysis is applicable only to
the development of models limited to a core set of variables that are measured in the same way
across all the studies.

We propose a generalized meta-analysis method, which we call genmeta, for building rich
models using information on model parameters across studies with disparate covariate informa-
tion. Our approach is built upon a fundamental mathematical relationship, presented in our recent
work (Chatterjee et al., 2016), between parameters of two regression models in different dimen-
sions. In the present article, we use this mathematical relationship to develop a general framework
for combining information on parameters of various models of different dimensions within the
generalized method of moments framework (Hansen, 1982; Imbens, 2002). We develop an iter-
ated reweighted least-squares algorithm that allows stable and speedy computation of estimates.
The proposed method requires access to a reference dataset for estimating the joint distribu-
tion of the covariates in a nonparametric fashion. We show how the reference dataset can be
used to derive an optimal estimator and the associated variances and covariances, even when
entire variance-covariance matrices for model parameter estimates may not be obtainable from
individual studies.

2. Models and methods

2.1. Model formulation

Suppose that we have parameter estimates θ̂k and associated estimates of their covariance
matrices Sk from K independent studies that have fitted reduced regression models, of the form
gk(Y | XAk ; θk), where Y is a common underlying outcome of interest, but the vector of covariates
XAk is potentially distinct across different studies. Let X be the set of covariates used in at least
one study, and assume that the true distribution of Y given X can be specified by a maximal
regression model f (Y | X ;β). Our goal is to estimate and make inference about β∗, the true
value of β, based on summary-level information, (θ̂k , Sk), from the K studies.

In the proposed set-up it is possible, but not necessary, that some of the studies will have
information on all covariates to fit the maximal model by themselves. Under certain study designs,
such as multi-phase designs (Breslow & Cain, 1988; Breslow & Holubkov, 1997; Scott & Wild,
1997; Whittemore, 1997) and the partial questionnaire design (Wacholder & Carroll, 1994), data
could be partitioned into independent sets such that the maximal model can be fitted on some sets
and various reduced models fitted on others. The maximal model f (Y | X ;β) and the reduced
models gk(Y | XAk ; θk) may have different parametric forms, such as logistic and probit models
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when Y is a binary disease outcome. This set-up also allows incorporation of covariates which
may be measured more accurately, or in a more refined manner in some studies than in others.
For example, different studies may include two types of measurements, say Z1 and Z2, for the
same covariate, with Z2 being a more refined measurement. In this case the different reduced
models may include Z1 or Z2, but we require that the reference dataset include both Z1 and Z2.
In the maximal model, we can force Y to be independent of Z1 given Z2 by setting the regression
parameters associated with Z1 to zero.

If all of the reduced models are the same, i.e., all the studies have the same covariate
information, then Xk = X , θk = β and gk = f for each k , and the common param-
eter of interest β∗ can be efficiently estimated by the fixed-effect meta-analysis estimator
β̂meta = ∑K

k=1(
∑K

k=1 S−1
k )−1S−1

k θ̂k , the variance of which can in turn be estimated by
�̂meta = (

∑K
k=1 S−1

k )−1 (van Houwelingen et al., 2002; Ritz et al., 2008; Jackson et al., 2011).

2.2. A special case involving the linear regression model

As readers may have difficulty comprehending how it is possible to estimate parameters of
the maximal model when no single study may have ascertained Y and all components of X
simultaneously, here we give a linear model example to help develop insight into the problem.
Suppose that one is interested in developing a multiple linear regression model for Y based on a
set of covariates X in the form

Y = α +
K∑

k=1

βkXk + ε,

where it is further assumed that ε ∼ N (0, σ 2). Without loss of generality, we assume that all
the variables Y , X1, . . . , XK are standardized to have mean 0 and variance 1. Under this model,
the population parameter β = (β1, . . . ,βK )

T can be expressed as β = E(X TX )−1E(X TY ) =
R−1E(X TY ), where R is the population correlation matrix of X . Now, suppose we have no data
available on Y and multivariate X on the same sample, but we do have estimates available for
parameters θk (k = 1, . . . , K) for univariate linear regression models of the form

Y = θkXk + ψk .

From above, θk = E(XkY ), and so θ̂ = (θ̂1, . . . , θ̂K ) provides an estimate of the cross product
terms E(X TY ), which are required in estimating β. Further, if we have a reference dataset which
contains information on multivariate X , but is not required to be linked to Y , it can be used to
estimate R, as R̂ say, and a consistent estimate of β can then be obtained simply as β̂ = R̂−1θ̂ .
Thus, it is possible to estimate parameters of a multiple regression model using information on
parameters of a series of univariate regression models and a reference dataset. In fact, this obser-
vation that information on univariate regression parameters, known as summary-level statistics,
can be used to reconstruct estimates of parameters of multivariate regression models has revolu-
tionized the field of statistical genetics. Recently, a great variety of methods have been developed
for inference on parameters underlying multivariate regression models that utilize widely avail-
able summary-level results from large genome-wide association studies and reference datasets to
estimate linkage disequlibrium across genetic markers (Yang et al., 2012; Bulik-Sullivan et al.,
2015; Zhu et al., 2016; Pasaniuc & Price, 2017). In the following, we describe a more general
statistical formulation of the problem that allows consideration of nonlinear models and use of
information from arbitrary types of reduced models, as opposed to simply univariate models.
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2.3. Generalized meta-analysis

The key idea underlying the proposed generalized meta-analysis is that we convert information
on parameters from reduced models into a set of equations that are informative about the param-
eters of the maximal model. We will make the following assumptions: (i) the same probability
law for (Y , X ) holds for all the underlying populations; (ii) f (Y | X ;β) is a correctly specified
model for the conditional distribution of (Y | X ); and (iii) we have a reference dataset to estimate
empirically the joint distribution of all the factors included in X .

Here we assume that all the studies employ a random sampling design and that the same
probability law for (Y , X ) holds for all of the underlying populations. Let sk(y | xAk ; θk) =
∂ log gk(y | xAk ; θk)/∂θk be the score function of the kth reduced model, and write uk(x;β, θk) =∫

sk(y | xAk ; θk)f (y | x;β) dy. Assume that θ̂k is the maximum likelihood estimator from the
kth study, and denote by θ∗

k the asymptotic limit of θ̂k . Irrespective of whether the reduced
models are correct, Epr∗{sk(Y | XAk ; θ∗

k )} = 0 holds, where pr∗ denotes the true probability law.
Assuming that the maximal model is correctly specified, we can write pr∗(Y , XAk ) = ∫

X \XAk
f (Y |

X ;β∗) dF∗(X ). Hence, a general equation describing the relationship between β∗ and θ∗
k is of

the form (Chatterjee et al., 2016)

∫
uk(x;β∗, θ∗

k ) dF∗(x) = 0.

As we may not have individual-level data from the studies, these equations cannot be evaluated
directly. Instead, we assume that we have a reference sample of size n, independent of the study
samples, on which measurements of X are available. The reference sample need not be linked
with the outcome Y of interest, and its sample size can be fairly modest compared with the study
sample sizes.

With θ̂k from the studies and the reference sample {Xi}n
i=1, we can set up the esti-

mating equations Un(β, θ̂ ) = (1/n)
∑n

i=1 U (Xi;β, θ̂ ) = 0, where U (x;β, θ) = {uT
1(x;

β, θ1), . . . , uT
K (x;β, θK )}T, θ̂ = (θ̂T

1 , . . . , θ̂T
K )

T and θ = (θT
1 , . . . , θT

K )
T. Denote the dimensions of θk

and β by dk and p, respectively. Because the number of equations d = ∑K
k=1 dk can be larger than

the number of unknown parameters p, it may be that the estimating equations cannot be solved
exactly. Based on the generalized method of moments, we propose the following generalized
meta-analysis estimator ofβ
: β̂ = arg minβQĈ(β)where QĈ(β) = Un(β, θ̂ )TĈUn(β, θ̂ ), with Ĉ
being a positive-semidefinite weighting matrix. Using the well-established theory of generalized
method of moments (Hansen, 1982; Engle & McFadden, 1994), we derive the asymptotic proper-
ties of our estimator. Assume that the study summary statistics θ̂k are independent across studies,
that nk

1/2(θ̂k − θ∗
k ) → N (0,�k) in distribution, that limn→∞nk/n = ck > 0 for each k , and that

the reference sample is independent of the study samples. Let � = E{∂U (X ;β, θ
)/∂β|β=β∗},
� = E{U (X ;β∗, θ
)U

T
(X ;β∗, θ
)} and 
 = diag(
1, . . . ,
K ), where 
k = (1/ck)Wk�kW T

k
with Wk = E{∂uk(X ;β∗, θk)/∂θk}|θk=θ∗

k
for k = 1, . . . , K .

Theorem 1 (Consistency and asymptotic normality of β̂). Suppose that the positive-
semidefinite weighting matrix Ĉ tends to C in probability. Then, under Assumptions A1–A4
in the Appendix, β̂ → β∗ in probability. Further, if β∗ is an interior point, then under the addi-
tional Assumptions A5–A9 in the Appendix, n1/2(β̂−β∗) converges in distribution to the normal
distribution N {0, (�TC�)−1�TC(�+
)C�(�TC�)−1}.
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The optimal C that minimizes the above asymptotic covariance matrix is Copt = (�+
)−1,
and the corresponding optimal asymptotic covariance matrix is {�T(� + 
)−1�}−1. Because
Copt itself depends on unknown underlying parameters, it requires iterative evaluation. In our
applications, we first evaluate an initial estimator with a simple choice of Ĉ, such as the iden-
tity matrix. We then obtain the iterated estimator by continuing to set Ĉ = Ĉopt based on the
latest parameter estimate until convergence. By Theorem 1, β̂ with Copt approximately follows
a Gaussian distribution with mean β∗ and covariance matrix

[
�T

{
1

n
�+ diag

(
1

n1
W1�1W T

1 , . . . ,
1

nK
WK�K W T

K

)−1
}
�

]−1

, (1)

which indicates that the precision of our estimator depends on the size of the reference sample, n,
as well as on the sample sizes of the studies, nk . However, as we will see in § 3, the study sample
sizes are the dominant factor controlling the precision of our estimator, and with the nk fixed the
precision quickly reaches a plateau as a function of n.

For the implementation of the optimal generalized meta-analysis and the variance estima-
tion of any of the generalized meta-analysis estimators, one needs to have valid estimates of

k , which depend on �k , the asymptotic covariance matrices of the estimates of the reduced
model parameters. Ideally, the studies should provide robust estimates of the covariance matrices,
such as the sandwich covariance estimators, so that they are valid irrespective of whether the
underlying reduced models are correctly specified or not. In practice, however, while we expect
some kind of estimate of standard errors of the individual parameters to be available from a
study, obtaining the desired robust estimate of the entire covariance matrix can be difficult.
When no estimate of �k is available from the kth study, one can take advantage of the ref-
erence sample to estimate it by �̂ref

k = Ĵ −1V̂ Ĵ −1, where Ĵ = Pn[EY |X {∇θk sk(θk)}]|θk=θ̂k

and V̂ = Pn[EY |X {sk(θk)sk(θk)
T}]|

θk=θ̂k
with sk(θ̂k) = sk(Y | XAk ; θk)|θk=θ̂k

; here θ̂k is a

consistent estimator of θ
k , ÊY |X is the expectation with respect to the distribution of Y | X
with β
 replaced by a consistent estimator β̂, and Pn is the empirical measure with respect
to the reference sample. Further, assuming EY |X {∇θk sk(θk)}|θk=θ∗

k
= ∇θk EY |X {sk(θk)}|θk=θ∗

k
,

it follows that 
k = (1/ck)E(Y , X ){sk(θk)sk(θk)
T}|θk=θ∗

k
, which can be estimated by 
̂ref

k =
(1/ck)Pn[EY |X {sk(θk)sk(θk)

T}]|
θk=θ̂k

. For example, suppose that Y | X and Y | XAk follow logis-
tic distributions with parametersβ
 and θk , respectively. Write X = (1, X T)T and XAk = (1, X T

Ak
)T.

Then


̂ref
k = 1

ck
Pn

([{1 + exp(X T
Ak
θ̂k)}−2{1 + exp(−X Tβ)}−1

+ {1 + exp(−X T
Ak
θ̂k)}−2{1 + exp(X Tβ̂)}−1]XAk X T

Ak

)
. (2)

In § 3 we will study the properties of our generalized meta-analysis estimators using either
covariance matrices estimated from studies or the reference sample.

It is illuminating to explore the connection between our proposed approach and standard meta-
analysis when all of the reduced models are identical to the maximal model, that is, when θ∗

k = β∗,
XAk = X and gk = f for each k . In this set-up, the moment vector evaluated at the true parameters
becomes zero for each study, i.e., uk(X ;β∗, θ∗

k ) = uk(X ;β∗,β∗) = 0. This simplification implies
� = 0, and hence the optimal weighting matrix is Copt = 
−1 = diag(c1�, . . . , cK�), where�
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is the inverse of the Fisher’s information matrix of f . Denote by β̂opt the genmeta estimator with
a consistent estimator of Copt. Then, by arguments similar to those in the proof of Theorem 1,
β̂opt can be expressed as

β̂opt = β̂meta + op(1/n1/2),

which implies that β̂opt and β̂meta are asymptotically equivalent in terms of limiting distributions.

2.4. Generalized linear model and iterated reweighted least-squares algorithm

Our generalized meta-analysis computation involves minimization of a quadratic form,
QC(β) = U T

n (β, θ̂ )CUn(β, θ̂ ), with a known weighting matrix C. In this subsection we derive
the iterated reweighted least-squares algorithm for minimizing the quadratic form, assum-
ing that the maximal and reduced models belong to the class of generalized linear models
(McCullagh & Nelder, 1989). Specifically, the densities of Y | X and Y | XAk are of the forms
exp({1/a(φ)}[yh(xTβ
)−b{h(xTβ
)}]+ c(y;φ)) and exp({1/a(φk)}[yh(xT

Ak
θk)−b{h(xT

Ak
θk)}]+

c(y;φk)), respectively, where a(·), b(·) and c(·) are known functions, h(·) = b′−1{g−1(·)} with
g a monotone and differentiable link function, and φ and φk are the dispersion parameters of the
maximal and the kth reduced models, respectively.

First we assume that the dispersion parameters, φ and the φk , are known; later we will relax
this assumption. In this case it follows that for each k ,

uk(x;β, θk) = rk(x;β, θk ,φk)xAk , (3)

where rk(x;β, θk ,φk) = {1/a(φk)}{g−1(xTβ) − g−1(xT
Ak
θk)}h′(xT

Ak
θk). Then the empirical

moment vector is Un(β, θ̂ ) = Pn{u1(X ;β, θ̂1)
T, . . . , uK (X ;β, θ̂K )

T}T. The Newton–Raphson
method for seeking the minimizer of QC(β) can be written as

β(t+1) = β(t) − (X T
rbindW ∗Xrbind)

−1X T
rbindWXAdiagCX T

Adiag
r. (4)

In (4), Xrbind = 1 ⊗ X where X(n×p) is the reference data matrix; XAdiag = diag(XA1 , . . . , XAK )

where XAk (n×dk ) is the reference data matrix for the kth study; W = diag(W1, . . . , WK )

with Wk = diag(wk1, . . . , wkn) and wki = (1/[a(φk)g′{g−1(X T
i β

(t))}])h′(X T
Ak ,iθ̂k) (k =

1, . . . , K ; i = 1, . . . , n); W ∗ is the sum of WXAdiagCX T
Adiag

W and diag(rTXAdiagCX T
Adiag

L),

a diagonalized matrix from a vector; r = (rT
1, . . . , rT

K )
T with rk = (rk1, . . . , rkn)

T and
rki = rk(Xi;β(t), θ̂k ,φk); and L = diag(L1, . . . , LK ) with Lk = diag(lk1, . . . , lkn) and
lki = −g′′{g−1(X T

i β
(t))}/(a(φk)[g′{g−1(X T

i β
(t))}]3h′(X T

Ak ,iθ̂k)). Equation (4) implies that the
Newton–Raphson method is an iterated reweighted least-squares algorithm.

When φ and the φk are unknown, we propose to first obtain the estimator β̂ of β
 as above
with φk replaced by φ̂k . Next, we consider the estimation of φ
, the true value of φ. For the
kth reduced model, we have an additional score function with respect to φk , from which we can
obtain, similar to equation (3),

uk(X ;β,φ, θk ,φk) = − a′(φk)

a2(φk)

[
g−1(X Tβ)h(X T

Ak
θk)− b{h(X T

Ak
θk)}

] + qk(X ;β,φ,φk),

with qk = EY |X {c′(Y ;φk)} where c′(Y ;φk) is the derivative of c(Y ;φk) with respect to φk . Then
the empirical moment vector forφ is Un(φ) = Pn{u1(X ; β̂,φ, θ̂1, φ̂1)

T, . . . , uK (X ; β̂,φ, θ̂K , φ̂K )
T}T.
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To estimate φ
, we need to compute the minimizer of Un(φ)
TCUn(φ), where C is a known

weighting matrix. The Newton–Raphson steps can be written as

φ(t+1) = φ(t) − J −1
n (φ(t))Dn(φ

(t)), (5)

where Jn(φ) = U T
n (φ)Cd2qn(φ)/dφ2+{dqn(φ)/dφ}TCdqn(φ)/dφ, Dn(φ) = U T

n (φ
(t))Cdqn(φ)/

dφ and qn(φ) = Pn{q1(X ; β̂,φ, φ̂1), . . . , qK (X ; β̂,φ, φ̂K )}T. In brief, when φ and φk (k =
1, . . . , K) are unknown, we first choose initial estimates β(0) and φ(0). Then we obtain the esti-
mator β̂ by iterating (4) until a stopping rule is reached. Subsequently φ(0), β̂ and the study
estimates are inserted into (5), and the process is repeated until a stopping rule is reached, giving
the genmeta estimator of φ∗. In each Newton–Raphson step, the weighting matrix C is estimated
by the estimates from the previous step.

2.5. Diagnostic test for model violation

Our generalized meta-analysis approach relies on several modelling assumptions, includ-
ing homogeneity of the underlying populations with respect to the distribution of covariates
and regression parameters, and correct specification of the maximal model. In the absence of
individual-level data from the different studies, these assumptions cannot be tested in the usual
manner using traditional diagnostic tests. However, even with summary-level data, some diag-
nostic testing is possible. In particular, from an intuitive perspective, departure of the genmeta

estimating equations, when evaluated at estimated parameter values, from their expected null
value will be indicative of disagreement between the model and the observed data, i.e., the
estimates of the parameters for the reduced models from different studies. For example, if the
regression parameters underlying the maximal model are highly heterogeneous across studies,
then the assumption of a common β in genmeta will not be able to explain the heterogeneity that
is expected to be present in overlapping reduced model parameters across the studies. Specifi-
cally, we propose to use the score test based on the statistic Tgenmeta = nQĈopt

(β̂), where β̂ is the
genmeta estimate. When all the underlying assumptions are correct, by the standard generalized
method of moments theory, Tgenmeta converges in distribution to a χ2 distribution with d − p
degrees of freedom, where d is the total number of genmeta equations and p is the total number
of underlying parameters that are being estimated. The test is applicable only when d > p, which
is the case when different studies have overlapping covariates.

3. Simulations

3.1. Set-up

We study the performance of our estimators through simulation studies in both idealized
and non-idealized settings. In all simulations, we assume that the relationship between a binary
outcome variable Y and three covariates (X1, X2, X3) can be described with a logistic regression
model of the form

Y | (X1, X2, X3) ∼ Ber([1 + exp{−(β∗
0 + β∗

1 X1 + β∗
2 X2 + β∗

3 X3)}]−1), (6)

where (X1, X2, X3) follows a multivariate normal distribution with mean μ = (μ1,μ2,μ3),
variance σ 2 = (σ 2

1 , σ 2
2 , σ 2

3 ) and underlying correlations ρ = (ρ12, ρ13, ρ23). We choose
β∗

1 = β∗
2 = β∗

3 = log 1.3 to reflect a moderate degree of association of the outcome with
each covariate after adjusting for the others. We assume that there are three separate studies,
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Table 1. Simulation results for our generalized meta-analysis estimators in the logistic regres-
sion setting; estimated standard deviations were obtained by taking averages over simulated
datasets and were used to construct 95% confidence intervals, whose coverage rates and

average lengths are reported
n = 50 β∗

i Bias SD (ESD1, ESD2) RMSE CR AL

β∗
1 0.010 0.161 (0.161, 0.162) 0.161 0.968, 0.964 0.642, 0.636

genmeta.0 β∗
2 0.005 0.110 (0.111, 0.108) 0.110 0.958, 0.960 0.434, 0.423
β∗

3 −0.001 0.138 (0.143, 0.142) 0.138 0.963, 0.964 0.559, 0.556

β∗
1 0.005 0.117 (0.116, 0.110) 0.117 0.976, 0.966 0.455, 0.433

genmeta.1 β∗
2 −0.003 0.101 (0.105, 0.099) 0.101 0.964, 0.955 0.411, 0.386
β∗

3 0.001 0.099 (0.102, 0.097) 0.099 0.973, 0.961 0.402, 0.381

β∗
1 0.007 0.115 (0.116, 0.111) 0.115 0.971, 0.964 0.455, 0.435

genmeta.2 β∗
2 −0.003 0.102 (0.105, 0.099) 0.102 0.960, 0.959 0.413, 0.388
β∗

3 0.003 0.098 (0.103, 0.098) 0.098 0.957, 0.957 0.403, 0.383

SD, standard deviation; ESD1, estimated standard deviation using the reference sample; ESD2, estimated standard
deviation using the covariance estimates of reduced model parameters from the studies; RMSE, square root of mean
square error; CR, coverage rate of 95% confidence intervals; AL, average length of 95% confidence intervals.

where each study fits a reduced logistic model for the outcome Y on two of the covariates in the
form

Y | (Xi, Xj) ∼ Ber([1 + exp{−(θ∗
0, ij + θ∗

i, ijXi + θ∗
j, ijXj)}]−1), (7)

with X1 and X2 included in study I, X2 and X3 in study II, and X1 and X3 in study III. Here, as the
data for each study are generated using the maximal model, the reduced models are by definition
incompatible due to the non-collapsibility of the logistic model. We fix the sample size of the
studies at n1 = 300, n2 = 500 and n3 = 1000, and vary the sample size of the reference dataset.

3.2. Homogeneous population

We assume that the studies are conducted in the same underlying population from which the
reference sample is drawn. In this setting, there exists a common mean vector μb = (0, 0, 0), a
common variance vector σ 2

b = (1, 1, 1) and a common correlation vector ρb = (0.3, 0.6, 0.1),
which describes the joint distribution of the three covariates across all the underlying populations.
In the first set of simulations, we assume a fixed sample size n = 50 for the reference dataset. In all
settings, we simulate data (Y , X1, X2, X3) for the underlying studies based on the data-generating
models as described above, and we fit the respective reduced models to obtain estimates of the
reduced model parameters. For each set of simulated data, we obtain estimates of covariance
matrices of the reduced model parameters using robust sandwich estimators based on either
the study datasets themselves or the reference dataset; see (2). We consider three estimators:
genmeta.0, which is the initial genmeta estimator with identity weighting matrix, and genmeta.1
and genmeta.2, which use covariance estimates from the reference dataset and from the studies,
respectively.

From the results shown in Table 1, we see that all three estimators are nearly unbiased. The
standard error estimates, irrespective of whether�k (k = 1, 2, 3) were estimated using the study
datasets or the reference sample, accurately reflect the true standard errors of the genmeta param-
eter estimates across different simulations. As a result, the 95% confidence intervals maintain
the coverage probability at the nominal level. Among the three estimators considered, clearly
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Fig. 1. Root mean square errors, RMSE, of the of genmeta estimators for (a) β∗
1 , (b) β∗

2 and (c) β∗
3 with fixed study

sample sizes n1 = 300, n2 = 500 and n3 = 1000 and varying reference sample size n ∈ {10, 30, 50, 70, 100, 200, 1000}:
genmeta.0, circles and solid line; genmeta.1, triangles and dashed line; genmeta.2, plus signs and dotted line.

genmeta.0, which uses the non-optimal choice of C = I , is less efficient than genmeta.1 and
genmeta.2, which had comparable efficiency.

In the same setting as above, when we vary n from 10 up to a maximum of 1000, we observe
that the precision of the genmeta estimates does not increase with n once it reaches a threshold of
around 100, which is one-third of the minimum of the study sample sizes (n1 = 300); see Fig. 1.
The thresholds were even lower for estimation of coefficients associated with X2, which had weak
to moderate correlation with the other covariates in the model. That the reference dataset can be
substantially smaller than the study datasets without having much impact on the precision of our
estimator is encouraging, given that accessing a reference dataset with a large sample size may
be difficult in practice.

Finally, we conduct additional simulation studies to gain more insight into results from the
real-data analysis. The settings are similar to those described above, except that we assume
there are only two studies: study I fits the maximal logistic regression model involving all three
covariates, while study II involves only two covariates, X1 and X2. We assume ρI = ρII = ρb.
In our estimation, we further incorporated an added complexity to account for study-specific
intercept terms for the maximal logistic regression model,

Y | (X1, X2, X3, study) ∼ Ber([1 + exp{−(β∗
0,study + β∗

1 X1 + β∗
2 X2 + β∗

3 X3)}]−1),

so that the prevalence of the outcome, pr(Y = 1), could be different across the two studies. In this
setting, the maximal set of parameters that are to be estimated through genmeta can be defined
as β∗ = (β0, study I,β0, study II,β1,β2,β3). We simulated data using values of intercept parameters
that are identical for the two models, but for estimation we allowed the intercept parameters to be
different. For the sake of comparison, we also fitted a reduced model for study I and conducted
a standard multivariate meta-analysis of the underlying common parameters associated with X1
and X2 across the two studies. We took the sample sizes for the two studies to be n1 = 500 and
n2 = 5000, and that for the reference dataset to be n = 300.

Table 2 shows that in this simulation setting the reduced models produce biased estimates
for β∗

1 , but not for β∗
2 . The result is intuitive given that the omitted covariate X3 is primarily
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Table 2. A simulation for understanding the real-data analysis: point estimates and standard
deviations from logistic regression with reduced and maximal models, meta-analysis, and

genmeta estimation with β∗
1 = β∗

2 = β∗
3 = log(1.3) ≈ 0.262

Study I Study II Meta-analysis genmeta

Maximal Reduced Reduced Reduced Reduced Maximal
β∗

i PE (SD) PE (SD) PE (SD) PE (SD) PE (SD) PE (SD)

β∗
1 0.270 (0.149) 0.429 (0.116) 0.424 (0.037) 0.424 (0.035) 0.425 (0.035) 0.268 (0.088)
β∗

2 0.263 (0.111) 0.243 (0.112) 0.236 (0.035) 0.236 (0.034) 0.237 (0.034) 0.263 (0.039)
β∗

3 0.258 (0.136) NA NA NA NA 0.255 (0.135)

PE, point estimate; SD, standard deviation; NA, no corresponding estimator.

correlated with X1. As a result, standard meta-analysis was nearly unbiased for β∗
2 , but not for β∗

1 .
Parameter estimates from the maximal model in study I are unbiased for all parameters, but have
much larger standard errors compared to those obtained from meta-analysis for estimation of
β∗

2 . Our generalized meta-anlysis estimator produced unbiased estimates for all the parameters
and, at the same time, has efficiency comparable to standard meta-analysis for estimation of
β∗

2 . These results highlight a desirable feature of our estimator, namely that it can effectively
combine information across studies to minimize bias due to omitted covariates, and yet utilize
all the information available across the partially informative studies.

3.3. Heterogeneous population

We now conduct simulation studies where the underlying assumption of homogeneity of the
covariate distribution across populations may be violated in various ways. As a benchmark for
comparison, setting (I) will be the same as the one we simulated under the homogeneous pop-
ulation. In setting (II), we allow the means and/or variances to vary across the populations,
underlying the studies and the reference sample, while keeping the correlations constant. Specifi-
cally, the mean vector for the three covariates can take one of three possible values:μh = (1, 1, 1),
μm = (0.5, 0.5, 0.5) and μb = (0, 0, 0). Similarly, the variance vector is allowed to vary across
three possible sets of values: σ 2

h = (2, 2, 2), σ 2
l = (0.5, 0.5, 0.5) and σ 2

b = (1, 1, 1). In setting
(III), we allow the correlations among the covariates to vary across populations; here we also con-
sider three possible sets of correlation vectors, namely ρl = (0.2, 0.4, 0.0) , ρh = (0.4, 0.8, 0.2)
and ρb = (0.3, 0.6, 0.1). In simulation setting (IV), we allow for potentially different inclusion
criteria across studies, leading to possible violations of the assumption of homogeneity of the
covariate distribution. Specifically, we first simulate an underlying study base using the set-up
described in simulation setting (I), and then for study I we keep only individuals with X1 > −0.5
and X2 < 0.5, while in study II we keep individuals with X1 > 0. Finally, we consider an alter-
native simulation scenario where we assume that the covariates are log-normally distributed by
defining X = exp(W ), where W is generated from a multivariate normal distribution following
the same settings as in (I)–(IV) above.

When the covariates are normally distributed, we observe that the proposed method is not very
sensitive to the underlying assumption of homogeneity of the covariate distribution; see Table 3.
In setting (II), where the means and/or variances of the covariates vary across the populations,
but the correlations are fixed, there is virtually no bias. In setting (III), where the correlations are
varied, we observe more noticeable, but still small, biases in the parameter estimates. In setting
(IV), where the inclusion criteria vary across studies, there is also very minimal bias. When the
covariates are log-normally distributed, however, the method can be more sensitive to violation
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Table 3. Robustness of generalized meta-analysis estimation: results for the genmeta estimates
using the study covariance estimators in the setting of logistic regression. In setting (I), data
are simulated in the ideal setting where the covariate distribution, characterized by the mean,
standard deviation and correlation of normal variates, is the same across all populations. In
settings (II)–(IV), the assumption is violated by creating variations in means and/or standard
deviations, correlations, and selection criteria across the studies and the reference sample. The
vectors of covariate means, variances and correlations are denoted by μ∗ = (μ1,μ2,μ3),
σ 2∗ = (σ 2

1 , σ 2
2 , σ 2

3 ) and ρ∗ = (ρ12, ρ23, ρ13) for ∗ ∈ {b, l, m, h}, where μb = (0, 0, 0), μm =
(0.5, 0.5, 0.5), μh = (1, 1, 1), σ 2

b = (1, 1, 1), σ 2
l = (0.5, 0.5, 0.5), σ 2

h = (2, 2, 2), ρb =
(0.3, 0.6, 0.1),ρh = (0.4, 0.8, 0.2)andρl = (0.2, 0.4, 0). Estimated standard deviation is obtained

from the asymptotic formula (1) and used to construct 95% confidence intervals
Setting Study I Study II Study III Reference β∗

i Bias SD (ESD) RMSE CR AL

μb μb μb μb β∗
1 0.001 0.111 (0.112) 0.111 0.947 0.437

I σ 2
b σ 2

b σ 2
b σ 2

b β∗
2 −0.002 0.098 (0.099) 0.098 0.956 0.389

ρb ρb ρb ρb β∗
3 0.005 0.096 (0.098) 0.096 0.954 0.382

μb μh μm μb β∗
1 0.010 0.103 (0.104) 0.103 0.952 0.405

σ 2
b σ 2

b σ 2
b σ 2

b β∗
2 −0.006 0.083 (0.083) 0.083 0.954 0.324

ρb ρb ρb ρb β∗
3 0.005 0.085 (0.088) 0.085 0.956 0.343

μb μb μb μb β∗
1 0.003 0.139 (0.136) 0.139 0.939 0.529

II σ 2
b σ 2

h σ 2
l σ 2

b β∗
2 −0.003 0.084 (0.086) 0.084 0.956 0.335

ρb ρb ρb ρb β∗
3 0.003 0.112 (0.111) 0.112 0.949 0.431

μb μh μm μb β∗
1 0.013 0.124 (0.126) 0.125 0.946 0.493

σ 2
b σ 2

h σ 2
l σ 2

b β∗
2 −0.006 0.073 (0.075) 0.073 0.958 0.291

ρb ρb ρb ρb β∗
3 0.005 0.097 (0.100) 0.097 0.949 0.391

μb μb μb μb β∗
1 −0.092 0.142 (0.151) 0.169 0.958 0.579

σ 2
b σ 2

b σ 2
b σ 2

b β∗
2 0.019 0.105 (0.109) 0.107 0.963 0.423

ρb ρb ρb ρh β∗
3 0.053 0.120 (0.129) 0.131 0.971 0.495

μb μb μb μb β∗
1 0.035 0.099 (0.099) 0.106 0.917 0.385

σ 2
b σ 2

b σ 2
b σ 2

b β∗
2 0.002 0.096 (0.096) 0.096 0.954 0.377

ρb ρb ρb ρl β∗
3 0.012 0.087 (0.087) 0.088 0.944 0.343

μb μb μb μb β∗
1 0.060 0.113 (0.113) 0.128 0.916 0.443

III σ 2
b σ 2

b σ 2
b σ 2

b β∗
2 −0.001 0.096 (0.097) 0.096 0.955 0.379

ρl ρb ρh ρl β∗
3 −0.006 0.103 (0.102) 0.104 0.944 0.398

μb μb μb μb β∗
1 0.039 0.130 (0.132) 0.135 0.939 0.515

σ 2
b σ 2

b σ 2
b σ 2

b β∗
2 −0.006 0.097 (0.100) 0.097 0.958 0.392

ρl ρb ρh ρb β∗
3 −0.027 0.116 (0.118) 0.119 0.944 0.461

μb μb μb μb β∗
1 −0.036 0.165 (0.173) 0.169 0.957 0.671

σ 2
b σ 2

b σ 2
b σ 2

b β∗
2 0.013 0.103 (0.109) 0.104 0.962 0.424

ρl ρb ρh ρh β∗
3 0.003 0.143 (0.153) 0.143 0.959 0.591

μb μb β∗
1 0.014 0.123 (0.127) 0.124 0.961 0.494

IV X1 > −0.5, X2 > 0 σ 2
b σ 2

b β∗
2 −0.008 0.105 (0.109) 0.105 0.965 0.428

X2 < 0.5 ρb ρb β∗
3 −0.001 0.094 (0.093) 0.093 0.958 0.366

SD, standard deviation; ESD, estimated standard deviation; RMSE, square root of mean square error; CR, coverage
rate of 95% confidence intervals; AL, average length of 95% confidence intervals.

of the underlying homogeneity assumption; see the Supplementary Material. In particular, when
the inclusion criteria varied across studies in setting (IV), large bias in point estimates and low

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asz030#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asz030#supplementary-data
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coverage probability were observed for estimation of the coefficient associated with X2, the
covariate which is used to define fairly non-overlapping inclusion criteria across two studies.
Notably, even in this scenario, minimal bias is observed for estimation of the other covariates in
the model.

3.4. Power evaluation of the diagnostic test

We assess the power of the proposed test statistic, Tgenmeta, in the presence of heterogeneity
in the regression parameters, β, across the studies. In the context of standard multivariate meta-
analysis, where it is assumed that all the studies ascertain the same set of covariates, the test for
heterogeneity is performed using the standard multivariate Cochran’s test-statistic

Q =
K∑

k=1

(β̂k − β̂meta)
TS−1

k (β̂k − β̂meta),

where β̂meta is the usual multivariate meta-analysis estimate and Sk is the standard error of β̂k for
k = 1, . . . , K . We will use Q as a benchmark to evaluate the power of Tgenmeta.

In all simulations, as before, we assume that there are three separate studies, and that the
relationship between a binary outcome variable Y and three covariates (X1, X2, X3) in each study
follows the same logistic regression model of the form (6). However, instead of assuming a fixed
set of β across all studies, we simulate different values of β from a normal distribution with mean
(β∗

1 ,β∗
2 ,β∗

3 ) = (log 1.3, log 1.3, log 1.3) and variance σ 2I , where the parameter σ 2 > 0 is varied
to control the degree of heterogeneity across studies. As before, we assume that (X1, X2, X3) fol-
lows a multivariate normal distribution with zero mean, unit variance and underlying correlations
ρ12 = 0.3, ρ13 = 0.6 and ρ23 = 0.1 for the three studies. We simulate data for the different stud-
ies from the above random-effects logistic regression model and then fit reduced models of the
form (7) to the three studies. In particular, we assume that X1 and X2 are included in study I, X2
and X3 in study II, and X1 and X3 in study III. We fix the sample sizes of the studies at n1 = 3000,
n2 = 5000 and n3 = 10 000, and vary the sample size of the reference dataset. The level of the
test is set to 5%. For comparison, we also fit the maximal model to each study involving all three
covariates and apply the standard Q-statistic for testing heterogeneity.

Comparison of the power of Tgenmeta and of the Q-statistic shows that, as expected, the power
for both tests increases as a function of the degree of heterogeneity, σ 2; see Fig. 2. Clearly,
Tgenmeta suffers some loss of power as it deals with the missing covariates, but it retains enough
power, even with a small reference dataset (n = 100), to remain practically useful.

4. Real-data analysis

In this section we illustrate application of the proposed method by developing a model for
predicting the risk of breast cancer using a combination of different risk factors based on data
from multiple studies. The first study, the Breast Prostate Colorectal Cancer Cohort, BPC3,
study, includes a total of 7448 cases and 8812 controls, drawn from eight different underlying
cohorts. Details of the study, including its recent application to the development of a breast
cancer risk prediction model, can be found in Mass et al. (2016). Here we focus on the analysis
of breast cancer risk associated with a selected set of factors, including family history, age at
menarche, age at first birth, and body weight. The second study is the Breast Cancer Detection
and Demonstration Project, BCDDP, with a dataset containing 1217 cases and 1616 controls.
The study has previously been used to develop an updated version of the widely popular Breast
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Fig. 2. Power curves of the simple multivariate meta-analysis test statistic, Q, and Tgenmeta for simulated datasets: the
simple meta-analysis estimator (dashed) and genmeta estimators with reference data sample sizes of 100 (solid) and

500 (dotted). The level of the test is set to 0.05.

Cancer Risk Assessment tool (Chen et al., 2006) that incorporates mammographic density, the
areal proportion of breast tissue that is radiographically dense, which is known to be a strong
risk factor for breast cancer. The dataset from the BCDDP study contains mammographic density
and the number of previous breast biopsies, in addition to all the factors considered in the BPC3
data analysis. Let X denote the common set of covariates measured across both studies, and let Z
represent the factors available only in BCDDP. The goal is to estimate parameters associated with
an underlying logistic regression model that includes all of the different factors. While the BPC3
study is large in size and represents multiple populations, it has information on a more limited
number of risk factors. The BCDDP study, on the other hand, has information on an extended
set of risk factors, but is much smaller in size. A combined analysis of these two studies can
potentially yield more generalizable and precise estimates of risk parameters.

Throughout the analysis, we use a sample of 137 cases and 163 controls from the BCDDP
study as the reference sample, based on which the distribution of covariates is estimated. To
maintain independence of the reference and study samples, we exclude the reference sample
from the primary analysis of the BCDDP study, which involves estimation of the log-odds-ratio
parameters. Further, both of the studies involve case-control sampling with similar case-control
proportions. In general, if nonrandom sampling is used for selection of subjects in any of the
studies, then the covariate distribution underlying the genmeta estimating equation needs to be
adjusted to account for the study design. In this application, because we had access to the BCDDP
study, we could adjust for the design effect by simply selecting a reference sample that includes
cases and controls in a similar ratio to that in the main studies. In general, however, the effect of
nonrandom sampling design for the main studies may need to be accounted for through careful
weighting of subjects in the reference sample.

For each of the eight cohorts in the BPC3 study and for the BCCDP study, we first fit a reduced
logistic regression model including X . All models include age as an additional cofactor as well as
study-specific intercept parameters and age effects. Specifically, we consider underlying models
of the form

(Y | X ,Age, study = k) ∼ Ber([1 + exp{−(θ0k + θAkAge + θT
X X )}]−1). (8)
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We applied the diagnostic test for model violation to these datasets. We found the value of
the test-statistic, T̂genmeta, to be 59.01 and the corresponding p-value to be 0.366 under a χ2

(56)
distribution. Hence, it appears that the underlying model assumptions are unlikely to be grossly
violated in this application.

First, to illustrate how our proposed estimator compares with the standard meta-analysis
method, we estimate the common underlying parameters of interest θX using these two methods.
We fitted model (8) separately for each study and obtained estimates of the parameters and covari-
ance matrices. Then, for the underlying common parameter of interest θX , we conducted a standard
multivariate meta-analysis using the corresponding subset of parameter estimates and covariance
matrices. Alternatively, using the parameter estimates and variance-covariance matrices from the
individual studies, and using the BCDDP sample that was set aside as the reference dataset to
estimate the joint distribution of X and Age, we estimated all the parameters of model (8) using
our procedure. From the results reported in Table 4, it can be seen that in this setting the meta-
analysis and our estimators produce similar estimates and corresponding standard errors across
all the different risk factors of interest. In one of the results stated earlier, we saw theoretically
that in an idealized setting, where all the models and underlying populations are identical, the two
estimators are asymptotically equivalent. It is encouraging to observe the close correspondence
between the estimators in the data analysis, which involves a diverse set of studies that are likely
to have significant heterogeneity across the underlying populations. In particular, for a number
of the risk factors, such as family history, coefficient estimates were noticeably different for the
two studies. When significant heterogeneity existed, the meta-analysed estimates were pooled
closer to those from the BPC3 study because of its large sample size.

Next, we turn our attention to the analysis of data from the BCDDP study using a maximal
model that includes X and the additional covariates, mammographic density and number of
previous breast biopsies. Comparison of the parameter estimates associated with X across the
maximal and reduced models within the BCDDP study indicates major differences in the estimates
of the coefficients associated with weight. In the maximal model, higher weight is found to be
much more strongly associated with increased risk of breast cancer. The unmasking of the effect of
weight in the maximal model is intuitive, given that body weight and mammographic density are
known to have a strong negative correlation. Although not as dramatic, there are some differences
in the effects of age at menarche and age at first birth between the maximal and reduced models,
also possibly due to the modest correlation of these factors with mammographic density and the
number of previous breast biopsies. The effect of family history, however, is almost identical
across the two models.

Finally, we used our generalized meta-anlysis method to combine estimates of the parameters
of the maximal model from the BCDDP study and those from the reduced models for the eight
BPC3 cohorts. We assumed an underlying maximal model of interest across the nine studies:

(Y | X , Z ,Age, study = k) ∼ Ber([1 + exp{−(θ0k + θAkAge + βT
X X + βT

Z Z)}]−1).

We observe that our generalized meta-analysis approach produces estimates of the effect of
family history and associated standard error that are very similar to those based on standard
meta-analysis of the reduced models across the nine cohorts. The estimate is pooled heavily
towards the BPC3 study due to its large sample size. In contrast, the genmeta estimates for
weight are very similar to those obtained from the maximal model only within the BCDDP study.
These results are consistent with the simulation studies, in which genmeta behaves similarly
to reduced-model meta-analysis when omitted covariates do not cause notable bias. In contrast,
when omitted covariates cause considerable bias, our estimator is pooled towards estimates from
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Table 4. Real-data analysis results comparing meta-analysis and our generalized meta-analysis
method: combined analysis of the BCDDP and BPC3 studies to develop a multivariate logistic
regression model for breast cancer risk. For each cohort within BPC3 and for BCDDP, the
standard logistic regression model is used to fit reduced models; parameter estimates of the
reduced models across studies are then combined using standard meta-analysis or genmeta. For
the BCDDP study, a maximal logistic model is fitted including two additional covariates. These
estimates are then combined with estimates of reduced model parameters from BPC3 to obtain

genmeta estimates of the maximal model
BPC3

CPS2 EPIC MCCS MEC NHS PLCO WHI WHS
Risk cohort cohort cohort cohort cohort cohort cohort cohort
factors PE (SE) PE (SE) PE (SE) PE (SE) PE (SE) PE (SE) PE (SE) PE (SE)
FH 0.47 (0.13) 0.29 (0.15) 0.56 (0.19) 0.41 (0.28) 0.48 (0.08) 0.39 (0.13) 0.30 (0.06) 0.28 (0.19)
AMEN1 −0.03 (0.14) 0.02 (0.09) −0.19 (0.17) −0.09 (0.24) 0.06 (0.09) −0.05 (0.12) 0.13 (0.08) 0.03 (0.17)
AMEN2 −0.09 (0.17) 0.04 (0.12) −0.44 (0.23) 0.35 (0.35) 0.19 (0.10) 0.03 (0.15) 0.19 (0.09) 0.14 (0.19)
AFB1 0.28 (0.17) 0.12 (0.14) −0.08 (0.25) 0.06 (0.17) 0.39 (0.20) 0.16 (0.14) 0.19 (0.09) 0.92 (0.23)
AFB2 0.73 (0.24) 0.24 (0.17) 0.35 (0.30) 0.05 (0.26) 0.36 (0.22) 0.52 (0.22) 0.44 (0.13) 0.96 (0.28)
WT1 0.09 (0.14) −0.01 (0.09) 0.22 (0.18) 0.09 (0.17) 0.21 (0.08) 0.09 (0.13) −0.03 (0.08) −0.01 (0.14)
WT2 0.16 (0.14) 0.24 (0.11) 0.45 (0.19) −0.08 (0.18) 0.10 (0.08) 0.09 (0.13) 0.18 (0.08) −0.16 (0.15)

BCDDP Meta-analysis GENMETA
Maximal Reduced Reduced Reduced Maximal

Risk model model model model model
factors PE (SE) PE (SE) PE (SE) PE (SE) PE (SE)
FH 0.80 (0.14) 0.80 (0.14) 0.40 (0.04) 0.42 (0.04) 0.37 (0.08)
AMEN1 0.11 (0.10) 0.07 (0.10) 0.04 (0.04) 0.03 (0.04) 0.04 (0.06)
AMEN2 0.55 (0.15) 0.45 (0.15) 0.13 (0.05) 0.13 (0.05) 0.32 (0.08)
AFB1 0.06 (0.14) 0.18 (0.15) 0.21 (0.05) 0.20 (0.05) 0.05 (0.09)
AFB2 0.29 (0.20) 0.46 (0.20) 0.38 (0.06) 0.38 (0.07) 0.21 (0.12)
WT1 0.29 (0.11) 0.09 (0.11) 0.08 (0.04) 0.08 (0.04) 0.31 (0.07)
WT2 0.52 (0.13) 0.10 (0.13) 0.14 (0.04) 0.14 (0.04) 0.63 (0.09)
NBIOPS 0.13 (0.09) NA NA NA 0.13 (0.10)
MD 0.46 (0.05) NA NA NA 0.43 (0.06)

FH, binary indicator of family history; AMEN, age at menarche; AMEN1 and AMEN2, dummy variables associated
with age-at-menarche categories �14, 12–13 and �11; AFB, age at first live birth; AFB1 and AFB2, dummy variables
associated with age-at-first-live-birth categories �20, 21–29 and �30; WT, weight; WT1 and WT2, dummy variables
associated with weight categories �62.6, 62.6–73.1 and �73.1 in kilograms; NBIOPS, number of previous biopsies
coded as a continuous variable; MD, standardized mammographic density coded as a continuous variable; PE, point
estimate; SE, standard error; NA, no corresponding estimator. CPS2, EPIC, MCCS, MEC, NHS, PLCO, WHI and
WHS, abbreviated names of the eight cohorts of BPC3.

maximal or more complete models that may be available from a restricted set of studies. The
behaviour of genmeta for the other two covariates, age at menarche and age at first birth, was
in between, which is also intuitive given that we observed their coefficients to have changed
notably, but less dramatically, in the maximal model as compared to the reduced model within
the BCDDP study. The genmeta parameter estimates and standard errors for the additional
variables of mammographic density and number of previous breast biopsies were similar to those
observed for the maximal model in the BCDDP study, the only study for which information was
available on these two factors. Thus, overall the data analysis demonstrates that our estimator
behaves in a similar manner to meta-analysis for combining information across multiple pos-
sibly heterogeneous studies, but it has added flexibility to effectively combine information from
disparate models.
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5. Discussion

The proposed method can be viewed as a natural extension of the traditional fixed-effect
meta-analysis method that is widely used in practice. Our simulation studies and data analy-
sis demonstrate that the method not only provides theoretically valid and efficient inference in
idealized conditions, but also can perform robustly in non-idealized settings. A critical element of
the proposed method is access to a reference dataset. While the ideal choice of reference dataset
will vary by application, publicly available survey data, which contain information on a wide
variety of factors, can be useful broadly. In fact, in large-scale genetic association studies, refer-
ence samples such as the 1000 Genomes Project are commonly used for estimating correlation
parameters across genetic markers in the genome (The 1000 Genomes Project Consortium, 2012,
2015; Lee et al., 2013). For epidemiological studies, good sources of a reference dataset for the
U.S. population include the National Health Interview Survey (Adams et al., 1999; Botman &
Moriarity, 2000; Bloom et al., 2010) and the National Health and Nutrional Examination Survey
(Fang & Alderman, 2000; He et al., 2001; de Ferranti et al., 2006; Idler & Angel, 2011; LaKind
et al., 2012), which routinely collect data on a wide range of health- and lifestyle-related fac-
tors. If multiple studies coordinate through a consortium effort, which is becoming increasingly
common in biomedical applications, then studies that have the most complete information, at
least on some subsamples, can provide a reference sample.

When information on all covariates is not available in a single reference sample, one may
have to consider using simulation to generate such data by combining information from multiple
studies under some modelling assumptions. As access to large reference datasets can be difficult,
researchers may find two aspects of our approach appealing. First, the sample size for the reference
dataset can be small relative to the study datasets, and yet our generalized meta-analysis approach
can have reasonable efficiency. In fact, increasing the sample size for the reference dataset beyond
a certain threshold does not have an impact on the efficiency of our method. Secondly, although
technically our method requires all the populations underlying the studies and the reference
dataset to be the same, in practice the method can be robust against a reasonable degree of
heterogeneity in the distribution of covariates. However, it is possible to have a large bias when
estimating coefficients associated with covariates that have been used to define widely varying
inclusion criteria. When different studies follow very different designs, it is best to obtain study-
specific reference samples for estimating the underlying moment equations. Alternatively, it may
be possible to modify a large reference sample by using study-specific sampling weights or
inclusion criteria when estimating the moment equations. Dealing with study-specific covariates,
such as centres within a study, can also pose challenges, as information on such variables is not
expected to be available from a common reference sample. We have illustrated in our data example
that it is possible to deal with such variables by imposing additional independence assumptions
from other factors. In general, such complications need to be dealt with on a case-by-case basis,
and some study-specific reference samples may be needed to avoid making strong assumptions.
Further research is merited to explore these and other practical challenges in implementation of
the proposed method.

In general, we believe that caution is needed for interpretations and applications of models
developed by combining information from disparate models across multiple studies. A model
developed from a single study with complete information may be inefficient and lack general-
izability, but it is more likely to be internally consistent and thus can provide valid etiologic
inference even if it is not representative of the general population. On the other hand, etiologic
interpretation of parameters can be difficult when the underlying model is developed using infor-
mation across multiple studies that are potentially heterogeneous. For predictive models, where
the focus is not so much on parameter interpretation, development of rich models by combining
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information across multiple studies and then validating such models in independent studies can
be an appealing strategy. These and other practical issues related to model development using
multiple data sources have also been discussed in several recent articles (Wang et al., 2015; Han
& Lawless, 2017; Cheng et al., 2019; Estes et al., 2018).

In this article we have used generalized method of moments as the underlying inferential
framework. Alternatively, inference could be performed using empirical likelihood theory (Qin
& Lawless, 1994; Qin, 2000; Chatterjee et al., 2016), exploiting the same set of moment equations
as we propose. While in small samples empirical likelihood estimators may perform better, their
implementation can be substantially more complex. Recently, a simulation-based method has
also been proposed for combining information on model parameters across disparate studies
(Rahmandad et al., 2017). Computationally, our method may enjoy substantial advantages in
dealing with complex models, such as those in high-dimensional settings, where repeated model
fitting on simulated data is extensive. Further research is needed in multiple directions to increase
the practical utility of genmeta. It is possible that in some applications we may have information
only on subsets of parameters underlying the fitted reduced models. It is an open question as
to how such partial information can be used to set up the underlying moment equations in
the genmeta procedure. Ideally, to increase robustness of inference, the procedure should use
study-specific reference samples for setting up the moment equations. For this purpose, it may be
useful to develop strategies to combine information on a common reference sample with complete
covariate information and data from individual studies that have partial covariate information.
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Appendix

Assumptions of Theorem 1

Assumptions A1–A4 are for consistency, and Assumptions A5–A9 are for asymptotic normality:

Assumption A1. C is positive semidefinite and CE{U (X ;β, θ∗)} = 0 if and only if β = β∗;

Assumption A2. β∗ ∈ Dβ , which is compact;

Assumption A3. uk(X ;β, θk) is continuous for each (β, θk) ∈ Dβ × N (θ∗
k ) with probability 1, where

N (θ∗
k ) is a neighbourhood of θ∗

k for k = 1, . . . , K ;

Assumption A4. E{sup(β, θk )∈Dβ×N (θ∗k ) ‖uk(X ;β, θk)‖} < ∞ for k = 1, . . . , K ;

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asz030#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asz030#supplementary-data
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Assumption A5. ∂uk(X ;β, θk)/∂β is continuous at each (β, θk) ∈ N (β∗)× N (θ∗
k ) with probability 1,

where N (β∗) is a neighbourhood of β∗;

Assumption A6. E{sup(β, θk )∈N (β∗)×N (θ∗k ) ‖∂uk(X ,β, θk)/∂β‖} < ∞;

Assumption A7. ∂uk(X ;β∗, θk)/∂θk is continuous at each θk ∈ N (θ∗
k ) with probability 1;

Assumption A8. E{supθk ∈N (θ∗k ) ‖∂uk(X ,β∗, θk)‖/∂θk} < ∞;

Assumption A9. �(β∗, θ∗) exists and is finite, and �(β∗, θ∗) is of full rank.

Details of Assumption A1

In practice it is sometimes difficult to check the global identification condition. This motivates us to
investigate conditions for local identifiability or, equivalently, the invertibility of the matrix of second
derivatives at the true parameter, i.e., ∂2Q(β)/∂β2|β=β∗ = [E{∂U (X ;β)/∂β}TCE{∂U (X ;β)/∂β}]|β=β∗
(Rothenberg, 1971; Engle & McFadden, 1994), assuming C is a positive-definite matrix. The condition
can be stated in terms of the equivalent sample version of the matrix, given by X T

rbindWXAdiag CX T
Adiag

WXrbind.
As C is a positive-definite matrix, the entire local identifiability condition for the sample version then boils
down to X T

Adiag
WXrbind being a matrix of full column rank. A sufficient condition for this is the matrix XAdiag

to have information on all the covariates of the maximal model. In other words, the individual covariates
in the maximal model have to be part of at least one of the reduced models.
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